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If we have a single processor, providing access to a critical section is “easy”:

Acquire: Release:

Lock::acquire() { 
    disableInterrupts(); 
    if (value == BUSY) { 
        waiting.add(myTCB);
        sch_move_to_blocked(myTCB);

        myTCB->state = RUNNING;
    } else { 
        value = BUSY; 
    } 
    enableInterrupts(); 
}

Lock::release() { 
    disableInterrupts();
    if (!waiting.empty()) { 
        nextTCB = waiting.remove();
        sch_move_to_ready(nextTCB);

    } else {
        value = FREE; 
    } 
    enableInterrupts(); 
} 
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If we have a mutli-processor, disabling interrupts globally is impossible:

Acquire:

Lock::acquire() { 
    disableInterrupts(); 
    if (value == BUSY) { 
        waiting.add(myTCB);
        sch_move_to_blocked(myTCB);

        myTCB->state = RUNNING;
    } else { 
        value = BUSY; 
    } 
    enableInterrupts(); 
}

★ Interrupts are handled on a 
per-core basis:
○ Advanced Programmable 

Interrupt Controller (APIC) 
delegates interrupts to various 
cores.

★ Performance would be 
terrible if we block all 64 
cores on a 64-core CPU for 
every lock operation!



Goals
★ To ensure a globally shared variable (ex: scheduler data) is 

accessed only by one core, we need some shared state.

★ Q: What is the absolute fastest way to achieve this?
○ Need: No impact on other cores (we might be one of 64 

cores!)
○ Need: Safety to ensure no two cores can advance into the 

critical section at the same time.



test-and-set
★ Idea: Atomicly perform two operations with preemption:

1. test if a specific bit of shared memory is 0,

2. If and only if it was 0, set the bit to 1,



LOCK (x86): Assert LOCK# Signal Prefix
LOCK

Causes the processor’s LOCK# signal to be asserted during 
execution of the accompanying instruction (turns the instruction 
into an atomic instruction). In a multiprocessor environment, the 
LOCK# signal ensures that the processor has exclusive use of any 
shared memory while the signal is asserted.
[...]
The LOCK prefix is typically used with the BTS instruction to 
perform a read-modify-write operation on a memory location in 
shared memory environment.



BTS (x86): Bit Test and Set
BTS BitBase, BiPosition

CF = BitBase[BitOffset];
BitBase[BitOffset] ← 1;

Selects the bit in a bit string (specified with the first 
operand, called the bit base) at the bit-position designated by 
the bit offset operand (second operand), stores the value of the 
bit in the CF flag, and sets the selected bit in the bit string 
to 1. The bit base operand can be a register or a memory 
location; the bit offset operand can be a register or an 
immediate value:



Test-and-set (x86)
★ The BTS operation always does two things:

1. Writes the shared memory into our core’s Carry Flag (CF) 
register

2. Modifies the shared memory to contain a 1.
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★ The BTS operation always does two things:

1. Writes the shared memory into our core’s Carry Flag (CF) 
register

2. Modifies the shared memory to contain a 1.

⇒ After the LOCK-BTS operation:
- If CF==0, the value was 0 and we have acquired the lock!
- If CF==1, the value was 1 and someone else has the lock.  We 

cannot advance.



Test-and-set (x86)
★ The BTS operation always does two things:

1. Writes the shared memory into our core’s Carry Flag (CF) 
register

2. Modifies the shared memory to contain a 1.

⇒ After the LOCK-BTS operation:
- If CF==0, the value was 0 and we have acquired the lock!
- If CF==1, the value was 1 and someone else has the lock.  We 

cannot advance.

We will abstract this away to: testAndSet(&sharedMemory).



SpinLock:

spinLock(&lock) {
  
  while (testAndSet(&lock)) {
    yield();
  }

}

Acquire:

Lock::acquire() { 
    disableInterrupts();
    spinLock(&lock);
    if (value == BUSY) { 
        waiting.add(myTCB);
        sch_move_to_blocked(myTCB);
        /* only returns when RUNNING */
    } else { 
        value = BUSY; 
    }
    spinLockRelease(&lock);
    enableInterrupts(); 
}
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SpinLock Solution
★ We minimize the need for multi-core coordination down to a 

single LOCK-BTS operation.

★ The busy-waiting occurs on only a single core/thread:
○ Busy-waiting only occurs when the lock is locked (should be rare)
○ We control the scheduler, further optimization possible with scheduler 

coordinator
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What are semaphores?
In modern systems, semaphores (“counting semaphores”) are a 
synchronization mechanism where:

● sem_wait(): decrements (locks) the semaphore.
○ If the semaphore's value is greater than zero, then the decrement 

proceeds, and the function returns, immediately.  If the semaphore 
currently has the value zero, then the call blocks.

● sem_post(): increments (unlocks) the semaphore.



Semaphores and State
★ This means that semaphores are like “blocking integers”, where 

we can only interact tem through sem_wait/sem_post.

★ This means semaphores have state!
○ Much more complex to reason about.  (What does val==3 mean?)
○ Same functionality can be accomplished explicitly with conditional 

variables -- CVs are much easier to reason about.



Lock: Semaphore:

Lock::acquire() { 
    disableInterrupts();
    spinLock(&lock);
    if (value == 0) { 
        waiting.add(myTCB);
        spinLockRelease(&lock);
        sch_move_to_blocked(myTCB);
        /* only returns when RUNNING */
        spinLock(&lock);
    } else { 
        value--; 
    }
    spinLockRelease(&lock);
    enableInterrupts(); 
}

Lock::acquire() { 
    disableInterrupts();
    spinLock(&lock);
    if (value == BUSY) { 
        waiting.add(myTCB);
        spinLockRelease(&lock);
        sch_move_to_blocked(myTCB);
        /* only returns when RUNNING */
        spinLock(&lock);
    } else { 
        value = BUSY; 
    }
    spinLockRelease(&lock);
    enableInterrupts(); 
}



Semaphores Exist before CVs
★ Semaphores conflate the roles of locks and condition variables 

(mutual exclusion, shared data).

★ Previously, semaphores were used to implement CVs -- but 
modern systems provide direct support for CVs.
○ Limited need for semaphores in modern codebases.
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Scheduling: 
Multiprocessor: 400 threads in the ready queues of four cores – 
which one to run next on which core?

Cluster: 1000 MapReduce jobs – which one to run on which machine 
and on which core?

Datacenters: 10000 user request – which one to run on which 
datacenter on which cluster on which machine?



Scheduling Complexity
Jobs/requests are not created equal

Some are more important than the others

Jobs/requests could have deadlines
Finishing late means nothing but wasting resources.

Jobs/requests have constraints
Affinity is important – same node and same PCIe switch for GPUs

Workloads could be very different.



Scheduling
● Always an active research topic:

○ Everyone wants run more jobs with less resources.



Scheduling: Goals
Generate illusion of concurrency

Maximize resource utilization (e.g., mix CPU and I/O bound processes 
appropriately)

Meet needs of both I/O-bound and CPU-bound processes
● Give I/O-bound processes better interactive response
● Do not starve CPU-bound processes

Support Real-Time (RT) applications



Scheduling: Terms
Task/Job: Something that needs CPU time (thread, softirq, etc),

First Response Time: How long does a task take to start?

Latency/Turnaround Time: How long does a task take to complete?

Throughput: How many tasks can be done per unit of time?

Workload: Set of tasks for system to perform



Scheduling: Terms
Overhead: How much extra work is done by the scheduler?

Fairness: How equal is the performance received by different users?

Predictability: How consistent is the performance over time?

Starvation: A task never receives the resources it needs to complete. 
(Not very fair!)

Work-conserving: Resource is used whenever there is a task to run



Scheduling: Terms
Non-preemptive scheduling: The running process keeps the CPU 
until it voluntarily gives up the CPU 
● Ex: Interrupt handling in modern systems; real-time systems; many types of 

embedded systems.

Preemptive scheduling: The running process can be interrupted and 
must release the CPU (can be forced to give up CPU)

Scheduling algorithm: takes a workload as input and decides on a 
job to be run next



Scheduling Algorithms
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First In, First Out (FIFO)
Algorithm: Run the earliest job to have arrived next.
● AKA: First Come, First Served (FCFS)



Shortest Job First (SJF)
Algorithm: Run the job with the shortest remaining work to do.
● AKA: Shortest Remaining Time First (SRTF)



FIFO vs SJF

Thread 1:

Thread 2:

Thread 3:

FIFO: SJF

Thread 4:

★ All four threads arrive at the exact same time.



Round Robin (RR)
● Algorithm: Each task gets resource for a fixed period of time 

(time quantum).  If task doesn’t complete, it goes back in line.

● Characteristics varies based on the time quantum:
○ Extremely Short Quantum: Similar to SJF
○ Extremely Long Quantum: Identical to FIFO



FIFO vs SJF

Thread 1:

Thread 2:

Thread 3:

RR (long quanta): RR (short quanta):

Thread 4:

★ All four threads arrive at the exact same time.

quanta length quanta length



FIFO vs RR?
● Q: Assuming no overhead, is RR always better than FIFO?



RR vs FIFO

Thread 1:

Thread 2:

Thread 3:

RR: FIFO:

Thread 4:

★ All four threads arrive at the exact same time.



Measuring Scheduling Algorithms Is Hard
★ Measurement must be done over a long period of time, 

short-period sampling can introduce bias.

★ Start and stop the measurement during idle time when there’s no 
work to be done by the system.



Scheduling: Min-Max 
Fairness
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What is fairness?
Lots of different ideas of “fairness”:
● FIFO?
● Equal share of the CPU?
● What if some tasks don’t need their full share?
● Minimize worst case divergence?
● Time task would take if no one else was running?
● Time task takes under scheduling algorithm?



RR vs FIFO

Thread 1:

Thread 2:

Thread 3:

RR:
quanta length

Blocking I/O

I/O Completed
(Thread in READY state)

Using RR, “Thread 1” is disadvantaged for giving up the CPU!
...that does not seem fair...



Idea: Max-Min Fairness
Theoretical Idea:
- The least demanding task will get its share first,
- Then the next least demanding,
...etc…



Idea: Max-Min Fairness
Theoretical Idea:
- The least demanding task will get its share first,
- Then the next least demanding,
...etc…

Implementation: We want to maximize the minimum allocation 
given to each task:
● If any task needs less than it’s equal share, schedule the smallest 

of these first.  (May result in left over share to split among others.)
● Split the remaining time using max-min
● If all remaining tasks need at least equal share, split evenly.



Algorithm: Multi-level Feedback Queue (MFQ)
★ Some jobs will require a short CPU time before the next blocking 

operation (“less demanding”).
○ “I/O Bound Tasks”

★ Other jobs will require a large amount of CPU time (“more 
demanding”).
○ “CPU Bound Tasks”



Algorithm: Multi-level Feedback Queue (MFQ)
★ Algorithm: Given a small, initial amount of CPU time to every task 

as soon as it needs the CPU (“P1 queue”).

★ If the task still needs additional CPU time, move the job to a lower 
priority queue (ex: “P2 queue”).

★ All jobs in the highest priority queue will run first, but CPU time 
allocated increases in the lower-priority queues.



Algorithm: Multi-level Feedback Queue (MFQ)



Algorithm: Multi-level Feedback Queue (MFQ)
★ Set of Round Robin queues

○ Each queue has a separate priority

★ High priority queues have short time slices
○ Low priority queues have long time slices

★ Scheduler picks first thread in highest priority queue
○ Tasks start in highest priority queue

★ If time slice expires, task drops one level



RR vs FIFO

Thread 1:

Thread 2:

Thread 3:

P1

MFQ:
P1

Blocking I/O

P1

P1

P1

(P2)

P1

(P2)

P1

(P3)

P1

(P3)


