
Welcome to Operating
System Design (CS 423)

Wade Fagen-Ulmschneider
Spring 2021, University of Illinois

Slides built from Prof. Adam Bates and Prof. Tianyin Xu previous work on CS 423.

Simulation vs Limited
Direct Execution

CS 423 - University of Illinois
Wade Fagen-Ulmschneider
(Slides built from Adam Bates and Tianyin Xu previous work on CS 423.)

CPU Design
★ CPUs, in the simplest terms, are efficient machines at doing the

following:
○ Run the current operation at the current program counter

address (“PC”).
○ Advance the PC.
○ Repeat.

Simple CPU Operation

movl 4(%esp), %eax

popl 0(%eax)

movl %esp, 4(%eax)

movl %ebx, 8(%eax)

movl %ecx, 12(%eax)

movl %edx, 16(%eax)

movl %esi, 20(%eax)

movl %edi, 24(%eax)

movl %ebp, 28(%eax)

...

CPU Instructions:

Simple CPU Operation

movl 4(%esp), %eax

popl 0(%eax)

movl %esp, 4(%eax)

movl %ebx, 8(%eax)

movl %ecx, 12(%eax)

movl %edx, 16(%eax)

movl %esi, 20(%eax)

movl %edi, 24(%eax)

movl %ebp, 28(%eax)

...

CPU Instructions:

Program Counter

Simple CPU Operation

movl 4(%esp), %eax

popl 0(%eax)

movl %esp, 4(%eax)

movl %ebx, 8(%eax)

movl %ecx, 12(%eax)

movl %edx, 16(%eax)

movl %esi, 20(%eax)

movl %edi, 24(%eax)

movl %ebp, 28(%eax)

...

CPU Instructions:

Program Counter

Processes
★ To organize what runs on your CPU, operating systems use a

process to organize CPU instructions:

Processes
★ To organize what runs on your CPU, operating systems use a

process to organize CPU instructions:

○ A process is an instance of a program,

○ Every process runs with a limited set of rights (memory
address space, other permissions).

Limited Rights?
★ Example:

○ Should a process be able to change its virtual page table?

○ Should a process be able to read any address in memory, or
area of the disk (or any device)?

○ Should a process do other “privileged operations”?

Limited Rights?
★ Solution #1: Simulation!

Limited Rights?
★ Solution #1: Simulation!

○ Our OS runs every process in a “CPU simulator”!
○ Check every instruction:

■ Permitted ⇒ Run it on the CPU
■ Illegal ⇒ Terminate the process

○ This is the basic model for many interpreted languages.

Limited Rights?
★ Solution #1: Simulation!

○ Our OS runs every process in a “CPU simulator”!
○ Check every instruction:

■ Permitted ⇒ Run it on the CPU
■ Illegal ⇒ Terminate the process

○ This is the basic model for many interpreted languages.

★ Very slow, lots of overhead.

Limited Rights?
★ Solution #2: Run it Directly?!

○ Allow arbitrary “user code” to run on the CPU.
○ Require the CPU to “user code” within a “protection ring”.

Direct Execution
OS:
1. Create entry for process
2. Allocate memory for process
3. Load program into memory
4. Set up stack (argv/argc)
5. Clear registers
6. call main()

9. Free memory for process
10. Remove process from process list

Process:

7. Run main()
8. return from main()

Limited Direct Execution
OS:
Process Init
return-from-trap

Trap Handler:
 ⇒ Do syscall work
return-from-trap

Process:

run main()
...
make a syscall
 ⇒ trap to OS

...execution continues...

Hardware

Clear registers and move to user
mode, move PC to main() entry

Save registers, move to kernel
mode, jump to trap handler

Restore registers, move to user
mode, jump to PC after trap

Limited Direct Execution
OS:
Process Init
return-from-trap

Trap Handler:
 ⇒ Do syscall work
return-from-trap

Process:

run main()
...
make a syscall
 ⇒ trap to OS

...execution continues...

Hardware

Clear registers and move to user
mode, move PC to main() entry

Save registers, move to kernel
mode, jump to trap handler

Restore registers, move to user
mode, jump to PC after trap

Complete System Privileges
(Very critical code to make secure)

Protection Levels /
Protection Rings

CS 423 - University of Illinois
Wade Fagen-Ulmschneider
(Slides built from Adam Bates and Tianyin Xu previous work on CS 423.)

x86 Protection Modes
★ The x86 architecture provides four protection modes:

“Ring 0” ★ Complete access to all functions of the
CPU. Absolutely no protections.

★ This is the protection mode that kernel
code runs in.

x86 Protection Modes
★ The x86 architecture provides four protection modes:

“Ring 0” Ring 1 and Ring 2:

★ Customizable levels of protection,
historically rarely used as ARM and
other systems only had “two rings”.

○ OSes are designed to be run across many
CPUs, so designing such a critical piece of the
OS just for x86 was not widely done.

★ In recent years, “Ring 1” has been used
for hosting virtualized kernels when full
hardware virtualization is not available
(ex: no VT-X, no AMD-V support).

“Ring 1”
“Ring 2”

x86 Protection Modes
★ The x86 architecture provides four protection modes:

“Ring 0” Ring 3:
★ Protection mode used for

user-supplied code. All non-kernel
software on an OS runs in this
protection mode.

★ Often referred to as “user land” as
opposed to “kernel land”.

“Ring 1”
“Ring 2”

“Ring 3”

x86 Protection Modes
★ The x86 architecture provides four protection modes:

“Ring 0”
Ring -1 / “VMX root mode”:
★ Hardware virtualization has introduced

a new protection level to protect
kernels from accessing resources
controlled by the hypervisor.

★ (We will ignore virtualization until later
in the semester, but worth
remembering we may be just an OS
running as a virtual machine.)

“Ring 1”
“Ring 2”

“Ring 3”

“Ring -1”

User Threads vs. Kernel Threads
Privileged Execution (“Ring 0”): Userland Execution (“Ring 3”):

★ Can do absolutely anything and
everything. No restrictions.

★ Cannot change privilege level:
○ A user process should not be able to

grant itself more privileges.

★ Cannot modify page tables:
○ Page tables are a key aspect of

process-level isolation.

★ Cannot register interrupt handlers:

★ Limits on the I/O operations.

Paths between User
and Kernel Code

CS 423 - University of Illinois
Wade Fagen-Ulmschneider
(Slides built from Adam Bates and Tianyin Xu previous work on CS 423.)

Limited Direct Execution
OS:
Process Init
return-from-trap

Trap Handler:
 ⇒ Do syscall work
return-from-trap

Process:

run main()
...
make a syscall
 ⇒ trap to OS

...execution continues...

Hardware

Clear registers and move to user
mode, move PC to main() entry

Save registers, move to kernel
mode, jump to trap handler

Restore registers, move to user
mode, jump to PC after trap

How do we move to the kernel?
★ Method #1: syscall

○ All system calls will trap to the kernel, transferring execution
from the user code to the kernel.

How do we move to the kernel?
★ Method #1: syscall

○ All system calls will trap to the kernel, transferring execution
from the user code to the kernel.

★ What if the user makes no system calls?

 while (1) { } /* Will never make a syscall. */

How do we move to the kernel?
★ Method #2: interrupts

○ Interrupts will interrupt the current execution and run the
kernel code defined for the specific interrupt.
■ Interrupt handlers are run in the kernel, in “kernel mode”.

How do we move to the kernel?
★ Method #2: interrupts

○ Interrupts will interrupt the current execution and run the
kernel code defined for the specific interrupt.
■ Interrupt handlers are run in the kernel, in “kernel mode”.

○ Many types of interrupts:
■ Data from a hard drive read operation is available,
■ A network packet arrives,
■ A CPU timeout occurs,
■ ...etc...

How do we move to the kernel?
★ Method #2: interrupts

○ Interrupts will interrupt the current execution and run the
kernel code defined for the specific interrupt.
■ Interrupt handlers are run in the kernel, in “kernel mode”.

○ Many types of interrupts:
■ Data from a hard drive read operation is available,
■ A network packet arrives,
■ A CPU timeout occurs,
■ ...etc...

How do we move to the kernel?
★ Method #3: exceptions

○ Triggered by unwanted program behavior.

○ Ex: A program attempts to run a CPU opcode that is illegal in
the current protection mode (ex: LGDT sets the interrupt
handler, which can only be done by the kernel).

○ Handled by kernel code when it occurs.

Timer Interrupt
OS:
Process Init
return-from-trap

Interrupt Handler:
 ⇒ Run system scheduler

⇒ Context switch to a new process
return-from-trap

Process A:

while (1) { }

Hardware

Clear registers and move to user
mode, move PC to main() entry

Save registers, move to kernel
mode, jump to interrupt handler

Restore registers, move to user
mode, jump to PC after trap

Timer Interrupt!

Process B:

while (1) { }

Four paths from User ⇒ Kernel code:
★ New process/thread start

○ Jumps to the first instruction in the program/thread.

Four paths from User ⇒ Kernel code:
★ New process/thread start

○ Jumps to the first instruction in the program/thread.

★ Returns from a trap to kernel operation
○ Interrupt, exception, or system call.
○ Jumps to the stored PC from previous execution of the

process.

Four paths from User ⇒ Kernel code:
★ New process/thread start

○ Jumps to the first instruction in the program/thread.

★ Returns from a trap to kernel operation
○ Interrupt, exception, or system call.
○ Jumps to the stored PC from previous execution of the

process.

★ User-level upcall (signal)
○ Jumps to the signal handler for the process.

Process Control Block
(PCB)

CS 423 - University of Illinois
Wade Fagen-Ulmschneider
(Slides built from Adam Bates and Tianyin Xu previous work on CS 423.)

Timer Interrupt
OS:
Process Init
return-from-trap

Interrupt Handler:
 ⇒ Run system scheduler

⇒ Context switch to a new process
return-from-trap

Process A:

while (1) { }

Hardware

Clear registers and move to user
mode, move PC to main() entry

Save registers, move to kernel
mode, jump to interrupt handler

Restore registers, move to user
mode, jump to PC after trap

Timer Interrupt!

Process B:

while (1) { }

Process Control Block
★ When we run a process, what is the state of the system that is

specific to that process?

Process Control Block
★ When we run a process, what is the state of the system that is

specific to that process?

movl 4(%esp), %eax

popl 0(%eax)

movl %esp, 4(%eax)

movl %ebx, 8(%eax)

movl %ecx, 12(%eax)

movl %edx, 16(%eax)

movl %esi, 20(%eax)

movl %edi, 24(%eax)

movl %ebp, 28(%eax)

...

CPU Instructions:

Program Counter

Process Control Block
★ When we run a process, what is the state of the system that is

specific to that process?

movl 4(%esp), %eax

popl 0(%eax)

movl %esp, 4(%eax)

movl %ebx, 8(%eax)

movl %ecx, 12(%eax)

movl %edx, 16(%eax)

movl %esi, 20(%eax)

movl %edi, 24(%eax)

movl %ebp, 28(%eax)

...

CPU Instructions:

Program Counter

Registers

Process Control Block
★ When we run a process, what is the state of the system that is

specific to that process?

movl 4(%esp), %eax

popl 0(%eax)

movl %esp, 4(%eax)

movl %ebx, 8(%eax)

movl %ecx, 12(%eax)

movl %edx, 16(%eax)

movl %esi, 20(%eax)

movl %edi, 24(%eax)

movl %ebp, 28(%eax)

...

CPU Instructions:

Program Counter

Page
Table

Registers

Process Control Block
★ When we run a process, what is the state of the system that is

specific to that process?

movl 4(%esp), %eax

popl 0(%eax)

movl %esp, 4(%eax)

movl %ebx, 8(%eax)

movl %ecx, 12(%eax)

movl %edx, 16(%eax)

movl %esi, 20(%eax)

movl %edi, 24(%eax)

movl %ebp, 28(%eax)

...

CPU Instructions:

Program Counter

Page
Table

Registers

Stack Pointer
Heap Pointer

Open File Handles

Process Control Block
★ When we run a process, what is the state of the system that is

specific to that process?

movl 4(%esp), %eax

popl 0(%eax)

movl %esp, 4(%eax)

movl %ebx, 8(%eax)

movl %ecx, 12(%eax)

movl %edx, 16(%eax)

movl %esi, 20(%eax)

movl %edi, 24(%eax)

movl %ebp, 28(%eax)

...

CPU Instructions:

Program Counter

Page
Table

Registers

Stack Pointer
Heap Pointer

Open File Handles

Scheduling information,
Thread information,
 … and much more ...

Process Control Block
★ The Process Control Block (PCB) contains everything necessary

to store the state of the process.

Process Control Block
★ The Process Control Block (PCB) contains everything necessary

to store the state of the process.

○ When the kernel scheduler switches the execution on a CPU
to a new process:
■ The state of the current process is saved to its PCB, and
■ The state of the new process is loaded from its PCB.

Process Control Block
★ The Process Control Block (PCB) contains everything necessary

to store the state of the process.

○ When the kernel scheduler switches the execution on a CPU
to a new process:
■ The state of the current process is saved to its PCB, and
■ The state of the new process is loaded from its PCB.

★ One PCB /process:

Thread Control Block
★ The Thread Control Block (TCB) contains thread-specific state for

all threads in a process.

Thread Control Block
★ The Thread Control Block (TCB) contains thread-specific state for

all threads in a process.

○ Only needs to maintain data unique to the thread and not
shared with the process:
■ Ex: Threads share the same page table.
■ Ex: Threads do not share the same PC or stack pointer.

Interrupt Vector Table

CS 423 - University of Illinois
Wade Fagen-Ulmschneider
(Slides built from Adam Bates and Tianyin Xu previous work on CS 423.)

Interrupt Vector Table
★ The Interrupt Vector Table is where a processor finds the kernel

code for all interrupts.
○ Stored in RAM at a known address,
○ Interrupts are always run as the kernel,
○ Limited number of interrupts possible for a CPU/architecture

Interrupt Vector Table

0x 30000
CPU Register:

handleTimerInterrupt() {
 ...
}

handleDivideByZeroInterrupt() {
 ...
}

handleSysCallInterrupt() {
 ...
}

...

Interrupt Vector Table:

Interrupt Safety:
★ When an interrupt occurs, the CPU ensures:

1. Atomic transfer of control -- all of the following will be
switched atomicly to the interrupt handler:
■ Program Counter
■ Stack Pointer
■ Memory Protection
■ User/Kernel Mode

Interrupt Safety:
★ When an interrupt occurs, the CPU ensures:

2. Transparent, restartable execution -- user program does not
know the interrupt occurred!

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf

Multiple Interrupts
★ Fun Fact: Most processes have both a kernel and a user stack!

○ Multiple interrupts may be pending at one time.

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf

Hardware-Generated Interrupts
★ Hardware-generated interrupts are physical I/O devices

connected to different pins on the CPU’s “interrupt controller”:
○ Device hardware will signal on their corresponding pin,
○ Lots of different devices: network packets, mouse clicks, keyboard input,

and the timer interrupt!

System-Generated Interrupts
★ Many system events generate interrupts, including page faults

and other “need-to-load-data” events.

★ User code can also generate directly interrupts via the interrupt
syscall.

Multi-Core Interrupt Handling
★ On x86 systems each CPU gets its own local Advanced

Programmable Interrupt Controller (APIC). They are wired in a way
that allows routing device interrupts to any selected local APIC.

○ The OS can program the APIC to route specific interrupts to
specific CPUs.

○ On Linux, /proc/interrupts shows the handling per CPU of
each interrupt.

cat /proc/interrupts
on my 91-divoc.com server
after an uptime of 238 days.

cat /proc/interrupts
on my 91-divoc.com server
after an uptime of 238 days.

Total of 1.769b interrupts on
eth0 -- that’s 7.35m
interrupts /day or >85
interrupts /second just on
eth0!

cat /proc/net/dev:

★ Received 113,435,024,756 (106 GiB) bytes from 973,578,068 packets.
○ ~2 interrupts /packet
○ ~64 B /interrupt

Interrupt Handler
Design

CS 423 - University of Illinois
Wade Fagen-Ulmschneider
(Slides built from Adam Bates and Tianyin Xu previous work on CS 423.)

Interrupt Handling Design
★ Interrupts happen often and interrupt all other tasks on the CPU.

Interrupt Handling Design
★ Interrupts happen often and interrupt all other tasks on the CPU.

○ Code should be as minimal as possible,
○ Code should be as fast as possible,
○ Run only absolutely necessary tasks and defer all other work

until later.

Interrupt Handling Design
★ Interrupts happen often and interrupt all other tasks on the CPU.

○ Code should be as minimal as possible,
○ Code should be as fast as possible,
○ Run only absolutely necessary tasks and defer all other work

until later.
■ The interrupt handler is the “top half” and then the deferred work is

the “bottom half” in a Two-Halves design for handling interrupts.

Example: Network Packet
★ Interrupt: Data available on network device.

★ Top Half (interrupt handler):
○ Copy the data from network I/O device into memory

★ Bottom Half (deferred work):
○ Process the network packet,
○ Deliver it to the appropriate process based on TCP/UDP port

Two-Halves Design
★ The two-halves design is the simplest approach to interrupt

handling and can take on various forms:

○ All must be statically defined/allocated at compile time.

○ In Linux, there are three common mechanism for deferred
work for interrupt handlers:
■ softirqs,
■ tasklets, or
■ workqueues

softirq
★ softirqs (software interrupt requests) uses a raise_softirq() to

mark a given softirq must execute deferred work.

★ softirqs are later scheduled when scheduling permits

★ Linux has several different types of softirqs:
○ HI_SOFTIRQ
○ TIMER_SOFTIRQ
○ NET_TX_SOFTRQ
○ NET_RX_SOFTIRQ
○ BLOCK_SOFTIRQ
○ TASKLET_SOFTIRQ
○ SCHED_SOFTIRQ

softirq
★ softirqs (software interrupt requests) uses a raise_softirq() to

mark a given softirq must execute deferred work.

★ softirqs are later scheduled when scheduling permits

★ Linux has several different types of softirqs:
○ HI_SOFTIRQ
○ TIMER_SOFTIRQ
○ NET_TX_SOFTRQ
○ NET_RX_SOFTIRQ
○ BLOCK_SOFTIRQ
○ TASKLET_SOFTIRQ
○ SCHED_SOFTIRQ

tasklets
★ Tasklets are special types of softirqs that are easiest to use with

some additional constraints:
○ tasklets are non-reentrant and have no internal state,
○ various tasklets can run simultaneously across many CPUs

★ Tasklets can also be dynamically created and/or removed.

workqueues
★ Workqueues provide a complete different mechanism for

deferred work:
○ Workqueues run in their own thread, not as an interrupt

handler (not softirq)

○ Can be scheduled by the scheduler with other threads (better
management)

○ Associated with a Thread Control Block (TCB) and can save
state/context.

MP1
★ For MP1, you’ll work with designing your first kernel module and

will use a Two-Halves design for handling a timer interrupt!

★ Released with Week #3 (Feb. 8, 2021)
○ TA Overview Session on Thursday, Feb. 11.

