
CS423: Operating Systems Design

Professor Adam Bates

CS 423  
Operating System Design: 

Interrupts

CS 423: Operating Systems Design 2

• Learning Objectives:
• Understand the role and types of of Interrupts

• Announcements:
• C4 weekly summaries! Due TODAY (UTC-11)
• HW0 is available on Compass! Due TODAY (UTC-11)
• MP0 is available on Compass! Due Jan 28

Goals for Today

Reminder: Please put away
devices at the start of class

CS 423: Operating Systems Design

What’s a ‘real’ CPU?

 3

Program
Counter

Program instructions

 Code
Segment

Offset

Heap

Data
Segment

Offset

Operand

Data
Operand

Current
Instruction

OpCode

Stack
Segment

Offset

Stack
Pointer

Stack

RegistersWhat’s the STATE of a real CPU?

CS 423: Operating Systems Design

The Context Switch

 4

Program
Counter

Program instructions

 Code
Segment

Offset

Heap

Data
Segment

Operand

Data
Operand

OpCode

Stack
Segment

Stack
Pointer

Registers

Stack

Program
Counter

Program instructions

 Code
Segment

Offset

Heap

Data
Segment

Operand

Data
Operand

OpCode

Stack
Segment

Stack
Pointer

Stack

Save State
(Context)

Load State
(Context)

Registers

CS423: Operating Systems Design

Discussion: Last Class
• Where is CPU State physically stored for active task?

• Registers!

• Program Counter is a register

• Segment Registers

• Code Segment

• Data Segment

• Stack Segment

• CPU has access to RAM and can save PC to stack
before context switching.

 5

CS 423: Operating Systems Design

Process Control Block

 6

The state for processes that are not running on the CPU are
maintained in the Process Control Block (PCB) data structure

Updated during
context switch

An alternate PCB diagram

CS 423: Operating Systems Design

Where We Are:

 7

The Hardware
(CPU)

“Virtual”
CPU

“Virtual”
CPU

“Virtual”
CPU

…

Context Switching
+ Scheduling

Last class, we discussed how context switches allow a
single CPU to handle multiple tasks:

What’s missing from this picture?

CS 423: Operating Systems Design

Where We Are:

 8

The Hardware
(CPU)

“Virtual”
CPU

…

Context Switching
+ Scheduling

“Virtual”
CPU

“Virtual”
CPU

External
Devices

Interrupt
Handler

Interrupt
Handler

Interrupt
Handler

Interrupts to drive scheduling decisions!

Interrupt handlers are also tasks that share the CPU.

CS 423: Operating Systems Design

CTX Switch: Interrupt

 9

Program
Counter

Program instructions

 Code
Segment

Offset

Stack
Segment

Stack
Pointer

Stack

Program
Counter

Program instructions

 Code
Segment

Offset

Stack
Segment

Stack
Pointer

Stack

Save PC on thread stack
Jump to Interrupt handler

Handler
- Save thread state in thread control block
 (SP, registers, segment pointers, …)
- Handle Interrupt
- Choose next thread
- Load thread state from control block
- Pop PC from thread stack (return from handler)
- Resume prior task

Thread
Control
Block

Thread
Control
Block

Registers Registers

CS 423: Operating Systems Design 10

Program
Counter

Program instructions

 Code
Segment

Offset

Stack
Segment

Stack
Pointer

Registers

Stack

Program
Counter

Program instructions

 Code
Segment

Offset

Stack
Segment

Stack
Pointer

Registers

Stack

Save PC on thread stack
Jump to yield() function

yield()
- Save thread state in thread control block
 (SP, registers, segment pointers, …)
- Choose next thread
- Load thread state from control block
- Pop PC from thread stack (return from handler) Thread

Control
Block

Thread
Control
Block

Can also CTX Switch from Yield

CS423: Operating Systems Design

How do we take interrupts safely??

• Interrupt Vector Table
• Where the processor looks for a handler
• Limited number of entry points into kernel
• Stored in RAM at a known address

• Atomic transfer of control
• Single instruction to change:

• Program counter
• Stack pointer
• Memory protection
• Kernel/user mode

• Transparent restartable execution
• User program does not know interrupt occurred

 11

CS423: Operating Systems Design

Interrupt Vector Table
Table set up by OS kernel; pointers to code to run on

different events

 12

Interrupt
Vector

Processor
Register

h a n d l e T i m e r I n t e r r u p t () {
 . . .
}

h a n d l e D i v i d e B y Z e r o () {
 . . .
}

h a n d l e S y s t e m C a l l () {
 . . .
}

CS423: Operating Systems Design

Interrupt Stack
• Per-processor, located in kernel (not user) memory

• Fun fact! Usually a process/thread has both a kernel
and user stack

• Can the interrupt handler run on the stack of
the interrupted user process?

 13

CS423: Operating Systems Design

Interrupt Stack

 14

User Stack

Kernel Stack

Proc2

Running

Proc1

Main

Proc2

Ready to Run

Proc1

Main

User CPU
State

User CPU
State

Syscall
Handler

I/O Driver
Top Half

Proc2

Syscall

Waiting for I/O

Proc1

Main

CS 423: Operating Systems Design

Hardware Interrupts

 15

■ Hardware generated:
■ Different I/O devices are connected to different

physical lines (pins) of an “Interrupt controller”
■ Device hardware signals the corresponding line
■ Interrupt controller signals the CPU (by signaling the

Interrupt pin and passing an interrupt number)
■ CPU saves return address after next instruction and

jumps to corresponding interrupt handler

CS 423: Operating Systems Design

Why Hardware INTs?

 16

■ Hardware devices may need asynchronous and
immediate service. For example:
■ Timer interrupt: Timers and time-dependent activities need

to be updated with the passage of time at precise intervals
■ Network interrupt: The network card interrupts the CPU

when data arrives from the network
■ I/O device interrupt: I/O devices (such as mouse and

keyboard) issue hardware interrupts when they have input
(e.g., a new character or mouse click)

CS 423: Operating Systems Design

Ex: Itanium 2 Pinout

 17

CS 423: Operating Systems Design

Ex: Itanium 2 Pinout

 18

CS 423: Operating Systems Design 19

LINTx — lines/pins for
hardware interrupts.

In this case…

LINT0 — line for
unmaskable interrupts

LINT1 — line for
maskable interrupts

Ex: Itanium 2 Pinout

CS 423: Operating Systems Design

A Note on Multicore

 20

■ How are interrupts handled on multicore machines?
■ On x86 systems each CPU gets its own local Advanced

Programmable Interrupt Controller (APIC). They are wired
in a way that allows routing device interrupts to any
selected local APIC.

■ The OS can program the APICs to determine which
interrupts get routed to which CPUs.

■ The default (unless OS states otherwise) is to route all
interrupts to processor 0

CS 423: Operating Systems Design

Instruction Cycle

 21

HALT

START Fetch next
instruction

Execute
Instruction

How does interrupt handling change the instruction cycle?

CS 423: Operating Systems Design

Instruction Cycle w/ INTs

 22

HALT

START Fetch next
instruction

Execute
Instruction

interrupts
disabled

Check for
INT, init INT

handler

Interrupt StageExecute StageFetch Stage

How does interrupt handling change the instruction cycle?

CS 423: Operating Systems Design

Processing HW INT’s

 23

Hardware

Device controller or other
hardware issues an interrupt.

Processor finishes execution
of current instruction.

P r o c e s s o r s i g n a l s
acknowledgment of interrupt.

Processor pushes PSW and
PC onto stack.

Software

Save remainder of s ta te
information.

Process interrupt.

R e s t o r e p r o c e s s s t a t e
information.

Restore old PSW and PC.

Processor loads new PC value
based on interrupt.

Program Status Word (PSW) contains
interrupt masks, privilege states, etc.

CS 423: Operating Systems Design

Other Interrupts

 24

■ Software Interrupts:
■ Interrupts caused by the execution of a software

instruction:
■ INT <interrupt_number>

■ Used by the system call interrupt()
■ Initiated by the running (user level) process
■ Cause current processing to be interrupted and

transfers control to the corresponding interrupt
handler in the kernel

CS 423: Operating Systems Design

Other Interrupts

 25

■ Exceptions
■ Initiated by processor hardware itself
■ Example: divide by zero

■ Like a software interrupt, they cause a transfer
of control to the kernel to handle the
exception

CS423: Operating Systems Design

They’re all interrupts
• HW -> CPU -> Kernel: Classic HW Interrupt

• User -> Kernel: SW Interrupt

• CPU -> Kernel: Exception

• Interrupt Handlers used in all 3 scenarios

 26

CS 423: Operating Systems Design

INTs, Priorities, & Blocking

 27

■ Interrupts (as the name suggests) have the
highest priority (compared to user and kernel
threads) and therefore run first
■ What are the implications on regular program

execution?
■ Must keep interrupt code short in order not to keep

other processing stopped for a long time
■ Cannot block (regular processing does not resume until

interrupt returns, so if the interrupt blocks in the middle
the system “hangs”)

CS 423: Operating Systems Design

INTs, Priorities, & Blocking

 28

■ Can an interrupt handler use malloc()?
■ Can an interrupt handler write data to disk?
■ Can an interrupt handler use busy wait?

■ E.G. — while (!event) loop;

CS423: Operating Systems Design

Interrupt Masking

 29

•  Interrupt	handler	runs	with	interrupts	off	
–  Re-enabled	when	interrupt	completes	

•  OS	kernel	can	also	turn	interrupts	off	
–  Eg.,	when	determining	the	next	process/thread	to	run	
– On	x86	

•  CLI:	disable	interrrupts	
•  STI:	enable	interrupts	
•  Only	applies	to	the	current	CPU	(on	a	mulJcore)	

•  We’ll	need	this	to	implement	synchronizaJon	in	
chapter	5	

CS423: Operating Systems Design

Interrupt Handlers

 30

Designing an Interrupt Handler:
■ Since the interrupt handler must be minimal, all other

processing related to the event that caused the
interrupt must be deferred
■ Example:

■ Network interrupt causes packet to be copied from network card
■ Other processing on the packet should be deferred until its time

comes

■ The deferred portion of interrupt processing is called
the “Bottom Half”

CS 423: Operating Systems Design

Bottom Halves

 31

■ Method for deferring portion of interrupt processing
■ Globally serialized

■ When one bottom half is executing, no other bottom
half can execute (even different type) on any CPU.

■ Obvious performance limitations; primarily available for
legacy support.

■ Note: other mechanisms for deferred work are also
sometimes referred to as bottom half mechanisms.

CS 423: Operating Systems Design

soft_irq’s

 32

■ Handlers that, like bottom halves, must be statically defined/
allocated in the Linux kernel at compile time.

■ A hardware interrupt handler (before returning) uses
raise_softirq() to mark that a given soft_irq must execute
deferred work

■ At a later time, when scheduling permits, the marked
soft_irq handler is executed
■ When a hardware interrupt is finished
■ When a process makes a system call
■ When a new process is scheduled

■ Unlike bottom halves, softirqs are reentrant and can be
executed concurrently on several CPUs
■ How to protect data??

CS 423: Operating Systems Design

soft_irq types

 33

■ HI_SOFTIRQ
■ TIMER_SOFTIRQ
■ NET_TX_SOFTRQ
■ NET_RX_SOFTIRQ
■ BLOCK_SOFTIRQ
■ TASKLET_SOFTIRQ
■ SCHED_SOFTIRQ
■ …

CS 423: Operating Systems Design

soft_irq types

 34

■ HI_SOFTIRQ
■ TIMER_SOFTIRQ
■ NET_TX_SOFTRQ
■ NET_RX_SOFTIRQ
■ BLOCK_SOFTIRQ
■ TASKLET_SOFTIRQ
■ SCHED_SOFTIRQ
■ …

CS 423: Operating Systems Design

Tasklets

 35

■ Another Deferred work mechanism multiplexed on top
of soft_irq’s

■ Scheduled using
■ tasklet_schedule()
■ tasklet_hi_schedule()

■ Typically, a tasklet is serialized with respect to itself.
■ Non-reentrant == easier to code
■ Different task lets can be executed concurrently on

different CPUs.
■ Tasklets can be created or removed dynamically
■ Cannot sleep (cannot save their context)

CS 423: Operating Systems Design

Work Queues

 36

■ A different mechanism for (non-interrupt) deferred work
■ Work deferred to its own thread

■ Does not run in interrupt concept
■ Can be scheduled together with other threads according to

priorities set by a scheduling policy
■ Associated with its thread control block and hence can block

(and save context)
■ DECLARE_WORK(name, void (*func)(void *), void *data);
■ INIT_WORK(struct work_struct *work, void (*func)(void *), void *data);
■ schedule_work(&work);

