
Page Table: Status Bits

CS 423 - The University of Illinois
Wade Fagen-Ulmschneider

Review: Page Tables

[0]
[1]
[2]
[3]

RAM:

@[0]

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]

P1 Page Table:

@[2]

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]

P2 Page Table:

@[1]

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]

P3 Page Table:

@[3]

Review: Eviction Policies
★ Various Eviction Policies:

○ FIFO
○ LRU
○ LFU
○ NRU / “Second Chance”
○ Optimal

Page Table: Status Bits (x64)
★ As part of the Page Table Entry (PTE), all operating systems will

maintain “status bits” about the page. On an x64 system:

Source: AMD64 Architecture Programmer’s Manual, Volume 2: System Programming
https://www.amd.com/system/files/TechDocs/24593.pdf

https://www.amd.com/system/files/TechDocs/24593.pdf

Source: AMD64 Architecture Programmer’s Manual, Volume 2: System Programming
https://www.amd.com/system/files/TechDocs/24593.pdf

“No Execute Bit” (NX): Should the page’s content be executed?
● “When the NX bit is set to 1, code cannot be executed from the mapped physical pages.”

● We don’t want to execute stack/heap memory.
● The NX bit reduces many types of “buffer overflow” exploits where it was possible to

override the return pointer in a function’s stack frame and run code placed earlier in the
buffer.

https://www.amd.com/system/files/TechDocs/24593.pdf

Source: AMD64 Architecture Programmer’s Manual, Volume 2: System Programming
https://www.amd.com/system/files/TechDocs/24593.pdf

“Present Bit” (P): Is the page in physical memory?
● “When the P bit is cleared to 0, the table or physical page is not loaded in physical

memory. When the P bit is set to 1, the table or physical page is loaded in physical
memory. “

https://www.amd.com/system/files/TechDocs/24593.pdf

Source: AMD64 Architecture Programmer’s Manual, Volume 2: System Programming
https://www.amd.com/system/files/TechDocs/24593.pdf

“Read/Write Bit” (R/W): Is the page writable?
● “When the R/W bit is cleared to 0, access is restricted to read-only. When the R/W bit is

set to 1, both read and write access is allowed.”

https://www.amd.com/system/files/TechDocs/24593.pdf

Source: AMD64 Architecture Programmer’s Manual, Volume 2: System Programming
https://www.amd.com/system/files/TechDocs/24593.pdf

“User/Supervisor” Bit (U/S): Is the user-accessible?
● “When the U/S bit is cleared to 0, access is restricted to supervisor level (CPL 0, 1, 2). When

the U/S bit is set to 1, both user and supervisor access is allowed.”

https://www.amd.com/system/files/TechDocs/24593.pdf

Source: AMD64 Architecture Programmer’s Manual, Volume 2: System Programming
https://www.amd.com/system/files/TechDocs/24593.pdf

“Accessed” Bit (A): Has this page been (recently accessed)?
● “The A bit is set to 1 by the processor the first time the table or physical page is either read

from or written to. The A bit is never cleared by the processor. Instead, software must clear
this bit to 0 when it needs to track the frequency of table or physical-page accesses.”

● As a Operating System, we decide when to clear the A bit!

https://www.amd.com/system/files/TechDocs/24593.pdf

Source: AMD64 Architecture Programmer’s Manual, Volume 2: System Programming
https://www.amd.com/system/files/TechDocs/24593.pdf

“Dirty” Bit (D): Has the contents of this page been modified?
● “The D bit is set to 1 by the processor the first time there is a write to the physical page.

The D bit is never cleared by the processor. Instead, software must clear this bit to 0 when
it needs to track the frequency of physical page writes.”

● As a Operating System, we decide when to clear the D bit!

https://www.amd.com/system/files/TechDocs/24593.pdf

Source: AMD64 Architecture Programmer’s Manual, Volume 2: System Programming
https://www.amd.com/system/files/TechDocs/24593.pdf

“Available to Software” Bits (AVL): Three bits for the OS to use for
any purpose.

● “These bits are not interpreted by the processor and are available for use by system
software.”

https://www.amd.com/system/files/TechDocs/24593.pdf

Page Table: Status Bits (ARMv8)
★ An ARM processor has many similar status bits for PTEs:

Source: ARMv8-A Address translation
https://static.docs.arm.com/100940/0100/armv8_a_address%20translation_100940_0100_en.pdf

https://static.docs.arm.com/100940/0100/armv8_a_address%20translation_100940_0100_en.pdf

Status Bits
★ Page Table Entry status bits allow the kernel to know the “state” of

a page, and use several bits for implementing page eviction
schemes.

★ Many aspects of paging is built into hardware for speed,
preventing the need for a trap to kernel for every memory access.

Page Table: Multi-level
Page Tables

CS 423 - The University of Illinois
Wade Fagen-Ulmschneider

Page Tables Sizes
★ In the previous lecture, we saw the Page Table Entry for an x64

system:

...each entry uses 64 bits, or 8B, of memory!

Source: AMD64 Architecture Programmer’s Manual, Volume 2: System Programming
https://www.amd.com/system/files/TechDocs/24593.pdf

https://www.amd.com/system/files/TechDocs/24593.pdf

Page Tables Sizes
★ Known:

○ In many x64 systems (including our VM), each page is 4 KiB.
○ On x64 systems, each PTE is 8 B in size.

★ If we have a system that has 16 GiB of RAM:

Page Tables Sizes
★ Known:

○ In many x64 systems (including our VM), each page is 4 KiB.
○ On x64 systems, each PTE is 8 B in size.

★ If we have a system that has 16 GiB of RAM:
○ 16 GiB memory / 4 KiB pages = 4 MiB pages /process.
○ 4 MiB pages * 8 B / PTE =

 32 MiB overhead for every page table (!!!!)
 Remember each process has its own page table.

Multi-Level Page Table
★ In a given process, most of the allocated memory is in a small

region of the full memory space:

0x0

0xffffffffffffff

0x7c24c24853a000

Unused Virtual
Memory Space

Unused Virtual
Memory Space

Program Code,
Heap, Stack, etc

★ Design Idea:
○ Why not use a tree-like structure to

populate only the needed leaves of
“memory tree”?

○ Why not have each “node” in the
tree be really small (maybe fit
within a page)?

Multi-Level Page Table
★ In a given process, most of the allocated memory is in a small

region of the full memory space:

0x0

0xffffffffffffff

0x7c24c24853a000

Unused Virtual
Memory Space

Unused Virtual
Memory Space

Program Code,
Heap, Stack, etc

★ The x64 architecture does uses a multi-level lookup:

Source: AMD64 Architecture Programmer’s Manual, Volume 2: System Programming
https://www.amd.com/system/files/TechDocs/24593.pdf

https://www.amd.com/system/files/TechDocs/24593.pdf

★ Each entry is (effectively) a PTE at each level:

Source: AMD64 Architecture Programmer’s Manual, Volume 2: System Programming
https://www.amd.com/system/files/TechDocs/24593.pdf

https://www.amd.com/system/files/TechDocs/24593.pdf

Multi-Level Page Tables
★ Since the memory address space for a given process is usually

sparse, the “tree” is very sparse:
○ The highest-level page table may have only a few entries.

○ All other entries are “NULL” and do not need to be allocated
until used.

○ Translation Lookaside Buffers (TLBs) and other hardware
optimize the lookup+caching of page tables.

Page Size?
★ What is the ideal page size?

4 KiB pages ⇒ 4-level
lookup

2 MiB pages ⇒ 3-level lookup 1 GiB pages ⇒ 2-level lookup

Page Size?
★ What is the ideal page size?

Small Page Size (ex: 4 KiB): Large Page Size (ex: 1 GiB):
★ “Locality of Reference” tends to

be relatively small.

★ Small pages require minimal I/O
during a page fault.

★ Very little fragmentation.

★ However, requires many level
multi-level page table.

★ Small page table, minimal levels
in a multi-level page table.

★ Internal fragmentation (cannot
allocate smaller than page size)

★ Large I/O transfers during page
faults, impacts system
performance.

Page Size?
★ What is the ideal page size?

4 KiB pages ⇒ 4-level
lookup

2 MiB pages ⇒ 3-level lookup 1 GiB pages ⇒ 2-level lookup

Likely a very slow migration as RAM sizes increases...

2021 2030?

Memory: Thrashing

CS 423 - The University of Illinois
Wade Fagen-Ulmschneider

Thrashing
★ Page eviction occurs when a system has filled all available

memory.
○ What happens when this happens often?

Remember: Each Page Fault is likely a SLOW disk I/O operation!

Thrashing
★ System is in a page faulting constantly.

○ Pages are being evicted almost as soon as they’re paged in.
 ⇒

○ Processes are blocked waiting for disk I/O for their pages to be paged in -- CPU
begins to be idle waiting for CPU operations just to get paged in!
 ⇒

○ On server/clusters, new jobs may be launched/assigned due to low CPU utilization.
 ⇒

○ More pages are requested and the cycle gets even worse!

Thrashing
★ In a memory-constrained system:

of jobs on the system increasing

C
PU

 U
til

iz
at

io
n

Thrashing
★ In a memory-constrained system:

of jobs on the system increasing

C
PU

 U
til

iz
at

io
n

Thrashing

Jobs make little progress as they’re
constantly waiting for pages to be
loaded in memory; pages are evicted
as soon as they’re loaded.

Thrashing
★ Thrashing should always be avoided and wastes resources (ex:

CPU).
○ More total progress can be made over a fixed period of time when

thrashing is avoided; total progress is lost with thrashing.

○ Each process has an ideal “working set” of pages to minimize the rate of
page faults.

Working Set
★ The Working Set models the number of pages needed for a given

process to minimize the page fault rate.
○ A generalized model that follows the principle of locality.
○ Helps to explore the effect of thrashing on a system

★ Idea: As the number of page frames incase above a threshold, the number of page
faults drop dramatically!

of page frames given to a process

Pa
ge

 F
au

lts

With too few pages, pages are
evicted constantly and need to be
re-loaded nearly constantly.

Working Set

Working Set
★ ...but is this always true?

Memory: Belady's
Anomaly

CS 423 - The University of Illinois
Wade Fagen-Ulmschneider

Belady's Anomaly
★ Consider the following access of five pages:

A B C D A B E A B C D E

Optimal w/ 3 RAM pages:
A B C D A B E A B C D E

FIFO w/ 3 RAM pages:
A B C D A B E A B C D E

FIFO w/ 4 RAM pages:
A B C D A B E A B C D E

Belady's Anomaly
★ Increasing the number of page frames affects the order in which

items are removed.
○ For certain memory access patterns, this can actually increase the page

fault rate! (!!)

★ Belady’s Anomaly is reference string dependent; intuition about increasing
page count still holds in general case.

