
CS 423: Operating Systems Design

CS 423 Operating System Design:
Introduction to Linux Kernel Programming

(MP2 Walkthrough)

Based on previous presentations by Jack Chen and Prof. Adam Bates

CS 423: Operating Systems Design

- Understand real time scheduling concepts

- Design a real time schedule module in the Linux kernel

- Learn how to use the kernel scheduling API, timer, procfs

- Test your scheduler by implementing a user level
application

Purpose of MP2

CS 423: Operating Systems Design

● Real-time systems have requirements in terms
of response time and predictability
○ Airbag in a car
○ Video surveillance systems
○ Audio production

● We will be dealing with periodic tasks
○ Constant period
○ Constant running time

● We will assume tasks are independent

Introduction

CS 423: Operating Systems Design

Periodic Tasks Model

● Liu and Layland [1973] model: each task has
○ P, Period,
○ D, Deadline, and
○ C, Processing Time (Runtime)

CS 423: Operating Systems Design

● A static scheduler has complete information about all
the incoming tasks
○ Arrival time
○ Deadline
○ Runtime
○ Etc.

● RMS assigns higher priority for tasks with higher rate
○ Shorter period = higher priority
○ Run highest priority task
○ Preemptive

Rate Monotonic Scheduler (RMS)

CS 423: Operating Systems Design

MP2 Overview

● You will implement RMS with an admission control policy
as a kernel module

● RMS interface (via procfs)
○ Registration: save process info like pid, etc.

○ Yield: process notifies RMS that it has completed its
period

○ De-registration: process notifies RMS that it has
completed all its tasks

CS 423: Operating Systems Design

● We only register a process if it passes admission control
● The module will answer this question every time:

○ Can the new set of processes still be scheduled on a single
processor?

○ Yes if and only if:

○ Always assumes that

○ Ci is the runtime of task i
○ Pi is the period to deadline of task i

Admission Control

CS 423: Operating Systems Design

Floating point operations are very expensive in
the kernel.

You should NOT use them.

Instead use Fixed-Point arithmetic.

Admission Control

CS 423: Operating Systems Design

MP2 User Process Behavior
int main(int argc, char **argv) {
 REGISTER(pid, period, processing_time); // via /proc/mp2/status
 list = READ_STATUS(); // via /proc/mp2/status
 if (pid not in list) return 1;

 t0 = clock_gettime(); // to know when the first job wakes up
 YIELD(pid); // via /proc/mp2/status

 while (exists job) {
 wakeup_time = clock_gettime() - t0;
 do_job();
 process_time = clock_gettime() - wakeup_time;
 printf("wakeup: %d, process: %d\n", wakeup_time, process_time);
 YIELD(pid); // via /proc/mp2/status
 }

 DEREGISTER(pid); // via /proc/mp2/status
 return 0;
}

CS 423: Operating Systems Design

MP2 User Process Behavior
int main(int argc, char **argv) {
 REGISTER(pid, period, processing_time); // via /proc/mp2/status
 list = READ_STATUS(); // via /proc/mp2/status
 if (pid not in list) return 1;

 t0 = clock_gettime(); // to know when the first job wakes up
 YIELD(pid); // via /proc/mp2/status

 while (exists job) {
 wakeup_time = clock_gettime() - t0;
 do_job();
 process_time = clock_gettime() - wakeup_time;
 printf("wakeup: %d, process: %d\n", wakeup_time, process_time);
 YIELD(pid); // via /proc/mp2/status
 }

 DEREGISTER(pid); // via /proc/mp2/status
 return 0;
}

CS 423: Operating Systems Design

MP2 User Process Behavior
int main(int argc, char **argv) {
 REGISTER(pid, period, processing_time); // via /proc/mp2/status
 list = READ_STATUS(); // via /proc/mp2/status
 if (pid not in list) return 1;

 t0 = clock_gettime(); // to know when the first job wakes up
 YIELD(pid); // via /proc/mp2/status

 while (exists job) {
 wakeup_time = clock_gettime() - t0;
 do_job();
 process_time = clock_gettime() - wakeup_time;
 printf("wakeup: %d, process: %d\n", wakeup_time, process_time);
 YIELD(pid); // via /proc/mp2/status
 }

 DEREGISTER(pid); // via /proc/mp2/status
 return 0;
}

CS 423: Operating Systems Design

MP2 User Process Behavior
int main(int argc, char **argv) {
 REGISTER(pid, period, processing_time); // via /proc/mp2/status
 list = READ_STATUS(); // via /proc/mp2/status
 if (pid not in list) return 1;

 t0 = clock_gettime(); // to know when the first job wakes up
 YIELD(pid); // via /proc/mp2/status

 while (exists job) {
 wakeup_time = clock_gettime() - t0;
 do_job();
 process_time = clock_gettime() - wakeup_time;
 printf("wakeup: %d, process: %d\n", wakeup_time, process_time);
 YIELD(pid); // via /proc/mp2/status
 }

 DEREGISTER(pid); // via /proc/mp2/status
 return 0;
}

CS 423: Operating Systems Design

MP2 User Process Behavior
int main(int argc, char **argv) {
 REGISTER(pid, period, processing_time); // via /proc/mp2/status
 list = READ_STATUS(); // via /proc/mp2/status
 if (pid not in list) return 1;

 t0 = clock_gettime(); // to know when the first job wakes up
 YIELD(pid); // via /proc/mp2/status

 while (exists job) {
 wakeup_time = clock_gettime() - t0;
 do_job();
 process_time = clock_gettime() - wakeup_time;
 printf("wakeup: %d, process: %d\n", wakeup_time, process_time);
 YIELD(pid); // via /proc/mp2/status
 }

 DEREGISTER(pid); // via /proc/mp2/status
 return 0;
}

CS 423: Operating Systems Design

MP2 User Process Behavior
int main(int argc, char **argv) {
 REGISTER(pid, period, processing_time); // via /proc/mp2/status
 list = READ_STATUS(); // via /proc/mp2/status
 if (pid not in list) return 1;

 t0 = clock_gettime(); // to know when the first job wakes up
 YIELD(pid); // via /proc/mp2/status

 while (exists job) {
 wakeup_time = clock_gettime() - t0;
 do_job();
 process_time = clock_gettime() - wakeup_time;
 printf("wakeup: %d, process: %d\n", wakeup_time, process_time);
 YIELD(pid); // via /proc/mp2/status
 }

 DEREGISTER(pid); // via /proc/mp2/status
 return 0;
}

CS 423: Operating Systems Design

MP2 User Process Behavior
int main(int argc, char **argv) {
 REGISTER(pid, period, processing_time); // via /proc/mp2/status
 list = READ_STATUS(); // via /proc/mp2/status
 if (pid not in list) return 1;

 t0 = clock_gettime(); // to know when the first job wakes up
 YIELD(pid); // via /proc/mp2/status

 while (exists job) {
 wakeup_time = clock_gettime() - t0;
 do_job();
 process_time = clock_gettime() - wakeup_time;
 printf("wakeup: %d, process: %d\n", wakeup_time, process_time);
 YIELD(pid); // via /proc/mp2/status
 }

 DEREGISTER(pid); // via /proc/mp2/status
 return 0;
}

CS 423: Operating Systems Design

● A process in MP2 can be in one of three states
a. READY: a new job is ready to be scheduled
b. RUNNING: a job is currently running and

using the CPU
c. SLEEPING: job has finished execution and

process is waiting for the next period

● Those are states we should explicitly define in
MP2 as they are specific to our scheduler.

MP2 Process State

CS 423: Operating Systems Design

MP2 Extended PCB
struct mp2_task_struct {

 struct task_struct *linux_task;

 struct timer_list wakeup_timer;

 struct list_head list;

 pid_t pid;

 unsigned long period_ms;

 unsigned long runtime_ms;

 unsigned long deadline_jiff;

 enum task_state state;

};

CS 423: Operating Systems Design

● What happens when userapp sends YIELD?
○ Find the calling task
○ Change the state of the calling task to

SLEEPING
○ Calculate the time when next period begins
○ Set the timer

■ What should happen if current deadline has
passed, but no other tasks are preempting
the currently running task?

○ Wake up dispatching thread
○ Put the calling task to sleep (in Linux scheduler)

MP2 Scheduling Logic

CS 423: Operating Systems Design

MP2 Scheduling Logic

● What happens when a wakeup timer
expires?
○ Change the task to READY
○ Wake up the dispatching thread

CS 423: Operating Systems Design

MP2 Scheduling Logic

● What should dispatching thread do?
Dispatching thread handles our main
scheduling logic.
○ Trigger context switch
○ When dispatching thread wakes up,

find highest priority READY task
○ Preempt the currently running task
○ Set the state of new task to RUNNING

CS 423: Operating Systems Design

MP2 Scheduling Logic

● We are using a kernel thread to handle our
main scheduling logic

● You will need to explicitly put the kernel
thread to sleep when you’re done with your
work

● You also need to explicitly check for signals
○ Check if should stop working
○ kthread_should_stop()

CS 423: Operating Systems Design

MP2 Scheduler API
● schedule(): trigger the kernel scheduler
● wake_up_process (struct task_struct *)
● sched_setscheduler(): set scheduling

parameters
○ FIFO for real time scheduling,

NORMAL for regular processes, etc.
● set_current_state()
● set_task_state()

CS 423: Operating Systems Design

MP2 Scheduler API Example

● To sleep and trigger a context switch
set_current_state(TASK_INTERRUPTIBLE);
schedule();

● To wake up a process
struct task_struct *sleeping_task;
…
wake_up_process(sleeping_task);

CS 423: Operating Systems Design

MP2 Final Notes

● Develop things incrementally, follow the mp2 description
● Test things one at a time

○ Try to test one feature after you are done with it
○ Use git commits to organize your developments. When things

go wildly wrong, you can rollback to where it once worked.
● Use fixed point arithmetic. Don’t use double or float
● Use global variables for persistent state
● Remember to cleanup everything
● If you get permission denied during login, you might have

produced too many kernel logs. Post privately on Campuswire
and we will help you (when we see it...)

● If your kernel freezes you might be asking too much from kmalloc
(some other things could also happen)

