Threads in Applications

CS 423 - University of lllinois

Wade Fagen-Ulmschneider
(Slides built from Adam Bates and Tianyin Xu previous work on CS 423.)

Threads

% Threads are the lightest-weight method for separate execution
paths on a CPU.

Threads

% Threads are the lightest-weight method for separate execution

paths on a CPU.

Advantages:

*

*

Shared memory between threads
of the same process.

Kernel threads are scheduled
independently by the OS.

Lightest-weight method separate
execution. (Don't need to swap
page table, etc.)

Disadvantages

% Shared signals and exceptions:

@)

An error in a single thread results in
the whole process being killed.

* Shared memory between threads:

@)

No isolation between threads (not
suitable for running untrusted code).

Threads are Particularly Useful For:

*

* % %

Making blocking calls within an interactive application,
Responses to asynchronous events (ex: “Ul thread”, “net thread”),
Long-running task threads (ex: “worker thread”),

Parallel algorithms/code (ex: parallel sorts), and

Running tasks of different priorities within one process
o Ex: pthread_setschedparam

Example: Word Processor

Microsoft Word on Windows uses
one process and many threads:

17 Task Manager — O X
File Options View

Processes Performance App history Startup Users Details Services

~

Name PID Status User name CPU Memory (a... Threads UAC virtualizat... L]
[85] WinStore.App.exe 9128 Suspended wadef 00 0K 25 Disabled
E“WINWORD.EXE 25364 Running wadef 00 47912K 51 Disabled

E’]WmiPwSE.exe 6048 Running NETWORK... 00 10,176 K 8 Not allowed v

(, | Fewer details End task

* Only one process (pid=25364)

O

..but 51 different threads!

Example: Apache Web Server

The apache web server (" httpd ") uses a

hybrid process-threads approach:

* On a active/optimized web server,
apache spawns many processes to
handle incoming requests,

% Each process itself contains a
number of threads (ex: 5 /process),

% One process serves as the “manager”
process (ex: pid=24628)

Output of pstree -p 25294 on the primary 91-divoc
server, where 25294 is the primary httpd process.

Common Multithreaded Design Patterns

% Manager/Worker Pattern
o One thread receives all requests and sends work to be
completed by “worker threads”.
o Example: Apache Web Server

% Pipeline Pattern
o Each thread handles a specific sub-operation is a series of
processing steps
o Example: Real-time video encoding

% Other Patterns: Peer Processing, ..and many more...

POSIX Interfaces

CS 423 - University of lllinois

Wade Fagen-Ulmschneider
(Slides built from Adam Bates and Tianyin Xu previous work on CS 423.)

POSIX

% The Portable Operating System Interface (POSIX) is a family of
standards specified by the IEEE Computer Society for maintaining
compatibility between operating systemes.

POSIX

% The Portable Operating System Interface (POSIX) is a family of
standards specified by the IEEE Computer Society for maintaining
compatibility between operating systemes.

o POSIX defines SO MUCH of what we consider Linux.

POSIX

% The Portable Operating System Interface (POSIX) is a family of
standards specified by the IEEE Computer Society for maintaining
compatibility between operating systemes.

o Four Volumes in the current standard (POSIX.1-2017):
Vol 1: “Base Definitions”

Vol 2: “System Interfaces”

Vol 3: “Shell & Utilities”

Vol 4: “Rationale”

POSIX: printf format

e

() The Open Group Base Specifica

X

+

(¢ & pubs.opengroup.org/onlinepubs/9699919799/

INDEX

I
Search..

[Alphabetic | Topic | Word Search]

Select a Volume:
[Base Definitions |
System Interfaces |

Shell & Utilities | Rationale]

[Erontmatter]

[Main Index]

-

CVLONOUHWNKH

Base Definitions

. Introduction

Conformance

. Definitions

General Concepts
File Format Notation
Character Set
Locale

. Environment Variables
. Regular Expressions

Directory Structure and
Devices

. General Terminal Interface
. Utili
. Headers

Conventions

< << Previous

Home

The Open Group Base Specifications Issue 7, 2018 edition
1EEE Std 1003.1-2017 (Revision of IEEE Std 1003.1-2008)
Copyright © 2001-2018 IEEE and The Open Group

5. File Format Notation

The STDIN, STDOUT, STDERR, INPUT FILES, and OUTPUT FILES sections of the utility descriptions use a syntax to describe the data
organization within the files, when that organization is not otherwise obvious. The syntax is similar to that used by the System Interfaces
volume of POSIX.1-2017 printf() function, as described in this chapter. When used in STDIN or INPUT FILES sections of the utility descriptions,
this syntax describes the format that could have been used to write the text to be read, not a format that could be used by the System
Interfaces volume of POSIX.1-2017 scanf{() function to read the input file.

The description of an individual record is as follows:

"<format>", [<argl>, <arg2>,..., <argn>]

The format is a character string that contains three types of objects defined below:
1. Characters that are not "escape sequences" or "conversion specifications”, as described below, shall be copied to the output.
2. Escape Sequences represent non-graphic characters and the escape character (<backslash>).
3. Conversion Specifications specify the output format of each argument; see below.

The following characters have the following special meaning in the format string:

(An empty character position.) Represents one or more <blank: characters.
Represents exactly one <space> character.

Escape Sequences and Associated Actions lists escape sequences and associated actions on display devices capable of the action.

Table: Escape

es and Associated Actions

Escape | Represents
Sequence| Character Terminal Action
\\ <backslash> |Print the <backslash> character.
\a <alert> Attempt to alert the user through audible or visible notification.
\b <backspace> |Move the printing position to one column before the current position, unless the current
position is the start of a line.
\f <form-feed> |Move the printing position to the initial printing position of the next logical page.
\n <newline> Move the printing position to the start of the next line.
\r <carriage- Move the printing position to the start of the current line.
return>

POSIX.1-2007, Vol. 1, Ch. 5: https://pubs.opengroup.org/onlinepubs/9699919799/

https://pubs.opengroup.org/onlinepubs/9699919799/

POSIX: environmental variables

() The Open Group Base Specificat X

INDEX

Search.. ‘

[Alphabetic | Topic | Word Search]

Select a Volume:

[Base Definitions |

te. faces |
tilities | Rationale]

[Frontmatter]

[Main Index]

& C @ pubs.opengroup.org/onlinepubs/9699919799/ r S » s U

Base Definitions

- Introduction
5 formance
.D

1
2
3 tions
4. General Concepts
5. File Format Notation
6. Character Set
7
8
9

10

. Locale
. Environment Variables
. Regular Expressions
. Directory Structure and
Devices
11. General Terminal Interface
12. Utility Conventions

+

8.1 Environment Variable Definition

Environment variables defined in this chapter affect the operation of multiple utilities, functions, and applications. There are other environment
variables that are of interest only to specific utilities. Environment variables that apply to a single utility only are defined as part of the utility
description. See the ENVIRONMENT VARIABLES section of the utility descriptions in the Shell and Utilities volume of POSIX.1-2017 for
information on environment variable usage.

The value of an environment variable is a string of characters. For a C-language program, an array of strings called the environment shall be
made available when a process begins. The array is pointed to by the external variable environ, which is defined as:

extern char **environ;

These strings have the form name=value; names shall not contain the character '='. For values to be portable across systems conforming to
POSIX.1-2017, the value shall be composed of characters from the portable character set (except NUL and as indicated below). There is no
meaning associated with the order of strings in the environment. If more than one string in an environment of a process has the same name,
the consequences are undefined.

Environment variable names used by the utilities in the Shell and Utilities volume of POSIX.1-2017 consist solely of uppercase letters, digits,
and the <underscore> ('_') from the characters defined in Portable Character Set and do not begin with a digit. Other characters may be
permitted by an implementation; applications shall tolerate the presence of such names. Uppercase and lowercase letters shall retain their
unique identities and shall not be folded together. The name space of environment variable names containing lowercase letters is reserved for
applications. Applications can define any environment variables with names from this name space without modifying the behavior of the
standard utilities.

Note:
Other applications may have difficulty dealing with environment variable names that start with a digit. For this reason, use of such names
is not recommended anywhere.

The values that the environment variables may be assigned are not restricted except that they are considered to end with a null byte and the
total space used to store the environment and the arguments to the process is limited to {ARG_MAX]} bytes.

Other name= value pairs may be placed in the environment by, for example, calling any of the setenv(), unsetenv() XS o or putenv() @
functions, assigning a new value to the environ variable, or by using envp arguments when creating a process; see exec in the System
Interfaces volume of POSIX.1-2017.

If the application modifies the pointers to which environ points, the behavior of all interfaces described in the System Interfaces volume of
POSIX.1-2017 is undefined.

It is unwise to conflict with certain variables that are frequently exported by widely used command interpreters and applications:

13. Headers ARFLAGS IFS MAILPATH PS1
cc LANG MAILRC pPs2
CDPATH LC_ALL MAKEFLAGS PS3
CFLAGS LC_COLLATE MAKESHELL PS4
CHARSET LC_CTYPE MANPATH PWD
COLUMNS LC_MESSAGES MBOX RANDOM
SazCas LCaManiTa o aonc Soconoc

POSIX.1-2007, Vol. 1, Ch. 8: https://pubs.opengroup.org/onlinepubs/9699919799/

https://pubs.opengroup.org/onlinepubs/9699919799/

POSIX: Utility Program Conventions

0]
<

The Open Group Base Specificat X + = &
C @ pubs.opengroup.org/onlinepubs/9699919799/ * © » c (
INDEX 12. Utility Conventions
TR 12.1 Utility Argument Syntax

[Alphabetic | Topic | Word Search]

Select a Volume:
[Base Definitions |

[Frontmatter]

[Main Index]

Base Definitions

. Introduction

onformance
Definitions

le Format Notation
Character Set

evices
eral Terminal Interface
Utility Conventions

This section describes the argument syntax of the standard utilities and introduces terminology used throughout POSIX.1-2017 for describing
the arguments processed by the utilities.

Within POSIX.1-2017, a special notation is used for describing the syntax of a utility's arguments. Unless otherwise noted, all utility
descriptions use this notation, which is illustrated by this example (see XCU Simple Commands):

utility_name[-a][-b][-c option_argument]
[-d|-e][-f[option_argument]][operand...]

The notation used for the SYNOPSIS sections imposes requirements on the implementors of the standard utilities and provides a simple
reference for the application developer or system user.

1. The utility in the example is named utility_name. It is followed by options, option-arguments, and operands. The arguments that consist
of <hyphen-minus: characters and single letters or digits, such as 'a’, are known as "options" (or, historically, "flags"). Certain options
are followed by an "option-argument”, as shown with [-c option_argument]. The arguments following the last options and option-
arguments are named "operands".

)

. Option-arguments are shown separated from their options by <blank> characters, except when the option-argument is enclosed in the
'[* and ']' notation to indicate that it is optional. This reflects the situation in which an optional option-argument (if present) is included
within the same argument string as the option; for a mandatory option-argument, it is the next argument. The Utility Syntax Guidelines
in Utility Syntax Guidelines require that the option be a separate argument from its option-argument and that option-arguments not be
optional, but there are some exceptions in POSIX.1-2017 to ensure continued operation of historical applications:

a. If the SYNOPSIS of a standard utility shows an option with a mandatory option-argument (as with [-c option_argument] in the
example), a conforming application shall use separate arguments for that option and its option-argument. However, a conforming
implementation shall also permit applications to specify the option and option-argument in the same argument string without
intervening <blank> characters.

3

If the SYNOPSIS shows an optional option-argument (as with [-f[option_argument]] in the example), a conforming application
shall place any option-argument for that option directly adjacent to the option in the same argument string, without intervening
<blank> characters. If the utility receives an argument containing only the option, it shall behave as specified in its description for
an omitted option-argument; it shall not treat the next argument (if any) as the option-argument for that option.

w

. Options are usually listed in alphabetical order unless this would make the utility description more confusing. There are no implied
relationships between the options based upon the order in which they appear, unless otherwise stated in the OPTIONS section, or unless
the exception in Guideline 11 of Utility Syntax Guidelines applies. If an option that does not have option-arguments is repeated, the
results are undefined, unless otherwise stated.

S

. Frequently, names of parameters that require substitution by actual values are shown with embedded <underscore> characters.
Alternatively, parameters are shown as follows:

<parameter name>

The angle brackets are used for the symbolic grouping of a phrase representing a single parameter and conforming applications shall not
incl_ude them in data submitted to the utility.

POSIX.1-2007, Vol. 1, Ch. 12: https://pubs.opengroup.org/onlinepubs/9699919799/

https://pubs.opengroup.org/onlinepubs/9699919799/

POSIX: Utility Program Conventions

* Utility names should be between two and nine characters,
Inclusive.

* Utility names should include lowercase letters (the lower
character classification) and digits only from the portable
character set.

% Each option name should be a single alphanumeric character
(the alnum character classification) from the portable character
set. The -W (capital-W) option shall be reserved for vendor
options. Multi-digit options should not be allowed.

POSIX.1-2007, Vol. 1, Ch. 12: https://pubs.openqgroup.org/onlinepubs/9699919799/

https://pubs.opengroup.org/onlinepubs/9699919799/

POSIX: Utility Program Conventions

* All options should be preceded by the '-' delimiter character.
* One or more options without option-arguments, followed by at
most one option that takes an option-argument, should be

accepted when grouped behind one '-' delimiter.

% ..and 9 others...

POSIX.1-2007, Vol. 1, Ch. 12: https.//pubs.opengroup.org/onlinepubs/9699919799/

https://pubs.opengroup.org/onlinepubs/9699919799/

POSIX: System Interfaces
* POSIX1-2017 Volume 2 defines 1,191 different system interfaces!

..here’s just 60 of them:

a641()
abort()
abs()
accept()
access()
acosf()
acoshf()
acosh()
acoshl()
acos()
acosl()
aio_cancel()
aio_error()
aio_fsync()
aio_read()

fmodl ()
fmtmsg()
fnmatch()
fopen()
fork()
fpathconf ()
fpclassify()
fprintf()
fputc()
fputs()
fputwe()
fputws()
fread()

freeaddrinfo()

free()

pthread_cond_broadcast()
pthread_cond_destroy()
pthread_cond_init()
pthread_cond_signal()
pthread_cond_timedwait()
pthread_cond_wait()

pthread_create()
pthread_detach()
pthread_equal()
pthread_exit()

pthread_getconcurrency()
pthread_getcpuclockid()
pthread_getschedparam()
pthread_getspecific()

pthread_join()

wewidth()
wmemchr ()
wmemcmp ()
wmemcpy ()
wmemmove ()
wmemset ()
wordexp ()
wordfree()
wprintf()
write()
writev()
wscanf ()
yoe()

y1()

yn()

POSIX.1-2007, Vol. 2, Ch. 3: https.//pubs.opengroup.org/onlinepubs/9699919799/nframe.html

https://pubs.opengroup.org/onlinepubs/9699919799/nframe.html

POSIX: Utility Programs
* POSIX1-2017 Volume 3 defines 160 different utility programs:

..here the first 120 of the 160 utility programs:

admin chgrp
alias chmod
ar chown
asa cksum
at cmp

awk comm
basename command
batch compress
bc cp

bg crontab
c99 csplit
cal ctags
cat cut

cd cxref
cflow date

dd
delta
df
diff
dirname
du
echo
ed

env

ex
expand
expr
false
fc

fg

file
find
fold
fort77
fuser
gencat
get

getconf

getopts
grep
hash
head
iconv
id
ipcrm

POSIX.1-2007, Vol. 3, Ch. 4: https.://pubs.opengroup.org/onlinepubs/9699919799/nframe.html

ipcs
jobs
join
kill
lex
link
1n
locale

localedef

logger

logname

1p
1s
m4

mailx

make
man
mesg
mkdir
mkfifo
more
mv
newgrp
nice
nl

nm
nohup
od
paste
patch

pathchk

pax
pr
printf
prs

ps

pwd
galter
qdel
ghold
gmove
gmsg
grerun
grls
gselect

qsig
gstat
gsub
read
renice
rm
rmdel
rmdir
sact
ScCS
sed
sh
sleep
sort
split

https://pubs.opengroup.org/onlinepubs/9699919799/nframe.html

Operating System (Machine Independent Part) » Rz:ﬁt':;i:?on

Layer

Read/Write Output g Syt Comms.

v v /‘////Machine-Specific

Hardware Network (drivers, etc)

> .

N/

Hourglass Model for a
Systems Programming
Interfaces

CS 423 - University of lllinois

Wade Fagen-Ulmschneider
(Slides built from Adam Bates and Tianyin Xu previous work on CS 423.)

POSIX: “Hourglass Model”

{ Apps % Millions of different apps, all doing
/ different things:

o Web Browser

Compiler

Word Processing

Database

Web Server

Minecraft

..etc...

System Library

O O O O O O

POSIX: “Hourglass Model”

/
-/ % Hundreds to thousands of APIs to

©)

iInteract with the OS:

System Library API interact
with the POSIX interface APIs.
Remember, POSIX.1-2017 has
1191 different APIs!

POSIX: “Hourglass Model”

\-/

System
Calls

/N

* Smallest interface is the syscalls:

Only 461 system calls documented for

Linux Kernel 5.10.
https:/man7.ora/linux/man-pages/man2/syscalls.2.html

Over 100 of them are removed or
hardware platform specific.

https://man7.org/linux/man-pages/man2/syscalls.2.html

POSIX: “Hourglass Model”

=

System
Calls

/ Kernel \ * Kernel sits between the system
calls and the hardware.
/ \ * We'll be programming code here
all semester!

POSIX: “Hourglass Model”

\-/

System
Calls

J/ wema

/

Machine-Specific
(drivers, hardware, etc)

\

% Just like apps, there is a lot of
hardware out there!

@)

New processors, network interfaces,
graphics cards, etc every year.

Python Code:
App (Python): open(...)

& Python is written in C (*CPython”), making a call to the POSIX library call...

C: fopen(...)

When compiled on a
When compiled on Linux system....

Win32 system...
SysCall: open(...)

SysCall: CreateFileA(...) ﬂ

@ Kernel :> Machine-Specific

(drivers, hardware, etc)

