Page Table: Status Bits

CS 423 - The University of lllinois

Wade Fagen-Ulmschneider

Review: Page Tables

P1 Page Table: RAM: P2 Page Table: P3 Page Table:
[e]
[1]
[2]] ero;
[3] @[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]

Review: Eviction Policies

% Various Eviction Policies:
o FIFO
LRU
LFU
NRU / “Second Chance”
Optimal

O O O O

Page Table: Status Bits (x64)
% As part of the Page Table Entry (PTE), all operating systems will

Mmaintain “status bits” about the page. On an x64 system:

63 62 59 58 52 51 32
N Usugf: depeady y Physical-Page Base Address
| e ERATKE Available (This 1s an architectural lin;il A giv x: implementation may support fewer bits.)
X (5cs helow) S chitec LA give pleme Pp ewe S.
31 12 11 9 % =T UG iS5 4 ¥ 2F 0
PA PIP|U|R
Physical-Page Base Address AVL G DIA|C|W]|/]|/|P
T D{T|s|w

Figure 5-21. 4-Kbyte PTE—Long Mode

Source: AMDG64 Architecture Programmer's Manual, Volume 2: System Programming
https://Mwww.amd.com/system/files/TechDocs/24593.pdf

https://www.amd.com/system/files/TechDocs/24593.pdf

n
(S
n
[P
r

63 62 59 58
Usage depends

on CR4.PKE
(sce below)

Physical-Page Base Address
(This 1s an architectural limit. A given implementation may support fewer bits.)

Available

31 12 11 S O% LB Y. 4 EEN
PA P|'E U | R

Physical-Page Base Address AVL G DIA|C|(W]|/ P
T D|T|s|wW

“No Execute Bit” (NX): Should the page's content be executed?

e "“When the NX bit is set to 1, code cannot be executed from the mapped physical pages.”

e We don't want to execute stack/heap memory.

e The NX bit reduces many types of “buffer overflow” exploits where it was possible to
override the return pointer in a function’s stack frame and run code placed earlier in the
buffer.

I Source: AMDG64 Architecture Programmer's Manual, Volume 2: System Programming
https://Mwww.amd.com/system/files/TechDocs/24593.pdf

https://www.amd.com/system/files/TechDocs/24593.pdf

n
(S
n
[P
r

63 62 59 58
Usage depends
on CR4.PKE

(sce below)

Physical-Page Base Address

Available s ; S ; 3 : " :
(This 1s an architectural limit. A given implementation may support fewer bits.)

31 12 11 S O% LB Y. 4 EEN
PA P|'E U | R

Physical-Page Base Address AVL G DIA|C|(W]|/ P
T D|T|s|wW

“Present Bit” (P): Is the page in physical memory?
e "When the P bitis cleared to O, the table or physical page is not loaded in physical
memory. When the P bit is set to 1, the table or physical page is loaded in physical
memory. “

I Source: AMDG64 Architecture Programmer's Manual, Volume 2: System Programming
https://Mwww.amd.com/system/files/TechDocs/24593.pdf

https://www.amd.com/system/files/TechDocs/24593.pdf

n
(S
n

63 62 59 58

Usage depends
on CR4.PKE
(sce below)

Available

Physical-Page Base Address
(This 1s an architectural limit. A given implementation may support fewer bits.)

31 12 11 S O% LB Y. 4 EEN
PA P|P|U[R

Physical-Page Base Address AVL G DIA|C(W]|/ B P
T D|T|s|W

“Read/Write Bit” (R/W): Is the page writable?
“When the R/W bit is cleared to 0, access is restricted to read-only. When the R/W bit is

set to 1, both read and write access is allowed.”

Source: AMDG64 Architecture Programmer's Manual, Volume 2: System Programming

https://mwww.amd.com/system/files/TechDocs/24593.pdf

https://www.amd.com/system/files/TechDocs/24593.pdf

n
(S
n

63 62 59 58

Usage depends
on CR4.PKE

(sce below)

Available

Physical-Page Base Address
(This 1s an architectural limit. A given implementation may support fewer bits.)

31 12 11 S O% LB Y. 4 EEN
PA P|P U] R

Physical-Page Base Address AVL G DIA|C[(W]|/ P
T D|T|S|wW

“User/Supervisor” Bit (U/S): Is the user-accessible?
e “When the U/S bit is cleared to 0, access is restricted to supervisor level (CPL 0, 1, 2). When
the U/S bit is set to 1, both user and supervisor access is allowed.”

Source: AMDG64 Architecture Programmer's Manual, Volume 2: System Programming

https://mwww.amd.com/system/files/TechDocs/24593.pdf

https://www.amd.com/system/files/TechDocs/24593.pdf

63 62 59 58
Usage depends
on CR4.PKE
(sce below)

n

(S

n
[P
r

Physical-Page Base Address

Available s ; S ; 3 : " :
(This 1s an architectural limit. A given implementation may support fewer bits.)

31 12 11 S O% LB Y. 4 EEN
PA P|'E U | R

Physical-Page Base Address AVL G DfA|C (W] / P
T D|T|s|wW

“Accessed” Bit (A): Has this page been (recently accessed)?

e "The Abitissetto1bythe processor the first time the table or physical page is either read
from or written to. The A bit is never cleared by the processor. Instead, software must clear
this bit to O when it needs to track the frequency of table or physical-page accesses.”

e As a Operating System, we decide when to clear the A bit!

Source: AMDG64 Architecture Programmer's Manual, Volume 2: System Programming
https://Mwww.amd.com/system/files/TechDocs/24593.pdf

https://www.amd.com/system/files/TechDocs/24593.pdf

n
(S
n
[P
r

63 62 59 58
Usage depends
on CR4.PKE
(sce below)

Physical-Page Base Address
(This 1s an architectural limit. A given implementation may support fewer bits.)

Available

31 12 11 S O% LB Y. 4 EEN
PA P|'E U | R

Physical-Page Base Address AVL G DIA|C(W]|/ P
T D|T|s|wW

“Dirty” Bit (D): Has the contents of this page been modified?

e "The D bitissetto1by the processor the first time there is a write to the physical page.
The D bit is never cleared by the processor. Instead, software must clear this bit to O when
it needs to track the frequency of physical page writes.”

e As a Operating System, we decide when to clear the D bit!

I Source: AMDG64 Architecture Programmer's Manual, Volume 2: System Programming
https://Mwww.amd.com/system/files/TechDocs/24593.pdf

https://www.amd.com/system/files/TechDocs/24593.pdf

63 62 59 58
Usage depends
on CR4.PKE
(sce below)

n
(S
n
[P
r

Physical-Page Base Address
(This 1s an architectural limit. A given implementation may support fewer bits.)

Available

31 12 11 S O% LB Y. 4 EEN
PA P|'E U | R

Physical-Page Base Address AVL G DIA|C|(W]|/ P
T D|T|s|wW

“Available to Software” Bits (AVL): Three bits for the OS to use for

any purpose.

e ‘"These bits are not interpreted by the processor and are available for use by system
software.”

I Source: AMDG64 Architecture Programmer's Manual, Volume 2: System Programming
https://Mwww.amd.com/system/files/TechDocs/24593.pdf

https://www.amd.com/system/files/TechDocs/24593.pdf

Page Table: Status Bits (ARMvS8)

* An ARM processor has many similar status bits for PTEs:

Upper attributes Output block address Lower attributes

Reserved for software | Z | 2 wl T a |lo
use é Ef <| » < |Z|Indx
[68:55] 54 53 10 ‘98 76 5 42

e Unprivileged eXecute Never (UXN) and Privileged eXecute Never (PXN) are execution
permissions.

e AF is the access flag.
e SH is the shareable attribute.
e AP s the access permission.

e NSis the security bit, but only at EL3 and Secure ELI.

Source: ARMv8-A Address translation
https://static.docs.arm.com/100940/0100/armv8_a_address%20translation_100940_0100_en.pdf

https://static.docs.arm.com/100940/0100/armv8_a_address%20translation_100940_0100_en.pdf

Status Bits

% Page Table Entry status bits allow the kernel to know the “state” of
a page, and use several bits for implementing page eviction
schemes.

* Many aspects of paging is built into hardware for speed,
preventing the need for a trap to kernel for every memory access.

Page Table: Multi-level
Page Tables

CS 423 - The University of lllinois

Wade Fagen-Ulmschneider

Page Tables Sizes
*

In the previous lecture, we saw the Page Table Entry for an x64

63 62 59 58 52:3%1 32
; | Usage depends ailable
N UE:ESR;II)’L};‘E‘ Available Physical Page Base Address
X (b;]) (This is an architectural limit. A given implementation may support fewer bits.)
see below
31 30 12 11 O 8 T Ak S 4 3 2 L0
]E Y P P|P|U|R
e Reserved, MBZ A AVL G|l|p|Aa|c|w|/ P
ase
Addr T D S|W

..each entry uses 64 bits, or 8B, of memory!

Source: AMDG64 Architecture Programmer's Manual, Volume 2: System Programming
https://Mwww.amd.com/system/files/TechDocs/24593.pdf

https://www.amd.com/system/files/TechDocs/24593.pdf

Page Tables Sizes

* Known:
o In many x64 systems (including our VM), each page is 4 KiB.
o On x64 systems, each PTE is 8 B in size.

* If we have a system that has 16 GiB of RAM:

Page Tables Sizes

* Known:
o In many x64 systems (including our VM), each page is 4 KiB.
o On x64 systems, each PTE is 8 B in size.

* If we have a system that has 16 GiB of RAM:
o 16 GiB memory/ 4 KiB pages = 4 MiB pages /process.
o 4 MiB pages*8B/PTE =
32 MiB overhead for every page table (!!!!)

Remember each process has its own page table.

Multi-Level Page Table

*

INn a given process, most of the allocated memory is in a small

region of the full memory space:

Program Code,
Heap, Stack, etc

Unused Virtual
Memory Space

Unused Virtual
Memory Space

oxffffffffffffff

0x7¢c24c24853a000

0x0

Multi-Level Page Table

% In a given process, most of the allocated memory isin a small
region of the full memory space: OXFFFFFFFFFFFrs

Y Design Idea: Unused Virtual
Memory Space
o Why not use a tree-like structure to
populate only the needed leaves of
“memory tree”?

Program Code,
Heap, Stack, etc 0x7c24c24853a000

o Why not have each “node” in the
tree be really small (maybe fit

. . Unused Virtual

within a page)? Memory Space

0x0

% The x64 architecture does uses a multi-level lookup:

Virtual Address

63 48 47 3938 30 29 2120 1211 0
Page-Ma : : ;
’ i egl ¥ OffF;et Page-Directory- Page-Directory| Page-Table Physical-
Sign Extend v Pointer Offset Offset Page Offset
PML4
A9 A9 A9 X9 A12
Page-
Page-Map Directory- Page- 4 Kbyte
Level-4 Pointer Directory Page Physical
Table Table Table Table Page
— PTE o
52
. —™1 PDPE [~
52 Phvsi
> PML4E |~ . L f s
§2 Addres
—»| PDE 7 I
— P — gy — > >
*This is an architectural limit. A given processor
51 12 implementation may support fewer bits.

Page-Map Level-4
Base Address | I CR3

I Source: AMDG64 Architecture Programmer's Manual, Volume 2: System Programming
https://Mwww.amd.com/system/files/TechDocs/24593.pdf

https://www.amd.com/system/files/TechDocs/24593.pdf

% Each entry is (effectively) a PTE at each level:

63 62 52 5l 32
N Availabl Page-Directory-Pointer Base Address
X S (This is an architectural limit. A given implementation may support fewer bits.)
31 12 11 9.8 7 .6 5.4 .3 .2 1 0
MIMJ 1 P[{P|U|R
Page-Directory-Pointer Base Address AVL BIB|G|A|[C|W]|/|/|P
Z || Zj| N DIT|S|W
Figure 5-18. 4-Kbyte PML4E—Long Mode
63 62 52 51 32
N . Page-Directory Base Address
Available i g ; B S 2 5
X (This is an architectural limit. A given implementation may support fewer bits.)
31 12 11 9 B e D@3 21 0
1 I P(P|U|R
Page-Directory Base Address AVL G|O[G|A|C[(W]|/|[/]|P
N N DIT|S|W
Figure 5-19. 4-Kbyte PDPE—Long Mode
63 62 52 51 32
N Availabl Page-Table Base Address
X e (This is an architectural limit. A given implementation may support fewer bits.)
31 12 11 9 B Oy S A3 2 1 0
| I P[{P|U|R
Page-Table Base Address AVL G(O|[G|[A|C|W|/|/]|P
N N DIT|S|W
Figure 5-20. 4-Kbyte PDE—Long Mode
I Source: AMDG64 Architecture Programmer’s Manual, Volume 2: System Programming

https://mwww.amd.com/system/files/TechDocs/24593.pdf

https://www.amd.com/system/files/TechDocs/24593.pdf

Multi-Level Page Tables

% Since the memory address space for a given process is usually
sparse, the “tree” is very sparse:

o The highest-level page table may have only a few entries.

o All other entries are “NULL" and do not need to be allocated
until used.

o Translation Lookaside Buffers (TLBs) and other hardware
optimize the lookup+caching of page tables.

Page Size?

* What is the ideal page size?

Virtual Address Virtual Address Virtual Address
63 48 47 3938 30 29 2120 12 11 [} 63 48 47 3938 30 29 2120 0 63 48 47 3938 30 29 0
Page-Map Page-Map Page-Map
Page-Directory-| Page-Directory| Page-Table Physical- Page-Directory-| Page-Directory Page-Directory-
SignExtend | Level-4 Offset| ‘b ofrcet Offset Offset Page Offset Sign Extend | Level-4 Tablo Offso{ "pinter Offset Offset Page Offset Sign Extend |Level-4 Table Offstt o jvor ofset Page Offest
(PML4) (PMLY) (PML4)
9 9 9 12 9 9 9 21 9 30
Page- Sae:id
Page-Map Page- 4Kbyte Page-Map Directory- Page- 2 Mbyte i 400y
Level-4 Directory Physical Level-4 Pointer Directory Physical f::,, pys &
Table Table Page Table Table Table Page ne
52 52 52*
PDPE T
Physical ysica
PML4E L .
Address| 52 Address
PDE PDE
*This is an architectural limit. A given processor “This is an architectural limit. A given processc *This is an architectural limit. A given process
51 12 implementation may support fewer bits. 51 12 implementation may support fewer bits. 51 12 implementation may support fewer bits.
Page-WMap Level-4
‘ Base Adress | I CR3 l Pag:;”:‘;:;f: el | ' CR3 | Page-Map Lovel-4 Base Address | I CR3

Figure 5-17. 4-Kbyte Page Translation—Long Mode

Figure 5-22. 2-Mbyte Page Translation—Long Mode

Figure 5-26. 1-Gbyte Page Translation—Long Mode

4 KiB pages = 4-level
lookup

2 MiB pages = 3-level lookup

1 GiB pages = 2-level lookup

Page Size?
* What is the ideal page size?

Small Page Size (ex: 4 KiB):

* ‘“Locality of Reference” tends to
be relatively small.

* Small pages require minimal 1/O
during a page fault.

* Very little fragmentation.

% However, requires many level
multi-level page table.

Large Page Size (ex: 1 GiB):

*

*

Small page table, minimal levels
in a multi-level page table.

Internal fragmentation (cannot
allocate smaller than page size)

Large I/O transfers during page
faults, impacts system
performance.

Page Size?

* What is the ideal page size?

Virtual Address

Virtual Address

63 48 47 3938 30 29 2120 12 11 [} 63 48 47 3938 30 29 2120 ']
Page-Map Page-Map
Page-Directory- Page-Directory| Page-Table Physical- Page-Directory-| Page-Directory
SignExtend | Level-4 Offset) ‘b inior ottt | Offset Offset Page Offset Sign Extend | Leveld Table Oftse} " pointer Offset | Offset Fage Offset
(PML4) (PMLY)
9 9 9 12 9 9 9 21
Page-
Page-Map Page- 4Kbyte Page-Map Directory- Page- 2 Mbyte
Level-4 Directory Physical Level-4 Pointer Directory Physical
Table Table Page Table Table Table Page
52 52|
Physical -
— Address| ==
*This is an architectural limit. A given processor *This is an architectural limit. A given processc
51 12 implementation may support fewer bits. 51 12 implementation may support fewer bits.
Page-Map Leveld Page-Map Level-4
‘ Base Address | I CR3 l gas: A‘;drﬁg | ' CR3

Figure 5-17. 4-Kbyte Page Translation—Long Mode

Figure 5-22. 2-Mbyte Page Translation—Long Mode

Virtual Address

63 48 47 3938 30 29 0
Page-Map
Page-Directory-
Sign Extend |Level-4 Table Offs¢t o 1 o oeecor Page Offset
(PML4)
9 30

Page-Map 1 Gbyte
Level-4 Physical
Table Page

52"
Physical
Address]
“This is an architectural limit. A given process
51 12 implementation may support fewer bits.
| Page-Map Level-4 Base Address | I CR3

Figure 5-26. 1-Gbyte Page Translation—Long Mode

4 KiB pages = 4-level
lookup

2 MiB pages = 3-level lookup

1 GiB pages = 2-level lookup

| Likely a very slow migration as RAM sizes increases...

2021

20307

Memory: Thrashing

CS 423 - The University of lllinois

Wade Fagen-Ulmschneider

Thrashing

% Page eviction occurs when a system has filled all available
memory.

o What happens when this happens often?
Remember: Each Page Fault is likely a SLOW disk I/O operation!

Thrashing

% System is in a page faulting constantly.

O Pages are being evicted almost as soon as they're paged in.
=

O Processes are blocked waiting for disk 1/O for their pages to be paged in -- CPU
begins to be idle waiting for CPU operations just to get paged in!
=
o On server/clusters, new jobs may be launched/assigned due to low CPU utilization.
=
o More pages are requested and the cycle gets even worse!

Thrashing

% In a memory-constrained system:
A

CPU Utilization

of jobs on the system increasing

Thrashing

*

CPU Utilization

In a memory-constrained system:

A

| Thrashing

Jobs make little progress as they're
constantly waiting for pages to be
loaded in memory; pages are evicted
as soon as they'’re loaded.

of jobs on the system increasing -

Thrashing

% Thrashing should always be avoided and wastes resources (ex:
CPU).

o More total progress can be made over a fixed period of time when
thrashing is avoided; total progress is lost with thrashing.

o Each process has an ideal “working set” of pages to minimize the rate of
page faults.

Working Set

% The Working Set models the number of pages needed for a given

process to minimize the page fault rate.
o A generalized model that follows the principle of locality.
o Helps to explore the effect of thrashing on a system

With too few pages, pages are
evicted constantly and need to be
re-loaded nearly constantly.

Working Set |

Page Faults

>

- # of page frames given to a process >

% Idea: As the number of page frames incase above a threshold, the number of page
faults drop dramatically!

Working Set

* ..butisthis always true?

Memory: Belady's
Anomaly

CS 423 - The University of lllinois

Wade Fagen-Ulmschneider

Belady's Anomaly

% Consider the following access of five pages:

ABCDABEABCDE

Optimal w/ 3 RAM pages:

A B C D A B E

FIFO w/ 3 RAM pages:

A B C D A B E

FIFO w/ 4 RAM pages:

A B C D A B E

Belady's Anomaly

% Increasing the number of page frames affects the order in which

items are removed.
o For certain memory access patterns, this can actually increase the page
fault rate! (1Y)

* Belady's Anomaly is reference string dependent; intuition about increasing
page count still holds in general case.

