CS 423 Operating System Design:
Introduction to Linux Kernel Programming
(MP2 Walkthrough)

Based on previous presentations by Jack Chen and Prof. Adam Bates

CS 423: Operating Systems Design



Purpose of MP2

- Understand real time scheduling concepts
- Design a real time schedule module in the Linux kernel
- Learn how to use the kernel scheduling API, timer, procfs

- Test your scheduler by implementing a user level
application

CS 423: Operating Systems Design



Introduction

e Real-time systems have requirements in terms
of response time and predictability
o Airbag in a car
o Video surveillance systems
o Audio production
e We will be dealing with periodic tasks
o Constant period
o Constant running time
e \We will assume tasks are independent

CS 423: Operating Systems Design



Periodic Tasks Model

e Liu and Layland [1973] model: each task has
o P Period,
o D, Deadline, and
o C, Processing Time (Runtime)

Deadline Processing

\\\\ Time
-

Task

Time

Period

CS 423: Operating Systems Design



Rate Monotonic Scheduler (RMS)

e A static scheduler has complete information about all
the incoming tasks
o Arrival time
o Deadline
o Runtime
o Etc.

e RMS assigns higher priority for tasks with higher rate
o Shorter period = higher priority
o Run highest priority task
o Preemptive

CS 423: Operating Systems Design



MP2 Overview

e You will implement RMS with an admission control policy
as a kernel module

e RMS interface (via procfs)
o Reqgistration: save process info like pid, etc.

o Yield: process notifies RMS that it has completed its
period

o De-registration: process notifies RMS that it has
completed all its tasks

CS 423: Operating Systems Design



Admission Control

e \We only register a process if it passes admission control
e The module will answer this question every time:
o Can the new set of processes still be scheduled on a single
processor?
o Yes if and only if:

Ci
— < 0.693
Z P~
1€’
o Always assumes that
qu < Pi

o Ciis the runtime of task i
o Piis the period to deadline of task i

CS 423: Operating Systems Design



Admission Control

Floating point operations are very expensive Iin
the kernel.
You should NOT use them.

Instead use Fixed-Point arithmetic.

CS 423: Operating Systems Design



MP2 User Process Behavior

int main(int argc, char *%*argv) {
REGISTER(pid, period, processing_time); // via /proc/mp2/status
list = READ_STATUS(); // via /proc/mp2/status
if (pid not in list) return 1;

t0 = clock_gettime(); // to know when the first job wakes up
YIELD(pid); // via /proc/mp2/status

while (exists job) {
wakeup_time = clock_gettime() - t9O;
do_job();
process_time = clock_gettime() - wakeup_time;
printf("wakeup: %d, process: %d\n", wakeup_time, process_time);
YIELD(pid); // via /proc/mp2/status
}

DEREGISTER(pid); // via /proc/mp2/status
return 0;

}
CS 423: Operating Systems Design



MP2 User Process Behavior

int main(int argc, char *%*argv) {
m==fpp REGISTER(pid, period, processing_time); // via /proc/mp2/status
list = READ_STATUS(); // via /proc/mp2/status
if (pid not in list) return 1;

t0 = clock_gettime(); // to know when the first job wakes up
YIELD(pid); // via /proc/mp2/status

while (exists job) {
wakeup_time = clock_gettime() - t9O;
do_job();
process_time = clock_gettime() - wakeup_time;
printf("wakeup: %d, process: %d\n", wakeup_time, process_time);
YIELD(pid); // via /proc/mp2/status
}

DEREGISTER(pid); // via /proc/mp2/status
return 0;

}
CS 423: Operating Systems Design



MP2 User Process Behavior

int main(int argc, char *%*argv) {
REGISTER(pid, period, processing_time); // via /proc/mp2/status
- list = READ_STATUS(); // via /proc/mp2/status
if (pid not in list) return 1;

t0 = clock_gettime(); // to know when the first job wakes up
YIELD(pid); // via /proc/mp2/status

while (exists job) {
wakeup_time = clock_gettime() - t9O;
do_job();
process_time = clock_gettime() - wakeup_time;
printf("wakeup: %d, process: %d\n", wakeup_time, process_time);
YIELD(pid); // via /proc/mp2/status
}

DEREGISTER(pid); // via /proc/mp2/status
return 0;

}
CS 423: Operating Systems Design



MP2 User Process Behavior

int main(int argc, char *%*argv) {
REGISTER(pid, period, processing_time); // via /proc/mp2/status
list = READ_STATUS(); // via /proc/mp2/status
if (pid not in list) return 1;

t0 = clock_gettime(); // to know when the first job wakes up
wm=ep YIELD(pid); // via /proc/mp2/status

while (exists job) {
wakeup_time = clock_gettime() - t9O;
do_job();
process_time = clock_gettime() - wakeup_time;
printf("wakeup: %d, process: %d\n", wakeup_time, process_time);
YIELD(pid); // via /proc/mp2/status
}

DEREGISTER(pid); // via /proc/mp2/status
return 0;

}
CS 423: Operating Systems Design



MP2 User Process Behavior

int main(int argc, char *%*argv) {
REGISTER(pid, period, processing_time); // via /proc/mp2/status
list = READ_STATUS(); // via /proc/mp2/status
if (pid not in list) return 1;

t0 = clock_gettime(); // to know when the first job wakes up
YIELD(pid); // via /proc/mp2/status

while (exists job) {
wakeup_time = clock_gettime() - t9O;
do_job();
process_time = clock_gettime() - wakeup_time;
st printf("wakeup: %d, process: %d\n", wakeup_time, process_time);
YIELD(pid); // via /proc/mp2/status
}

DEREGISTER(pid); // via /proc/mp2/status
return 0;

}
CS 423: Operating Systems Design



MP2 User Process Behavior

int main(int argc, char *%*argv) {
REGISTER(pid, period, processing_time); // via /proc/mp2/status
list = READ_STATUS(); // via /proc/mp2/status
if (pid not in list) return 1;

t0 = clock_gettime(); // to know when the first job wakes up
YIELD(pid); // via /proc/mp2/status

while (exists job) {
wakeup_time = clock_gettime() - t9O;
do_job();
process_time = clock_gettime() - wakeup_time;
printf("wakeup: %d, process: %d\n", wakeup_time, process_time);
m==lp YIELD(pid); // via /proc/mp2/status
}

DEREGISTER(pid); // via /proc/mp2/status
return 0;

}
CS 423: Operating Systems Design



MP2 User Process Behavior

int main(int argc, char *%*argv) {
REGISTER(pid, period, processing_time); // via /proc/mp2/status
list = READ_STATUS(); // via /proc/mp2/status
if (pid not in list) return 1;

t0 = clock_gettime(); // to know when the first job wakes up
YIELD(pid); // via /proc/mp2/status

while (exists job) {
wakeup_time = clock_gettime() - t9O;
do_job();
process_time = clock_gettime() - wakeup_time;
printf("wakeup: %d, process: %d\n", wakeup_time, process_time);
YIELD(pid); // via /proc/mp2/status
}

m=ep DEREGISTER(pid); // via /proc/mp2/status
return 0;
}

CS 423: Operating Systems Design



MP2 Process State

e A process in MP2 can be in one of three states
a. READY: anew job is ready to be scheduled
b. RUNNING: a job is currently running and
using the CPU
c. SLEEPING: job has finished execution and
process is waiting for the next period

e Those are states we should explicitly define in
MP2 as they are specific to our scheduler.

CS 423: Operating Systems Design



MP2 Extended PCB

struct mp2 task struct {
struct task struct *1linux task;
struct timer list wakeup timer;
struct list head 1list;
pid t pid;
unsigned long period ms;
unsigned long runtime ms;
unsigned long deadline jiff;

enum task state state;

};

CS 423: Operating Systems Design



MP2 Scheduling Logic

e \What happens when userapp sends YIELD?

©)
©)

Find the calling task

Change the state of the calling task to

SLEEPING

Calculate the time when next period begins

Set the timer

m What should happen if current deadline has
passed, but no other tasks are preempting
the currently running task?

Wake up dispatching thread

Put the calling task to sleep (in Linux scheduler)

CS 423: Operating Systems Design



MP2 Scheduling Logic

e \What happens when a wakeup timer
expires?
o Change the task to READY
o Wake up the dispatching thread

CS 423: Operating Systems Design



MP2 Scheduling Logic

e \What should dispatching thread do?
Dispatching thread handles our main
scheduling logic.

o Trigger context switch

o When dispatching thread wakes up,
find highest priority READY task

o Preempt the currently running task

o Set the state of new task to RUNNING

CS 423: Operating Systems Design



MP2 Scheduling Logic

e \We are using a kernel thread to handle our
main scheduling logic

e You will need to explicitly put the kernel
thread to sleep when you're done with your
work

e You also need to explicitly check for signals
o Check if should stop working
o kthread should stop()

CS 423: Operating Systems Design



MP2 Scheduler API

e schedule(): trigger the kernel scheduler
e wake up_process (struct task struct *)
e sched setscheduler(): set scheduling
parameters
o FIFQO for real time scheduling,
NORMAL for regular processes, etc.
e set current_state()
e set task state()

CS 423: Operating Systems Design



MP2 Scheduler APl Example

e To sleep and trigger a context switch
set _current_state(TASK INTERRUPTIBLE);
schedule();

e To wake up a process
struct task_struct *sleeping_task;

wake up_process(sleeping_task);

CS 423: Operating Systems Design



MPZ2 Final Notes

e Develop things incrementally, follow the mp2 description
e Test things one at a time

o Try to test one feature after you are done with it

o Use git commits to organize your developments. When things

go wildly wrong, you can rollback to where it once worked.
Use fixed point arithmetic. Don’t use double or float
Use global variables for persistent state
Remember to cleanup everything
If you get permission denied during login, you might have
produced too many kernel logs. Post privately on Campuswire
and we will help you (when we see it...)
e |f your kernel freezes you might be asking too much from kmalloc
(some other things could also happen)

CS 423: Operating Systems Design



