
Welcome to Operating
System Design (CS 423)

Wade Fagen-Ulmschneider
Spring 2021, University of Illinois

Slides built from Prof. Adam Bates and Prof. Tianyin Xu previous work on CS 423.

Course Overview
You Already Know:

- C Programming
- Basic Linux/POSIX APIs
- Basic Systems Primitives

- Memory Allocation
- Synchronization
- Deadlock

After CS 423:

- Mastery of Operating System concepts
- Comprehensive understanding of

virtualization techniques
- Introduction to Advanced OS topics:

- Security
- Power/Energy
- Redundancy

- A kernel-level hacker, having established
a kernel development environment and
having modified OS code

Introductions:

Wade Fagen-Ulmschneider (waf)
Teaching Associate Prof. of Computer Science
Grainger College of Engineering

Introductions:

Why CS 423?
★ Understand the foundation of all software systems.

★ Apply the design of systems concepts to higher level software
systems -- browsers, VMs, IoT devices, and more all use many ideas
from OS design.

★ Acquire a very specific (and lucrative) set of skills!
○ Huge need for engineers who know OS/device drivers/kernel.
○ Increasingly few programs have a low-level systems course.

Prerequisites
★ We are writing kernel code, we are modifying Linux, and we’re

understanding every bit of how it works.

★ Prerequisites: Background in systems programming
○ CS 241 or ECE 391

Textbook
★ “Operating Systems: Three Easy Pieces” by Ostep Remzi and

Andrea Arpaci-Dusseau
○ Chapters available online for FREE!
○ Each lecture will have linked readings from the text.

★ Additional, optional texts are listed on the syllabus.

Course Structure
★ Every Monday:

○ All content (lectures, readings, MPs, etc) posted.
○ All due dates will be Mondays at 11:59pm Central Time.

★ Every Tuesday at 2:00pm:
○ Course meetup on Zoom; introduction to the week, discussions

on news/innovation in systems; etc.

★ Thursdays at 2:00pm:
○ Usually office hours, except MP release weeks where TAs will hold

an MP overview session.

★ Fridays:
○ All assignments turned in on Monday returned to you.

Assignments
★ Machine Problems (MPs)

○ MP0 “set-up” MP where you’ll get Linux compiled on your VM,
○ 4x multi-week MPs developing Linux kernel modules

★ Exams
○ Midterm Exam: Thursday, March 18
○ Final Exam: Finals Week
○ Open-notes, closed-other people; full details in March

★ Occasional Homework and Participation
○ Discussions on Piazza, practice final, etc

MPs
★ You will implement and evaluate concepts from lecture within a real

operating system (specifically, Ubuntu Linux).
○ Your code will play along with the 25,000,000 other lines of code

that make up the Linux kernel.

★ Q: Why not make our own OS?
○ Building a small OS is a good experience,
○ Extending a real OS is more practical and gets more done

MPs: Virtual Machines
★ You will be provided a VM managed by EngrIT for MP development.

○ If you brick your VM, you must open a ticket with EngrIT and they
have to reset it. This takes >24 hours!
■ Bricked it on a weekend? You VM will be unavailable until

Monday/Tuesday. :(

○ On a rare occasion, the whole VM Farm may go down. Let’s hope
that doesn’t happen this semester.

MPs: Virtual Machines
★ Extensions for VM failures will only be given for cloud-wide failures or

other extraordinary circumstances., NOT for self-inflicted issues!

★ Strategies to ensure success:
○ Develop on your own VM, using VirtualBox or other free VM

tools.
■ As part of MP0, we will give you the exact VM setup!
■ However, we grade on the EngrIT VM, so make sure to deploy

it to your VM before the deadline + commit it to git.

○ Commit your code often; if you’re changing code on the VM, and
brick it, all your code will be lost.

git
★ We will use the EngrIT-hosted GitHub Enterprise server:

https://github-dev.cs.illinois.edu/

★ A microservice will create the repo for you. We will grade your MP is
one of two ways:
○ On some MPs, we will log into your VM and ensure your VM has

the MP integrated into your Linux.
○ On other MPs, we will compile your source and grade it on a new

EngrIT VM.
○ Therefore, you must both run your code on your VM and

commit your code via git.

https://github-dev.cs.illinois.edu/

4CR Section
★ Graduate students and those interested systems research can

take this course for an addition credit hour.

★ Requirement: Two papers will be posted each week. You will:
○ Look over both of them,
○ Choose one to read in-depth and summarize,

★ 4CR Grade: 80%*(3CR) + 20%*(Summaries) = Final Grade

4CR Summaries
★ Each summary should be 1-2 pages in length, discussing the

paper in depth including:
○ Why you choose the paper you did (between the two),
○ The area of systems the paper addresses,
○ The problem the paper addresses,
○ The solution the paper presents,
○ The methodology the paper uses,
○ The results reported by the paper,
○ What did you take away from the paper?

Course Policies
★ No late submissions without prior approval:

○ If you’re falling behind, better to just move on and keep up with the
course. We move fast!

★ One-week regrade window:
○ What you submit on Mondays will be graded by Friday. You have until the

next Friday to bring to our attention any errors.
○ If you discover an error in any automated grading (ex: autograder), we will

update the grader and re-run it on everyone to ensure everyone benefits.

★ All assignments are individual.

Course Policies
★ Zero tolerance on cheating:

○ Simple: Don’t do it.
○ First Offense:

■ Zero on the assignment,
■ -100 points to your course grade, and
■ Forfeit all extra credit for the course.

○ Second Offense:
■ -1000 points to your course grade (automatic “F”)

○ We consider each instance of cheating its own offense, even
if discovered at the same time. (Ex: Cheated on MP2+MP3,
discovered after MP3 ⇒ F in course.)

Feedback Welcome!
★ This is my time with CS 423:

○ We’re on a team together to master Operating Systems.
○ I will likely screw up a few things.
○ Feedback is always welcome, and I’ll actively seek it

throughout the semester. :)

Everything Else:
https://courses.grainger.illinois.edu/cs423/sp2021/

https://courses.grainger.illinois.edu/cs423/sp2021/

Overview of an
Operating System

CS 423 - University of Illinois
Wade Fagen-Ulmschneider
(Slides built from Adam Bates and Tianyin Xu previous work on CS 423.)

Operating System Overview:

Operating System

AppsAppsApps
AppsAppsApps

AppsAppsApps

★ Software to manage a computer’s resources for its users.

Read/Write Output Device
Control

File
System Comms. ...

Hardware Network

Operating System
Standard Operating System Interfaces / APIs (ex: POSIX, Win32, Linux, etc)

AppsAppsApps
AppsAppsApps

AppsAppsApps

★ The OS exports an interface (API) for apps to use:

Read/Write Output Device
Control

File
System Comms. ...

Hardware Network

Operating System
Standard Operating System Interfaces / APIs (ex: POSIX, Win32, Linux, etc)

AppsAppsApps
AppsAppsApps

AppsAppsApps

★ Apps are compiled with a system-specific library to interface w/ OS:

Read/Write Output Device
Control

File
System Comms. ...

Hardware Network

System Library System Library System Library

Operating System (Machine Independent Part)
Standard Operating System Interfaces / APIs (ex: POSIX, Win32, Linux, etc)

AppsAppsApps
AppsAppsApps

AppsAppsApps

OS provides a common “Hardware Abstraction Layer” to machine-specific hardware:

Read/Write Output Device
Control

File
System Comms. ...

Hardware Network

System Library System Library System Library

Machine-Specific
(drivers, etc)

Hardware
Abstraction
Layer

Operating System Responsibilities
★ Role #1: Referee

○ Manage resource allocation between many users and
processes.

○ Isolate users and processes from each other.

○ Facilitate communication between isolated users and
processes.

Operating System Responsibilities
★ Role #2: Illusionist

○ Allow each user and process to believe it has the entire
machine to itself.

○ Create the appearance of (near)-infinite memory, available
processes, etc...

○ Abstract away complexity of reliability, networking, storage,
etc...

Operating System Responsibilities
★ Role #3: Glue

○ Manage hardware to be machine-agnostic.

○ Provide common services that are shared among applications
and users.
■ “Glue” Services: Copy/Paste, User Interfaces, File I/O

Operating System Responsibilities: Example
★ Consider the file system in an OS:

Operating System Responsibilities: Example
★ Consider the file system in an OS:

○ Referee:
■ Prevent others from accessing the file without permissions.
■ Re-use storage space after a file is deleted.

○ Illusionist:
■ Files grow/shrink with easy to an (nearly) infinite size.
■ Files persist even during certain hardware faults.

○ Glue:
■ Directories
■ Standard API for file I/O

Operating System Needs Are Changing

Operating System Needs Are Changing
★ Network Speeds:

○ 1980 ⇒ 300 bps / $
○ 2000 ⇒ ~256 Kbps / $
○ 2020 ⇒ ~20 Mbps / $

★ In the past 40 years, the speed of home networking has creased
by a factor of ~67,000x.

Operating System Needs Are Changing
★ Number of Cores /CPU:

○ 1980 ⇒ 1 core / CPU
○ 2000 ⇒ 1 core / CPU
○ 2020 ⇒ 8+ cores / CPU and 64+ cores /server CPUs

★ In the past 20 years, the number of available cores have exploded.

Operating System Needs Are Changing
★ Cost per megaflop/sec:

○ 1980 ⇒ ~$100,000 / megaflop/sec
○ 2000 ⇒ ~$25 / megaflop/sec
○ 2020 ⇒ ~$0.20 / megaflop/sec

★ In the past 40 years, the cost per million operations has decreased
by a factor of ~500,000x.

Operating System Needs Are Changing
★ RAM Capacity B/$:

○ 1980 ⇒ ~2 KiB / $
○ 2000 ⇒ ~2 MiB / $
○ 2020 ⇒ ~2 GiB / $

★ In the past 40 years, the cost per byte of RAM has decreased by a
factor ~1,000,000x.

Operating System Needs Are Changing
★ Storage (HDD) Capacity B/$:

○ 1980 ⇒ ~3 KiB / $
○ 2000 ⇒ ~7 MiB / $
○ 2020 ⇒ ~25 GiB / $

★ In the past 40 years, the cost per byte of storage has decreased by
a factor ~10,000,000x.

Operating System Needs Are Changing
★ Network Speeds:

○ 1980 ⇒ 300 bps / $
○ 2000 ⇒ ~256 Kbps / $
○ 2020 ⇒ ~20 Mbps / $

★ In the past 40 years, the speed of home networking has creased
by a factor of ~67,000x.

Operating System Needs Are Changing
★ Ratio of Computers to Users

○ 1980 ⇒ 100 users : 1 computer
○ 2000 ⇒ 1 user : 1 computer
○ 2020 ⇒ 1 user : many computers

★ In the past 40 years, the number of users to computers has
increased by a factor of at least 200x+.

Operating System Challenges

Operating System Challenges
★ Reliability
★ Availability
★ Security
★ Privacy
★ Portability
★ Performance

Examples of Function and System Calls
Legacy Needs:

- Runs one
application at a
time.

- Manage “time
quotas” for the
many users.

- Users submit jobs
and wait for results
days later.

Modern Needs: Future Needs:

Examples of Function and System Calls
Legacy Needs:

- Runs one
application at a
time.

- Manage “time
quotas” for the
many users.

- Users submit jobs
and wait for results
days later.

Modern Needs:

- Multiprogramming
across many cores and
many concurrent users.

- Interactive, completing
all jobs as quickly as
possible.

- Optimize for user’s
time, not for computer’s
resource time.

Future Needs:

Examples of Function and System Calls
Legacy Needs:

- Runs one
application at a
time.

- Manage “time
quotas” for the
many users.

- Users submit jobs
and wait for results
days later.

Modern Needs:

- Multiprogramming
across many cores and
many concurrent users.

- Interactive, completing
all jobs as quickly as
possible.

- Optimize for user’s
time, not for computer’s
resource time.

Future Needs:

- Manager and use an
ever-increasing number
of processors /computer.

- Peta-scale storage,
data-centers, etc

- Optimize for seamless
interaction between
operating systems on
different computers.
(Users use many computers.)

Review: System Calls

CS 423 - University of Illinois
Wade Fagen-Ulmschneider
(Slides built from Adam Bates and Tianyin Xu previous work on CS 423.)

Function Calls and System Calls
Function Call: System Call

Process

fnCall()

★ Caller and callee in the _______________.
○ Same user
○ Same “domain of trust”

Function Calls and System Calls
Function Call: System Call

Process

fnCall()

★ Caller and callee in the same process.
○ Same user
○ Same “domain of trust”

Process

Operating System

sysCall()

★ OS is trusted; user process is not.
★ OS code runs privileged with complete

access to all system resources.
○ Must prevent abuse.

Function Calls and System Calls
Function Call: System Call

Process

fnCall()

★ Caller and callee in the same process.
○ Same user
○ Same “domain of trust”

Process

Operating System

sysCall()

★ OS is ___________; user process is ______.
★ OS code runs privileged with complete

access to all system resources.
○ ____________________________.

Examples of Function and System Calls
C Library Call: Linux System Call: Win32 System Call:

Examples of Function and System Calls
C Library Call:

fopen
fclose
getc/putc
fread/fwrite
scanf/printf
fprintf
fseek

rand

Linux System Call:

open
close
read/write

lseek

Win32 System Call:

CreateFileA
CloseHandle
ReadFile / WriteFile

SetFilePointer

https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea
https://docs.microsoft.com/en-us/windows/win32/api/handleapi/nf-handleapi-closehandle
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-readfile
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-setfilepointer

Python Code:
Python: open(...)

Python is written in C (“CPython”), making a call to the C library calls…

C++: fopen(...)
When compiled on a
Linux system….

SysCall: open(...)

When compiled on
Win32 system...

SysCall: CreateFileA(...)

CS 423 will by POSIX-focused

★ We will focus on the Linux/POSIX system/standard.

○ Other systems are very similar.

○ Virtualization and containerization has also made the universe
smaller (ex: Windows Subsystem for Linux, etc).

Review: Processes

CS 423 - University of Illinois
Wade Fagen-Ulmschneider
(Slides built from Adam Bates and Tianyin Xu previous work on CS 423.)

Five State Model for Processes

Running

Blocked

Ready

New Finished

1

2

3

4

Process State Transitions

Running

Blocked

Ready

New Finished

1

2

3

4
Running ⇒ Blocked
Process is blocked, waiting
on input or resource

Running

Blocked

Ready

New Finished

1

2

3

4

Running ⇒ Ready
The scheduler preempts
the process for process

Process State Transitions

Running

Blocked

Ready

New Finished

1

2

3

4
Ready ⇒ Running

Scheduler resumes the process

Process State Transitions

Running

Blocked

Ready

New Finished

1

2

3

4
Blocked ⇒ Ready

Input is available and ready
to be processed

Process State Transitions

Creating a Process

★ All processes are created using the fork system call:
○ Creates an exact copy of the current process.

○ Both processes continue in parallel from the statement that
follows the fork call.

○ Only difference is the return value:
■ Parent: Child Process ID (“pid”, non-zero)
■ Child: 0

● Child can get parent ID via getppid()

■ Failure: -1

Creating a Process

Process

fork()

Creating a Process

Process

fork()

Process

fork()fork() returned 3042 fork() returned 0

Executing a New Program

★ A common use of fork is to launch a new executable program.

★ The exec system call replaces the current process image with a
new image.
○ If exec succeeds, it never returns.

★ exec requires you to specify the file you program to run.

Review: Threads

CS 423 - University of Illinois
Wade Fagen-Ulmschneider
(Slides built from Adam Bates and Tianyin Xu previous work on CS 423.)

Threads

★ In the most general terms, threads require only two things to be
true:

1. Independent execution sequence, and

2. Shared memory space with other threads in the same
process

User Threads vs. Kernel Threads

★ Threads can be scheduled by a process (“user-thread”) or by the
kernel. (Both are useful!)

User Threads vs. Kernel Threads
User Threads: Kernel Thread:

★ Shared memory within a process
★ Separate execution sequence

★ Fast context switching
★ User-defined scheduling

★ Shared memory within a process
★ Separate execution sequence

★ Each thread can make blocking calls
★ Can run concurrently on multiple CPUs

POSIX Threads

POSIX

★ “The Portable Operating System Interface (POSIX) is a family of
standards specified by the IEEE Computer Society for
maintaining compatibility between operating systems. POSIX
defines the application programming interface (API), along
with command line shells and utility interfaces, for software
compatibility with variants of Unix and other operating systems.”

POSIX Threads

★ A POSIX thread is a created with the POSIX call
pthread_create().

○ Since 2003 (kernel 2.6), Linux implements POSIX threads as
kernel-scheduled threads.
■ See: Native POSIX Thread Library

Hybrid Threads (N:M, Solaris Threads)

Hybrid Threads (N:M, Solaris Threads)

★ M:N was once thought to provide better performance, but:

○ HARD to implement

○ Now need two layers of blocking, one for user space threads
and another for the kernel space thread

○ Multicore processors bring more performance for more kernel
threads

Review:
Synchronization

CS 423 - University of Illinois
Wade Fagen-Ulmschneider
(Slides built from Adam Bates and Tianyin Xu previous work on CS 423.)

Motivation

★ Processes and threads can be preempted at any time and can
generate problems:

Thread #1:

read X
add 1 to X
write X

Thread #2:

read X
add 1 to X
write X

X is a shared variable

Mutex

Mutex
★ Simplest and most efficient thread synchronization mechanism
★ A special variable that can be either in

○ locked state: a distinguished thread that holds or owns the
mutex; or

○ unlocked state: no thread holds the mutex
★ When several threads compete for a mutex, the losers block at

that call
○ The mutex also has a queue of threads that are waiting to hold

the mutex.
★ POSIX does not require that this queue be accessed FIFO.
★ Helpful note — Mutex is short for “Mutual Exclusion”

Mutex

int pthread_mutex_init(pthread_mutex_t *restrict mutex,
 const pthread_mutexattr_t *restrict attr);

(Or: PTHREAD_MUTEX_INITIALIZER)
int pthread_mutex_destroy(pthread_mutex_t *mutex);
int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

Counting Semaphore

★ Allows for an arbitrary number of consumers to use a resource
simultaneously.

sem_wait sem_singal
if (sp->value == 0) {
 // Add thread to sp->blockList
 // Block thread
}
sp->value--;

sp->value++;
if (sp->list != NULL) {
 // Unblock thread on sp->blockList
}

Review: Signals

CS 423 - University of Illinois
Wade Fagen-Ulmschneider
(Slides built from Adam Bates and Tianyin Xu previous work on CS 423.)

★ Signals are a simple way for one process to send a notification
to another.

★ Signals must be handled in one of three ways:
○ Signals can be caught,
○ Signals can be ignored, or
○ Signals can be blocked.

○ All signals have a default action defined by the system.

Signals

★ A signal is generated when the event that causes it occurs.
★ Signal is delivered when a process receives it.

○ The lifetime of a signal is the interval between its generation and delivery.
○ A signal is pending when it has been generated but not delivered.

★ The process can:
○ Catch the signal by executing a signal handler when signal is delivered.
○ Ignore a signal when it is delivered, results in the default signal action.
○ Block the by adding the signal to the signal mask.

★ The “signal mask” contains the set of signals currently blocked.

Signals

Signal Description Default Action

SIGABRT process abort implementation dependent

SIGALRM alarm clock abnormal termination

SIGBUS access undefined part of memory object implementation dependent

SIGCHLD child terminated, stopped or continued ignore

SIGILL invalid hardware instruction implementation dependent

SIGINT interactive attention signal (usually ctrl-C) abnormal termination

SIGKILL terminated (cannot be caught or ignored) abnormal termination

★ The linux utility kill allows us to deliver signals to a process:

○ kill -l, lists all signals available
○ kill [signal=SIGTERM] pid, sends the signal to pid

○ kill -9 pid, send a SIGKILL to pid. (Terminates the process.)
■ -9 is shorthand for -SIGKILL

Deliver Signals

★ A process can temporarily prevent a signal from being delivered
by blocking it.

★ Signal mask contains a set of signals currently blocked.
○ Blocking a signal is different from ignoring signal.

Signal Masks

★ Signal mask contains a set of signals currently blocked.
○ Blocking a signal is different from ignoring signal.

★ When a process blocks a signal, the OS does not deliver signal
until the process unblocks the signal.
○ A blocked signal is not delivered to a process until it is unblocked.

★ When a process ignores signal, signal is delivered and the process
handles it by throwing it away.

Signal Masks

Review: Deadlock

CS 423 - University of Illinois
Wade Fagen-Ulmschneider
(Slides built from Adam Bates and Tianyin Xu previous work on CS 423.)

★ Four necessary conditions for deadlock:

Deadlock

★ Four necessary conditions for deadlock:

1. Mutual exclusion
2. Hold and wait condition
3. No preemption condition
4. Circular wait condition

Deadlock

★ Resource Allocation Graphs:

Deadlock Detection

Assign Request

★ Detection and Recovery

★ Dynamic Avoidance (run-time)

★ Prevention (design-time)
○ Eliminate any one of the four conditions

Resolving Deadlock

