Welcome to Operating
System Design (CS 423)

Wade Fagen-Ulmschneider
Spring 2021, University of lllinois

Slides built from Prof. Adam Bates and Prof. Tianyin Xu previous work on CS 423,



Simulation vs Limited
Direct Execution

CS 423 - University of lllinois

Wade Fagen-Ulmschneider
(Slides built from Adam Bates and Tianyin Xu previous work on CS 423.)



CPU Design

% CPUs, in the simplest terms, are efficient machines at doing the

following:
o Run the current operation at the current program counter

address (“PC").
o Advance the PC.

o Repeat.



Simple CPU Operation

CPU Instructions:

movl 4(%esp), %eax

popl 0(%eax)

movl %esp, 4(%eax)

movl %ebx, 8(%eax)

movl %ecx, 12(%eax)

movl %edx, 16(%eax)

movl %esi, 20(%eax)
movl %edi, 24(%eax)

movl %ebp, 28(%eax)
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Processes

% To organize what runs on your CPU, operating systems use a
process to organize CPU instructions:



Processes

% To organize what runs on your CPU, operating systems use a
process to organize CPU instructions:

o A process is an instance of a program,

o Every process runs with a limited set of rights (memory
address space, other permissions).



Limited Rights?

* Example:
o Should a process be able to change its virtual page table?

o Should a process be able to read any address in memory, or
area of the disk (or any device)?

o Should a process do other “privileged operations”?



Limited Rights?

% Solution #1: Simulation!
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* Solution #1: Simulation!
o Our OS runs every process in a “CPU simulator™
o Check every instruction:
m Permitted = Run it on the CPU
m lllegal = Terminate the process

o Thisis the basic model for many interpreted languages.



Limited Rights?

* Solution #1: Simulation!
o Our OS runs every process in a “CPU simulator™
o Check every instruction:
m Permitted = Run it on the CPU
m lllegal = Terminate the process

o This is the basic model for many interpreted languages.

* Very slow, lots of overhead.



Limited Rights?

% Solution #2: Run it Directly?!
o Allow arbitrary “user code” to run on the CPU.
o Require the CPU to “user code” within a “protection ring”.



Direct Execution

os:

1. Create entry for process

2. Allocate memory for process
3. Load program into memory
4. Set up stack (argv/argc)

5. Clear registers

6. call main()

9. Free memory for process
10. Remove process from process list

Process:

:>7. Run main()
<: 8. return from main|)



Limited Direct Execution

osS: Hardware Process:
Process Init
return-from-trap

Clear registers and move to user

mode, move PC to main() entry
> run maing

make a syscall

_ = trap to OS
Save registers, move to kernel

mode, jump to trap handler
Trap Handler: _

= Do syscall work

return-from-trap
Restore registers, move to user

mode, jump to PC after trap
:>...execution continues...



Limited Direct Execution

osS: Hardware Process:
Process Init
return-from-trap

Clear registers and move to user

mode, move PC to main() entry
> run maing

make a syscall

.. _ = trap to OS
Complete System Privileges = o5 registers, move to kernel

(Very critical code to make secure) mode, jump to trap handler
Trap Handler:

= Do syscall work

return-from-trap
Restore registers, move to user

mode, jump to PC after trap
::>...execution continues...
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x86 Protection Modes
% The x86 architecture provides four protection modes:

* Complete access to all functions of the
CPU. Absolutely no protections.

% Thisis the protection mode that kernel
code runs in.



x86 Protection Modes
% The x86 architecture provides four protection modes:
Ring 1and Ring 2:

* Customizable levels of protection,
historically rarely used as ARM and

other systems only had “two rings”.
o  OSes are designed to be run across many
CPUs, so designing such a critical piece of the
OS just for x86 was not widely done.

* Inrecentyears, “Ring 1" has been used
for hosting virtualized kernels when full
hardware virtualization is not available
(ex: no VT-X, no AMD-V support).




x86 Protection Modes

% The x86 architecture provides four protection modes:

*

Ring 3:

Protection mode used for
user-supplied code. All non-kernel
software on an OS runs in this
protection mode.

Often referred to as “user land” as
opposed to “kernel land".



x86 Protection Modes

% The x86 architecture provides four protection modes:

“Ring _-In

Ring -1/ “VMX root mode":

% Hardware virtualization has introduced
a new protection level to protect
kernels from accessing resources
controlled by the hypervisor.

* (We will ignore virtualization until later
in the semester, but worth
remembering we may be just an OS
running as a virtual machine.)



User Threads vs. Kernel Threads

Privileged Execution (“Ring 0”):

% Can do absolutely anything and
everything. No restrictions.

Userland Execution (“Ring 3"):

*

*

Cannot change privilege level:
o A user process should not be able to
grant itself more privileges.

Cannot modify page tables:
o Page tables are a key aspect of
process-level isolation.

Cannot register interrupt handlers:

Limits on the I/O operations.



Paths between User
and Kernel Code
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Limited Direct Execution

osS: Hardware Process:
Process Init
return-from-trap

Clear registers and move to user

mode, move PC to main() entry
> run maing

make a syscall

_ = trap to OS
Save registers, move to kernel

mode, jump to trap handler
Trap Handler: _

= Do syscall work

return-from-trap
Restore registers, move to user

mode, jump to PC after trap
:>...execution continues...



How do we move to the kernel?

* Method #1: syscall
o All system calls will trap to the kernel, transferring execution
from the user code to the kernel.



How do we move to the kernel?

* Method #1: syscall
o All system calls will trap to the kernel, transferring execution
from the user code to the kernel.

* What if the user makes no system calls?

while (1) { } /* Will never make a syscall. */



How do we move to the kernel?

* Method #2: interrupts
o Interrupts will interrupt the current execution and run the

kernel code defined for the specific interrupt.
m /nterrupt handlers are run in the kernel, in “kernel mode”.
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* Method #2: interrupts
o Interrupts will interrupt the current execution and run the

kernel code defined for the specific interrupt.
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How do we move to the kernel?

* Method #3: exceptions
o Triggered by unwanted program behavior.

o EX: A program attempts to run a CPU opcode that is illegal in
the current protection mode (ex: LGDT sets the interrupt

handler, which can only be done by the kernel).

o Handled by kernel code when it occurs.



Timer Interrupt

oS: Hardware Process A:

Process Init
return-from-trap
Clear registers and move to user

mode, move PC to main() entry
[ D wehile (1) {3
Timer Interrupt!
Save registers, move to kernel <:
_ mode, jump to interrupt handle
Interrupt Handler:

= Run system scheduler

= Context switch to a new process

return-from-trap
:> Restore registers, move to user

Process B:

mode, jump to PC after trap

>whi|e M {}



Four paths from User = Kernel code:

% New process/thread start
o Jumps to the first instruction in the program/thread.
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% Returns from a trap to kernel operation
o Interrupt, exception, or system call.
o Jumps to the stored PC from previous execution of the
process.



Four paths from User = Kernel code:

% New process/thread start
o Jumps to the first instruction in the program/thread.

% Returns from a trap to kernel operation
o Interrupt, exception, or system call.
o Jumps to the stored PC from previous execution of the
process.

% User-level upcall (signal)
o Jumps to the sighal handler for the process.



Process Control Block
(PCB)
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Timer Interrupt

oS: Hardware Process A:

Process Init
return-from-trap
Clear registers and move to user

mode, move PC to main() entry
[ D wehile (1) {3
Timer Interrupt!
Save registers, move to kernel <:
_ mode, jump to interrupt handle
Interrupt Handler:

= Run system scheduler

= Context switch to a new process

return-from-trap
:> Restore registers, move to user

Process B:

mode, jump to PC after trap

>whi|e M {}



Process Control Block

* When we run a process, what is the state of the system that is
specific to that process?
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Process Control Block

* When we run a process, what is the state of the system that is
specific to that process?

CPU Instructions:

movl 4(%esp), %eax

Page
Table

popl 0(%eax)
Program Counter [ ymovl %esp, 4(%eax)
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Process Control Block

* When we run a process, what is the state of the system that is
specific to that process?

CPU Instructions:

movl 4(%esp), %eax Tabl -
popl 8(%eax) aple Heap Pointer

Program Counter [ ymovl %esp, 4(%eax) Open File Handles
movl %ebx, 8(%eax)

Page Stack Pointer

movl %ecx, 12(%eax)

movl %edx, 16(%eax)

movl %esi, 20(%eax)

movl %edi, 24(%eax) Registers

movl %ebp, 28(%eax)




Process Control Block

* When we run a process, what is the state of the system that is

specific to that process?

CPU Instructions:

movl 4(%esp), %eax

popl 0(%eax)
Program Counter [ ymovl %esp, 4(%eax)

movl %ebx, 8(%eax)

movl %ecx, 12(%eax)

movl %edx, 16(%eax)

movl %esi, 20(%eax)

movl %edi, 24(%eax)

movl %ebp, 28(%eax)

Page
Table

Stack Pointer

Heap Pointer

Open File Handles

Registers

Scheduling information,
Thread information,
... and much more ...



Process Control Block

% The Process Control Block (PCB) contains everything necessary
to store the state of the process.
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% The Process Control Block (PCB) contains everything necessary
to store the state of the process.

o When the kernel scheduler switches the execution on a CPU

to a new process:.

m The state of the current process is saved to its PCB, and
m The state of the new process is loaded from its PCB.



Process Control Block

% The Process Control Block (PCB) contains everything necessary
to store the state of the process.

o When the kernel scheduler switches the execution on a CPU
to a new process:

m The state of the current process is saved to its PCB, and
m The state of the new process is loaded from its PCB.

Process Table
PID PCB
% One PCB /process: ‘
2 Process Control Block
- - | Program counter
2 e Registers
Process Control Block il
4, P State
Rrc»g‘ram counter Priority
Process Control Block agistes Address space
State
Program counter == Open files
Priority v
Registers s Shace :
State o Other flags
Open files
Priority -
Address space Other flags
I Open files
Other flags




Thread Control Block

% The Thread Control Block (TCB) contains thread-specific state for
all threads in a process.



Thread Control Block

% The Thread Control Block (TCB) contains thread-specific state for
all threads in a process.

o Only needs to maintain data unique to the thread and not

shared with the process:

m Ex Threads share the same page table.
m Ex Threads do not share the same PC or stack pointer.



Interrupt Vector Table
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Interrupt Vector Table

% The Interrupt Vector Table is where a processor finds the kernel

code for all interrupts.
o Stored in RAM at a known address,
o Interrupts are always run as the kernel,
o Limited number of interrupts possible for a CPU/architecture



Interrupt Vector Table

CPU Register: Interrupt Vector Table:
6x 30000 handleTimerInterrupt() {

}

handleDivideByZeroInterrupt() {

}

handleSysCallInterrupt() {

}




Interrupt Safety:

* When an interrupt occurs, the CPU ensures:

1. Atomic transfer of control -- all of the following will be

switched atomicly to the interrupt handler:
m Program Counter

m Stack Pointer

|

|

Memory Protection
User/Kernel Mode



Interrupt Safety:

* When an interrupt occurs, the CPU ensures:

2. Transparent, restartable execution -- user program does not
know the interrupt occurred!



Table 6-1. Protected-Mode Exceptions and Interrupts
Vector Mne- Description Type Error Source
monic Code
0 #DE Divide Error Fault No DIV and IDIV instructions.
1 #DB Debug Exception Fault/ Trap No Instruction, data, and I/0 breakpoints;
single-step; and others.
2 — NMI Interrupt Interrupt No Nonmaskable external interrupt.
3 #BP Breakpoint Trap No INT 3 instruction.
4 HOF Overflow Trap No INTO instruction.
5 #BR BOUND Range Exceeded Fault No BOUND instruction.
6 #UD Invalid Opcode (Undefined Opcode) | Fault No UDZ2 instruction or reserved opcode.l
7 #NM Device Not Available (No Math Fault No Floating-point or WAIT/FWAIT instruction.
Coprocessor)
8 #DF Double Fault Abort Yes Any instruction that can generate an
(zero) exception, an NMI, or an INTR.
9 Coprocessor Segment Overrun Fault No Floating-point instruction.2
(reserved)
10 #TS Invalid TSS Fault Yes Task switch or TSS access.
1 #NP Segment Not Present Fault Yes Loading segment registers or accessing
system segments.
12 #SS Stack-Segment Fault Fault Yes Stack operations and SS register loads.
13 #GP General Protection Fault Yes Any memory reference and other
protection checks.
14 #PF Page Fault Fault Yes Any memory reference.

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf



https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf

Multiple Interrupts

% Fun Fact: Most processes have both a kernel and a user stack!

o Multiple interrupts may be pending at one time.



Table 6-2. Priority Among Simultaneous Exceptions and Interrupts
Priority Description
1 (Highest) Hardware Reset and Machine Checks
- RESET
- Machine Check
2 Trap on Task Switch
-Tflagin TSSis set
3 External Hardware Interventions
- FLUSH
- STOPCLK
-SMI
-INIT
4 Traps on the Previous Instruction
- Breakpoints
- Debug Trap Exceptions (TF flag set or data/l-O breakpoint)
Nonmaskable Interrupts (NMI) 1
Maskable Hardware Interrupts
Code Breakpoint Fault
Faults from Fetching Next Instruction
- Code-Segment Limit Violation
- Code Page Fault
9 Faults from Decoding the Next Instruction
- Instruction length > 15 bytes
- Invalid Opcode
- Coprocessor Not Available
10 (Lowest) | Faults on Executing an Instruction
- Overflow
- Bound error
- Invalid TSS
- Segment Not Present
- Stack fault
- General Protection
- Data Page Fault
- Alignment Check
- xB7 FPU Floating-point exception
- SIMD floating-point exception
- Virtualization exception

W(~N|o|wnv

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf



https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf

Hardware-Generated Interrupts

* Hardware-generated interrupts are physical I/O devices

connected to different pins on the CPU’s “interrupt controller™
o Device hardware will signal on their corresponding pin,
o Lots of different devices: network packets, mouse clicks, keyboard input,
and the timer interrupt!



System-Generated Interrupts

% Many system events generate interrupts, including page faults
and other “need-to-load-data” events.

% User code can also generate directly interrupts via the interrupt
syscall.



Multi-Core Interrupt Handling

* On x86 systems each CPU gets its own local Advanced
Programmable Interrupt Controller (APIC). They are wired in a way
that allows routing device interrupts to any selected local APIC.

o The OS can program the APIC to route specific interrupts to
specific CPUs.

o On Linux, /proc/interrupts shows the handling per CPU of
each interrupt.
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cat /proc/net/dev:

% Received 113,435,024,756 (106 GiB) bytes from 973,578,068 packets.
o ~2interrupts /packet
o ~64 B /interrupt



Interrupt Handler
Design

CS 423 - University of lllinois

Wade Fagen-Ulmschneider
(Slides built from Adam Bates and Tianyin Xu previous work on CS 423.)



Interrupt Handling Design

* Interrupts happen often and interrupt all other tasks on the CPU.
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o Code should be as fast as possible,

o Run only absolutely necessary tasks and defer all other work
until later.



Interrupt Handling Design

* Interrupts happen often and interrupt all other tasks on the CPU.

o Code should be as minimal as possible,

o Code should be as fast as possible,

o Run only absolutely necessary tasks and defer all other work
until [ater.

m The interrupt handler is the “top half” and then the deferred work is
the “bottom half” in a Two-Halves design for handling interrupts.



Example: Network Packet

% Interrupt: Data available on network device.

* Top Half (interrupt handler):
o Copy the data from network I/O device into memory

% Bottom Half (deferred work):

o Process the network packet,
o Deliver it to the appropriate process based on TCP/UDP port



Two-Halves Design

% The two-halves design is the simplest approach to interrupt
handling and can take on various forms:

o All must be statically defined/allocated at compile time.

o In Linux, there are three common mechanism for deferred

work for interrupt handlers:
m softirgs,
m tasklets, or
m workgueues



softirqg

* softirqgs (software interrupt requests) uses a raise_softirq() to
mark a given softirg must execute deferred work.

% softirgs are later scheduled when scheduling permits

* Linux has several different types of softirgs:

o HI_SOFTIRQ
TIMER_SOFTIRQ
NET_TX_SOFTRQ
NET_RX_SOFTIRQ
BLOCK_SOFTIRQ
TASKLET_SOFTIRQ
SCHED_SOFTIRQ

o O O O O O
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* softirqgs (software interrupt requests) uses a raise_softirq() to
mark a given softirg must execute deferred work.

% softirgs are later scheduled when scheduling permits

* Linux has several different types of softirgs:

o HI_SOFTIRQ
TIMER_SOFTIRQ
NET_TX_SOFTRQ
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SCHED_SOFTIRQ

o O O O O O



tasklets

% Tasklets are special types of softirgs that are easiest to use with
some additional constraints:
o tasklets are non-reentrant and have no internal state,
o Vvarious tasklets can run simultaneously across many CPUs

% Tasklets can also be dynamically created and/or removed.



workqueues

* Workqueues provide a complete different mechanism for

deferred work:
o Workgueues run in their own thread, not as an interrupt

handler (not softirq)

o Can be scheduled by the scheduler with other threads (better
Management)

o Associated with a Thread Control Block (TCB) and can save
state/context.



MP1

* For MP1, you'll work with designing your first kernel module and
will use a Two-Halves design for handling a timer interrupt!

* Released with Week #3 (Feb. 8, 2021)
o TA Overview Session on Thursday, Feb. 11.



