
Scheduling: MFQ

CS 423 - University of Illinois
Wade Fagen-Ulmschneider
(Slides built from Adam Bates and Tianyin Xu previous work on CS 423.)

Scheduling: Goals
1. Generate illusion of concurrency

2. Maximize resource utilization (e.g., mix CPU and I/O bound
processes appropriately)

3. Meet needs of both I/O-bound and CPU-bound processes
● Give I/O-bound processes better interactive response
● Do not starve CPU-bound processes

4. Support Real-Time (RT) applications

Algorithm: Multi-level Feedback Queue (MFQ)
★ Algorithm: Given a small, initial amount of CPU time to every task

as soon as it needs the CPU (“P1 queue”).

★ If the task still needs additional CPU time, move the job to a lower
priority queue (ex: “P2 queue”).

★ All jobs in the highest priority queue will run first, but CPU time
allocated increases in the lower-priority queues.

Algorithm: Multi-level Feedback Queue (MFQ)

Why is MFQ a good design?
★ How to design a scheduler that both minimizes response time for

interactive jobs while also minimizing turnaround time without a
priori knowledge of job length?
○ SJF assumes to know the future (how short is the job?)

MFQ Runtime

Thread 1:

Thread 2:

MFQ:
P1

P1

P1

(P2)

(P2)

(P3)

(P3)

Thread A:

Thread B:

MFQ Runtime

Thread 1:

Thread 2:

MFQ:
P1

P1

P1

Thread A:

Thread B:

(P2)

(P2)

MFQ Accounting
Once a job uses up its time allotment at a given level (regardless of
how many times it has given up the CPU), its priority is reduced (i.e., it
moves down one queue).

MFQ Runtime

Thread 1:

Thread 2:

MFQ:
P1

P1

P1

Thread A:

Thread B:

(P2)

(P2)

Thread A Downgraded to P2

Thread B Downgraded to P2

MFQ Design Questions?
★ How many queues should there be?

★ How big should the time slice be per queue?

★ How often should priority be boosted in order to avoid starvation
and account for changes in behavior?

Scheduling in Linux

CS 423 - University of Illinois
Wade Fagen-Ulmschneider
(Slides built from Adam Bates and Tianyin Xu previous work on CS 423.)

Early Linux Schedulers
★ Linux 1.2 (1995): circular queue w/ round-robin policy.

○ Simple and minimal.
○ Did not meet many of the scheduling goals we discussed

★ Linux 2.2 (2000): introduced scheduling classes:
○ real-time
○ non-real-time

Early Linux Schedulers

★ SCHED_FIFO
○ Used for real-time processes
○ Conventional preemptive fixed-priority scheduling

■ Current process continues to run until it ends or a
higher-priority real-time process becomes runnable

○ Same-priority processes are scheduled FIFO

★ SCHED_RR
○ Used for real-time processes
○ CPU “partitioning” among same priority processes

■ Current process continues to run until it ends or its time
quantum expires

■ Quantum size determines the CPU share
○ Processes of a lower priority run when no processes of a

higher priority are present

Early Linux Schedulers
★ Linux 2.4 (Jan. 2001): introduced time slicing:

○ Epochs → slices: when blocked before the slice ends, half of the
remaining slice is added in the next epoch.

○ Simple.
○ Lacked scalability.
○ Weak for real-time systems.

Modern Linux Scheduling
★ Linux 2.6.23 (Oct. 2007): Completely Fair Scheduler (CFS)

○ O(1) scheduler

○ Tasks are indexed according to their priority:
■ Real-time tasks ⇒ [0, 99]
■ Non-real-time tasks ⇒ [100, 139]

SCHED_NORMAL
★ Used for non real-time processes with a complex heuristic to

balance the needs of I/O and CPU centric applications.

★ Static Priority:
○ Processes start at 120 by default

■ Augmented by a “nice” value: 19 to -20.
■ Inherited from the parent process
■ Altered by user (negative values require special permission)

★ Dynamic Priority:
○ Based on static priority and applications characteristics (interactive or

CPU-bound)
○ Favor interactive applications over CPU-bound ones

★ Timeslice is mapped from priority.

Static Priority CPU Translation

top

PR: System Priority:
● rt == real-time
● [0, 39] == non-real-time

NI: “Nice” Value
● [-20, 19] == niceness

91-divoc static web server

top

PR: System Priority:
● rt == real-time
● [0, 39] == non-real-time

NI: “Nice” Value
● [-20, 19] == niceness

linux-a1.ews.illinois.edu

Static Priority CPU Translation

Dynamic Priority

Completely Fair
Scheduler (Linux)

CS 423 - University of Illinois
Wade Fagen-Ulmschneider
(Slides built from Adam Bates and Tianyin Xu previous work on CS 423.)

Completely Fair Scheduler (CFS)
★ Basic Idea:

○ Virtual Runtime (vruntime): When a process runs it
accumulates “virtual time.”
■ If priority is high, virtual time accumulates slowly.
■ If priority is low, virtual time accumulates quickly.

○ Virtual Runtime is a “catch up” policy — task with smallest
amount of virtual time gets to run next.

Completely Fair Scheduler (CFS)
★ Scheduler maintains a red-black tree where nodes are ordered

according to received virtual execution time.

★ Node with smallest virtual received execution time is picked next.

★ Priorities determine accumulation rate of virtual execution time.

★ Higher priority ⇒ slower accumulation rate.

CFS - Example
★ Setup:

○ Three tasks A, B, C accumulate virtual time at a rate of 1, 2, and
3, respectively.

★ Q: What is the expected share of the CPU that each gets?

Q00: - => {A:0, B:0, C:0}
Q01: A => {A:1, B:0, C:0}
Q02: B => {A:1, B:2, C:0}
Q03: C => {A:1, B:2, C:3}
Q04: A => {A:2, B:2, C:3}
Q05: B => {A:2, B:4, C:3}
Q06: A => {A:3, B:4, C:3}
Q07: A => {A:4, B:4, C:3}
Q08: C => {A:4, B:4, C:6}
Q09: A => {A:5, B:4, C:6}
Q10: B => {A:5, B:6, C:6}
Q11: A => {A:6, B:6, C:6}

Q00: - => {A:0, B:0, C:0}
Q01: A => {A:1, B:0, C:0}
Q02: B => {A:1, B:2, C:0}
Q03: C => {A:1, B:2, C:3}
Q04: A => {A:2, B:2, C:3}
Q05: B => {A:2, B:4, C:3}
Q06: A => {A:3, B:4, C:3}
Q07: A => {A:4, B:4, C:3}
Q08: C => {A:4, B:4, C:6}
Q09: A => {A:5, B:4, C:6}
Q10: B => {A:5, B:6, C:6}
Q11: A => {A:6, B:6, C:6}

A: 6 quantum
B: 3 quantum
C: 2 quantum

CFS - Example
★ Scheduler Implementation: CFS does not work with a queue and

instead maintains a time-ordered red-black tree.

CFS - Example
★ O(1) to maintain

access to the
left-most node.

★ O(lg(n)) insert and
delete operations

★

Completely Fair Scheduler (CFS)
One problem with picking the lowest vruntime to run next arises with
jobs that have gone to sleep for a long period of time.

Example: Imagine two processes, A and B, one of which (A) runs
continuously, and the other (B) which has gone to sleep for a long
period of time (ex: 10 seconds). When B wakes up, its vruntime will be
10 seconds behind A’s, and thus (if we’re not careful), B will now
monopolize the CPU for the next 10 seconds while it catches up,
effectively starving A.

Scheduling Preemption
★ Kernel sets the need_resched flag (per-process variable) at

various locations
○ scheduler_tick(), a process used up its timeslice
○ try_to_wake_up(), higher-priority process awaken

★ Kernel checks need_resched at certain points, if safe, schedule()
will be invoked

★ User preemption
○ Return to user space from a system call or an interrupt handler

★ Kernel preemption
○ A task in the kernel explicitly calls schedule()
○ A task in the kernel blocks (which results in a call to schedule())

