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Review: Eviction Policies

% Various Eviction Policies:
o FIFO
LRU
LFU
NRU / “Second Chance”
Optimal

O O O O



Page Table: Status Bits (x64)
% As part of the Page Table Entry (PTE), all operating systems will

Mmaintain “status bits” about the page. On an x64 system:
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Figure 5-21. 4-Kbyte PTE—Long Mode

Source: AMDG64 Architecture Programmer's Manual, Volume 2: System Programming
https://Mwww.amd.com/system/files/TechDocs/24593.pdf
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“No Execute Bit” (NX): Should the page's content be executed?

e "“When the NX bit is set to 1, code cannot be executed from the mapped physical pages.”

e We don't want to execute stack/heap memory.

e The NX bit reduces many types of “buffer overflow” exploits where it was possible to
override the return pointer in a function’s stack frame and run code placed earlier in the
buffer.

I Source: AMDG64 Architecture Programmer's Manual, Volume 2: System Programming
https://Mwww.amd.com/system/files/TechDocs/24593.pdf
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“Present Bit” (P): Is the page in physical memory?
e "When the P bitis cleared to O, the table or physical page is not loaded in physical
memory. When the P bit is set to 1, the table or physical page is loaded in physical
memory. “

I Source: AMDG64 Architecture Programmer's Manual, Volume 2: System Programming
https://Mwww.amd.com/system/files/TechDocs/24593.pdf
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“Read/Write Bit” (R/W): Is the page writable?
“When the R/W bit is cleared to 0, access is restricted to read-only. When the R/W bit is

set to 1, both read and write access is allowed.”

Source: AMDG64 Architecture Programmer's Manual, Volume 2: System Programming

https://mwww.amd.com/system/files/TechDocs/24593.pdf
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“User/Supervisor” Bit (U/S): Is the user-accessible?
e “When the U/S bit is cleared to 0, access is restricted to supervisor level (CPL 0, 1, 2). When
the U/S bit is set to 1, both user and supervisor access is allowed.”

Source: AMDG64 Architecture Programmer's Manual, Volume 2: System Programming

https://mwww.amd.com/system/files/TechDocs/24593.pdf
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“Accessed” Bit (A): Has this page been (recently accessed)?

e "The Abitissetto1bythe processor the first time the table or physical page is either read
from or written to. The A bit is never cleared by the processor. Instead, software must clear
this bit to O when it needs to track the frequency of table or physical-page accesses.”

e As a Operating System, we decide when to clear the A bit!

Source: AMDG64 Architecture Programmer's Manual, Volume 2: System Programming
https://Mwww.amd.com/system/files/TechDocs/24593.pdf
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“Dirty” Bit (D): Has the contents of this page been modified?

e "The D bitissetto1by the processor the first time there is a write to the physical page.
The D bit is never cleared by the processor. Instead, software must clear this bit to O when
it needs to track the frequency of physical page writes.”

e As a Operating System, we decide when to clear the D bit!

I Source: AMDG64 Architecture Programmer's Manual, Volume 2: System Programming
https://Mwww.amd.com/system/files/TechDocs/24593.pdf
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“Available to Software” Bits (AVL): Three bits for the OS to use for

any purpose.

e ‘"These bits are not interpreted by the processor and are available for use by system
software.”

I Source: AMDG64 Architecture Programmer's Manual, Volume 2: System Programming
https://Mwww.amd.com/system/files/TechDocs/24593.pdf
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Page Table: Status Bits (ARMvS8)

* An ARM processor has many similar status bits for PTEs:

Upper attributes Output block address Lower attributes

Reserved for software | Z | 2 wl T a |lo
use é Ef <| » < |Z|Indx
[68:55] 54 53 10 ‘98 76 5 42

e Unprivileged eXecute Never (UXN) and Privileged eXecute Never (PXN) are execution
permissions.

e AF is the access flag.
e SH is the shareable attribute.
e AP s the access permission.

e NSis the security bit, but only at EL3 and Secure ELI.

Source: ARMv8-A Address translation
https://static.docs.arm.com/100940/0100/armv8_a_address%20translation_100940_0100_en.pdf



https://static.docs.arm.com/100940/0100/armv8_a_address%20translation_100940_0100_en.pdf

Status Bits

% Page Table Entry status bits allow the kernel to know the “state” of
a page, and use several bits for implementing page eviction
schemes.

* Many aspects of paging is built into hardware for speed,
preventing the need for a trap to kernel for every memory access.
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Page Tables Sizes
*

In the previous lecture, we saw the Page Table Entry for an x64

63 62 59 58 52:3%1 32
; | Usage depends ailable
N UE:ESR;II)’L};‘E‘ Available Physical Page Base Address
X ( b;] ) (This is an architectural limit. A given implementation may support fewer bits. )
see below
31 30 12 11 O 8 T Ak S 4 3 2 L0
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e Reserved, MBZ A AVL G|l|p|Aa|c|w|/ P
ase
Addr T D S|W

..each entry uses 64 bits, or 8B, of memory!

Source: AMDG64 Architecture Programmer's Manual, Volume 2: System Programming
https://Mwww.amd.com/system/files/TechDocs/24593.pdf



https://www.amd.com/system/files/TechDocs/24593.pdf

Page Tables Sizes

* Known:
o In many x64 systems (including our VM), each page is 4 KiB.
o On x64 systems, each PTE is 8 B in size.

* If we have a system that has 16 GiB of RAM:



Page Tables Sizes

* Known:
o In many x64 systems (including our VM), each page is 4 KiB.
o On x64 systems, each PTE is 8 B in size.

* If we have a system that has 16 GiB of RAM:
o 16 GiB memory/ 4 KiB pages = 4 MiB pages /process.
o 4 MiB pages*8B/PTE =
32 MiB overhead for every page table (!!!!)

Remember each process has its own page table.



Multi-Level Page Table

*

INn a given process, most of the allocated memory is in a small

region of the full memory space:

Program Code,
Heap, Stack, etc

Unused Virtual
Memory Space

Unused Virtual
Memory Space

oxffffffffffffff

0x7¢c24c24853a000

0x0



Multi-Level Page Table

% In a given process, most of the allocated memory isin a small
region of the full memory space: OXFFFFFFFFFFFrs

Y Design Idea: Unused Virtual
Memory Space
o  Why not use a tree-like structure to
populate only the needed leaves of
“memory tree”?

Program Code,
Heap, Stack, etc 0x7c24c24853a000

o Why not have each “node” in the
tree be really small (maybe fit

. . Unused Virtual

within a page)? Memory Space

0x0




% The x64 architecture does uses a multi-level lookup:

Virtual Address
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I Source: AMDG64 Architecture Programmer's Manual, Volume 2: System Programming
https://Mwww.amd.com/system/files/TechDocs/24593.pdf
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% Each entry is (effectively) a PTE at each level:
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Figure 5-18. 4-Kbyte PML4E—Long Mode
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Figure 5-19. 4-Kbyte PDPE—Long Mode
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Figure 5-20. 4-Kbyte PDE—Long Mode
I Source: AMDG64 Architecture Programmer’s Manual, Volume 2: System Programming

https://mwww.amd.com/system/files/TechDocs/24593.pdf
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Multi-Level Page Tables

% Since the memory address space for a given process is usually
sparse, the “tree” is very sparse:

o The highest-level page table may have only a few entries.

o All other entries are “NULL" and do not need to be allocated
until used.

o Translation Lookaside Buffers (TLBs) and other hardware
optimize the lookup+caching of page tables.



Page Size?

* What is the ideal page size?
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Figure 5-17. 4-Kbyte Page Translation—Long Mode

Figure 5-22. 2-Mbyte Page Translation—Long Mode

Figure 5-26. 1-Gbyte Page Translation—Long Mode

4 KiB pages = 4-level
lookup

2 MiB pages = 3-level lookup

1 GiB pages = 2-level lookup




Page Size?
* What is the ideal page size?

Small Page Size (ex: 4 KiB):

* ‘“Locality of Reference” tends to
be relatively small.

* Small pages require minimal 1/O
during a page fault.

* Very little fragmentation.

% However, requires many level
multi-level page table.

Large Page Size (ex: 1 GiB):

*

*

Small page table, minimal levels
in a multi-level page table.

Internal fragmentation (cannot
allocate smaller than page size)

Large I/O transfers during page
faults, impacts system
performance.



Page Size?

* What is the ideal page size?
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Virtual Address
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Figure 5-26. 1-Gbyte Page Translation—Long Mode

4 KiB pages = 4-level
lookup

2 MiB pages = 3-level lookup

1 GiB pages = 2-level lookup

| Likely a very slow migration as RAM sizes increases...
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Thrashing

% Page eviction occurs when a system has filled all available
memory.

o What happens when this happens often?
Remember: Each Page Fault is likely a SLOW disk I/O operation!



Thrashing

% System is in a page faulting constantly.

O Pages are being evicted almost as soon as they're paged in.
=

O  Processes are blocked waiting for disk 1/O for their pages to be paged in -- CPU
begins to be idle waiting for CPU operations just to get paged in!
=
o On server/clusters, new jobs may be launched/assigned due to low CPU utilization.
=
o More pages are requested and the cycle gets even worse!



Thrashing

% In a memory-constrained system:
A

CPU Utilization

# of jobs on the system increasing




Thrashing

*

CPU Utilization

In a memory-constrained system:

A

| Thrashing

Jobs make little progress as they're
constantly waiting for pages to be
loaded in memory; pages are evicted
as soon as they'’re loaded.

# of jobs on the system increasing -



Thrashing

% Thrashing should always be avoided and wastes resources (ex:
CPU).

o More total progress can be made over a fixed period of time when
thrashing is avoided; total progress is lost with thrashing.

o Each process has an ideal “working set” of pages to minimize the rate of
page faults.



Working Set

% The Working Set models the number of pages needed for a given

process to minimize the page fault rate.
o A generalized model that follows the principle of locality.
o Helps to explore the effect of thrashing on a system



With too few pages, pages are
evicted constantly and need to be
re-loaded nearly constantly.

Working Set |

Page Faults

>

- # of page frames given to a process >

% Idea: As the number of page frames incase above a threshold, the number of page
faults drop dramatically!



Working Set

* ..butisthis always true?
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Belady's Anomaly

% Consider the following access of five pages:

ABCDABEABCDE



Optimal w/ 3 RAM pages:

A B C D A B E




FIFO w/ 3 RAM pages:

A B C D A B E




FIFO w/ 4 RAM pages:

A B C D A B E




Belady's Anomaly

% Increasing the number of page frames affects the order in which

items are removed.
o For certain memory access patterns, this can actually increase the page
fault rate! (1Y)

* Belady's Anomaly is reference string dependent; intuition about increasing
page count still holds in general case.



