CS 423

Operating System Design:
~ar too much information
about Interrupts

Professor Adam Bates
Fall 2018

CS423: Operating Systems Design

Goals for Today

e | earning Objectives:
* Understand the role and types of of Interrupts
 Announcements:
« C4 Week 2 Summaries due today! Week 3 is out.
 MPO is available on Compass! Due Jan 29
« HWO is available on Compass! Due Jan 29

Reminder: Please put away
devices at the start of class

CS 423: Operating Systems Design 2

What's a ‘real’ CPU!

What’s the STATE of a real CPU?

Program instructions
CS 423: Operating Systems Design

3 Code Data —
Segment Segment
Offset
| Program

«—— Counter

X Offset
OpCode |Operand
Current
Instruction Data oo

Operand

Heap

Registers
Stack —
Segment
Offset
Stack >
Pointer
Stack

The Context Switch

< Code Data

Offset

rogram
ounter

|OpCode O\Jerand |

Data
Operand

Program instructions

Segment Segment

v

—

Heap

Registers

Stack

Segment

v
Stack — |

Pointer

Stack

Load State
(Context)

Save State

(Context)

Registers
Code Data
Stack
Segment Segment Segment
Offset
rogram
ounter
v
Stack — |
| opcode _Oberand | Pointer
Data __ |
Operand
Heap Stack

Program instructions

CS 423: Operating Systems Design 4

Process Control Block

The state for processes that are not running on the CPU are
maintained in the Process Control Block (PCB) data structure

Process Table

PID PCB

1 -

2

n

Process Control Block

Process Control Block

Process Control Block

Program counter

Registers

Program counter

State

Registers

Priority

Program counter

State

Address space

Registers

Priority

Open files

State

Address space

Priority

Other flags

Address space

Open files

Other flags

Open files

Other flags

pointer

I

Updated during

context switch

|

process
state

process number

program counter

registers

memory limits

list of open files

An alternate PCB diagram

CS 423: Operating Systems Design 5

Where We Are: [

Last class, we discussed how context switches allow a

single CPU to handle multiple tasks:
What’s missing from this picture?

“Virtual” “Virtual” . “Virtual”
CPU CPU CPU
\ J
Context Switching !
+ Scheduling The Hardware
(CPU)

CS 423: Operating Systems Design 6

Where We Are;

Interrupts to drive scheduling decisions!

Interrupt handlers are also tasks that share the CPU.

R e—
.
é é | Interrupt

“Virtual” “Virtual” | | “Virtual” Handler |1~
CPU CPU CPU
\ J
Context Switching !
+ Scheduling The Hardware
(CPU) External
Devices

CS 423: Operating Systems Design 7

C T X Switch: Interrupt

Registers Registers
Code < Code
Stack Stack
S t
SE Segment egmen Segment
Offset Offset
rogram rogram
Counter Counter
v
Stack —

v
Stack —

Pointer

Pointer
Program instructions Stack Program instructions Stack
Save PC on thread stack Handler _
Jump to Interrupt handler - Save thread state in thread control block
/’ (SP, registers, segment pointers, ...)
- Handle Interrupt
¥ - Choose next thread e /—\
Thread - Load thread state from control block Thread
Control - Pop PC from thread stack (return from handler) Control
- Resume prior task
Block Block

CS 423: Operating Systems Design 8

Can also CTX Switch from Yield

Registers Registers
Code < Code
SE g:;::ent Segment gfa.agc.:ent
Offset Offset
rogram rogram
Counter Counter
v v
Stack — Stack — |
Pointer Pointer
Program instructions Stack Program instructions Stack
Save PC on thread stack yield() _
Jump to yield() function - Save thread state in thread control block
/’ (SP, registers, segment pointers, ...)
- Choose next thread
¥ - Load thread state from control block o /—\
Thread - Pop PC from thread stack (return from handler) Thread
Control Control
Block Block

CS 423: Operating Systems Design 9

How do we take interrupts safely??

e Interrupt vector
* Where the processor looks for a handler
 Limited number of entry points into kernel
e Atomic transfer of control
 Single instruction to change:
e Program counter
« Stack pointer
« Memory protection
« Kernel/user mode
e Transparent restartable execution
« User program does not know interrupt occurred

CS423: Operating Systems Design

Interrupt Vector lable

Table set up by OS kernel; pointers to code to run on
different events

Processor Interrupt
Register Vector

................................. hand|eTimer|nterrupt() {

}

................................. hand|eDivideByZero() {

}

................................. handIeSystemCaII() {

}

CS423: Operating Systems Design

Interrupt Stack I

« Per-processor, located in kernel (not user) memory
« Fan fact! Usually a process/thread has both a kernel
and user stack

e Why can’t the interrupt handler run on the
stack of the interrupted user process?

CS423: Operating Systems Design

Interrupt Stack

User Stack

Kernel Stack

CS423: Operating Systems Design

-

Running

Ready to Run

Proc2

Proci

Proc2

Main

Proci

Main

User CPU
State

Waiting for 1/0

Syscall

Proc2

ProcT

Main

|/0 Driver
Top Half

Syscall
Handler

User CPU
State

Hardware Interrupts

- Hardware generated:

- Different I/O devices are connected to different

physical lines (pins) of an “Interrupt controller”

- Device hardware signals the corresponding line

- Interrupt controller signals the CPU (by signaling the
Interrupt pin and passing an interrupt number)

- CPU saves return address after next instruction and
jumps to corresponding interrupt handler

CS 423: Operating Systems Design

Why Hardware INTs!

CS 423: Operating Systems Design

Why Hardware INTs! I

- Hardware devices may need asynchronous and

immediate service. For example:
- Timer interrupt: Timers and time-dependent activities need
to be updated with the passage of time at precise intervals

CS 423: Operating Systems Design

Why Hardware INTs!

- Hardware devices may need asynchronous and
immediate service. For example:
- Timer interrupt: Timers and time-dependent activities need
to be updated with the passage of time at precise intervals

- Network interrupt: The network card interrupts the CPU
when data arrives from the network

- I/O device interrupt: I/O devices (such as mouse and

keyboard) issue hardware interrupts when they have input
(e.g., a new character or mouse click)

CS 423: Operating Systems Design

oo © ~ @ o ¥ F_ W ¥ T w ¥ R ¥ ¥ ¥R NHNI W
of Omm& 0% of me0mmou OM OW OW of OwWOM 0§ of OwWOW of OW Omm& of OmmA
.Ow_ 0§ o .oN 0% of oY of of of .ON 0% of o .oN OM 0§ of of om Y OW of ®
0 me& of %mOm of of OmWOm of off Omwom of o 0mwom of of OmWOm of off OmWOm 0
0 of of of off of off of ofi of off of o of off of of of of of 0m of of of 0m of ©
w %mOm Y 0m OmWOM of of %mOm of of OmWOm o 0m %wOm of of %wOm of 0m w
FON0moN0moNo@oN0woN0mONOWONO®ONOWONOWOWOWONOWONOWONF
0 meoN of OWWOm of Ommo@ ok 0wm0m ob OWWOn off me0m 0m %mOm o
T of of of of of .oN ofl of off of of of of .ON of of of .ON 0m Y 0m .ON OW of T
> of OmWOM Y Om 0wm0m Y OR OwWOB of off OmWOW of OB %wOm Y Om OmWOm Y OW 5l
¥ o2 of of of of of off of off off 0% off o2 off off of off of 0m of 0m of 0% of ¥
- OWWON of %mOm ol Omm& off %mOm ok OWWOm ofl OWWOM OM %mOm -
MON0mOMOmoNoBONOwoNOM0N0moN0uoN0mONOmoN0m0N0momomoNM
z 0wwom o 0m 0mm0m off OWWOW off 0mm0m 0m OWWOW of 0m %mOm of OM z
a of off of off of off of ol of oh of oli of ofi of of of of of OW of OM of 0m of o
« o¢fiof off o¢fic of o%fioll of o¢foll of otfioll off o¢fo} of ovfiol «
of off of off of off of of of of o8 off o of of of of of o8 of of of of off of

B A
UUUB38L

181019

T

al
N

-
2

2 %mOm 0§ o me& of OwWOm of Omm& OM Omm0m of of Omm& of %mu
> o o} of of of o of of of of of of of of of ol 08 of 08 of of of of of of >
2 og of o o} o off of) ol off of o} o} o} =
YoN 0m ON 0m oN 0m ON 0m oN 0m oN oB om Om oN 0m oN Om ON 0m ON Om ON Ow oN d
Ed o of o 0m OM off 0m 0m ol Om of OM ol of of ¥
n ? of off of off of off of of of of of 0m of OW of o 0N0m 0w0m Y o“ of OM og @
9 og off of off Om 0m off 0m oY 0m oY OM of OW 9 B
a moNOmOM0moNOmONOmoNo@0N0momo@oN0moNOmoN0m0N0mom0moNmM
¥ 0m OW of o} 0m o@ om 0m o8 of 0m OM of of ¥
l—L % of of OW of of of ot of o@ of 0m of 0m of 0m of 0m og 0mmoN of of m &
— ¢ of ow of 0% of of of of of of of OM of Omm& 0% of 0% of of of OM of oy ¢
- m % of off Y] of of of OM OWm o9 0 of 0m 0m I

1
2
3
<
5
-]
7
8
=]

10

Rl

12

13

14

15

16
7
8
=]

2

peal

2

p<]

24

25

-
00

Systems Desi

Ing

Operat

@R 98

oo © ~ @ o ¥ F_ W ¥ T w ¥ R ¥ ¥ ¥R NHNI W
of Omm& 0% of me0mmou OM OW OW of OwWOM 0§ of OwWOW of OW Omm& of OmmA
.Ow_ 0§ o .oN 0% of oY of of of .ON 0% of o .oN OM 0§ of of om Y OW of ®
0 me& of %mOm of of OmWOm of off Omwom of o 0mwom of of OmWOm of off OmWOm 0
0 of of of off of off of ofi of off of o of off of of of of of 0m of of of 0m of ©
w %mOm Y 0m OmWOM of of %mOm of of OmWOm o 0m %wOm of of %wOm of 0m w
FON0moN0moNo@oN0woN0mONOWONO®ONOWONOWOWOWONOWONOWONF
0 meoN of OWWOm of Ommo@ ok 0wm0m ob OWWOn off me0m 0m %mOm o
T of of of of of .oN ofl of off of of of of .ON of of of .ON 0m Y 0m .ON OW of T
> of OmWOM Y Om 0wm0m Y OR OwWOB of off OmWOW of OB %wOm Y Om OmWOm Y OW 5l
¥ o2 of of of of of off of off off 0% off o2 off off of off of 0m of 0m of 0% of ¥
- OWWON of %mOm ol Omm& off %mOm ok OWWOm ofl OWWOM OM %mOm -
MON0mOMOmoNoBONOwoNOM0N0moN0uoN0mONOmoN0m0N0momomoNM
z 0wwom o 0m 0mm0m off OWWOW off 0mm0m 0m OWWOW of 0m %mOm of OM z
a of off of off of off of ol of oh of oli of ofi of of of of of OW of OM of 0m of o
« o¢fiof off o¢fic of o%fioll of o¢foll of otfioll off o¢fo} of ovfiol «

of off of off of off of of of of o8 off o of of of of of o8 of of of of off of

B A
UUUB38L

181019

T

al
N

-
2

2 %mOm 0§ o me& of OwWOm of Omm& OM Omm0m of of Omm& of %mu
> o o} of of of o of of of of of of of of of ol 08 of 08 of of of of of of >
2 og of o o} o off of) ol off of o} o} o} =
YoN 0m ON 0m oN 0m ON 0m oN 0m oN oB om Om oN 0m oN Om ON 0m ON Om ON Ow oN d
Ed o of o OM OM off 0m 0m ol Om of OM ol of of ¥
n ? of off of off of off of of of of of 0m of OW of o 0N0m 0w0m Y o“ of OM og @
9 og off of off Om 0m off 0m oY 0m oY OM of OW 9 B
a moNOmOM0moNOmONOmoNo@0N0momo@oN0moNOmoN0m0N0mom0moNmM
¥ 0m OW of o} 0m o@ om 0m o8 of 0m of of of Y
l—L % of of OW of of of ot of o@ of 0m of 0m of 0m of 0m of 0mmoN m &
— ¢ of ow of 0% of of of of of of of OM of Omm& 0% of 0% of of of of of o' ¥
- m % of off Y] of of of OM OWm o9 0¥ oY 0m 0m I

1
2
3
<
5
-]
7
8
=]

10

Rl

12

13

14

15

16
7
8
=]

2

peal

p<]

24

25

-
00

Systems Desi

Ing

Operat

@R 98

S 2
3)]
w8 S 5 &
c > L E NS, -
Q= v Y U =
w9 C C c 3
= > I
T 4 o§ -3
) n
4+ _W G _II% _Ib..na
B <O O = © = w
2 = v £ 4 ©
O = 8 C - =
Lh + -
C c
- — —i
O o¢fiof «
N % -
oNmeu
c .
D i 2
— ONY
n OWM
m of ¥
e !
Omm%
VA onm -
L1 m of ¥ :
b p o :
3 12
o8 0mow o%oN 0% of 09 of 0% of o2 of oz' ¥ s
OM 0mm o} o? o9 OM OW Ty m
M oe g ow @ r ® 2 8 F N8 8 & 4 o)
o
3

A Note on Multicore

CS 423: Operating Systems Design

A Note on Multicore

- How are interrupts handled on multicore machines?

CS 423: Operating Systems Design

A Note on Multicore

- How are interrupts handled on multicore machines?

- On x86 systems each CPU gets its own local Advanced
Programmable Interrupt Controller (APIC). They are wired
in @ way that allows routing device interrupts to any
selected local APIC.

- The OS can program the APICs to determine which
interrupts get routed to which CPUs.

- The default (unless OS states otherwise) is to route all
interrupts to processor 0O

CS 423: Operating Systems Design

Instruction Cycle I

How does interrupt handling change the instruction cycle?

Fetch next Execute
instruction Instruction

HALT

CS 423: Operating Systems Design

Instruction Cycle w/ INTs | [[

How does interrupt handling change the instruction cycle?

Fetch Stage Execute Stage Interrupt Stage

interrupts
disabled

Check for
INT, init INT
handler

Fetch next Execute

START —Pp-i : :
instruction Instruction

HALT

CS 423: Operating Systems Design

Hardware

A

Device controller or other
hardware issues an interrupt.

Processor finishes execution
of current instruction.

Processor signals
acknowledgment of interrupt.

Processor pushes PSW and
PC onto control stack.

Processor loads new PC value
based on interrupt.

CS 423: Operating Systems Design

Software

A
r —

Save remainder of state
information.

Process interrupt.

Restore process state
information.

Restore old PSW and PC.

Program Status Word (PSW) contains
interrupt masks, privilege states, etc.

Other Interrupts

= Software Interrupts:
- Interrupts caused by the execution of a software

Instruction:

- INT <interrupt number>
- Used by the system call interrupt()

- Initiated by the

= Cause current p
transfers contro

‘unning (user level) process
rocessing to be interrupted and

to the corresponding interrupt

handler in the kernel

CS 423: Operating Systems Design

Other Interrupts

= Exceptions
- Initiated by processor hardware itself

- Example: divide by zero

- Like a software interrupt, they cause a transfer
of control to the kernel to handle the
exception

CS 423: Operating Systems Design

I hey're all Interrupts

HW -> CPU -> Kernel: Classic HW Interrupt

* User -> Kernel: SW Interrupt

CPU -> Kernel: Exception

* Interrupt Handlers used in all 3 scenarios

CS423: Operating Systems Design

INTs, Priorities, & Blocking | [

CS 423: Operating Systems Design

INTs, Priorities, & Blocking | [

 Interrupts (as the name suggests) have the
highest priority (compared to user and kernel

threads) and therefore run first
- What are the implications on regular program
execution?

CS 423: Operating Systems Design

INTs, Priorities, & Blocking

 Interrupts (as the name suggests) have the
highest priority (compared to user and kernel

threads) and therefore run first

- What are the implications on regular program
execution?
- Must keep interrupt code short in order not to keep

other processing stopped for a long time
- Cannot block (regular processing does not resume until
interrupt returns, so if the interrupt blocks in the middle

the system “hangs”)

CS 423: Operating Systems Design

INTs, Priorities, & Blocking | [

CS 423: Operating Systems Design

INTs, Priorities, & Blocking | [

= Can an interrupt handler use malloc()?

CS 423: Operating Systems Design

INTs, Priorities, & Blocking | [

= Can an interrupt handler use malloc()?
- Can an interrupt handler write data to disk?

CS 423: Operating Systems Design

INTs, Priorities, & Blocking | [

= Can an interrupt handler use malloc()?
- Can an interrupt handler write data to disk?

= Can an interrupt handler use busy wait?
- E.G. —while (!event) loop;

CS 423: Operating Systems Design

Interrupt Masking

* |Interrupt handler runs with interrupts off
— Re-enabled when interrupt completes

* OS kernel can also turn interrupts off
— Eg., when determining the next process/thread to run

CS423: Operating Systems Design

Interrupt Handlers

Designing an Interrupt Handler (Bottom Half):

= Since the interrupt handler must be minimal, all other
processing related to the event that caused the

interrupt must be deferred

- Example:
- Network interrupt causes packet to be copied from network card
- Other processing on the packet should be deferred until its time
comes

= The deferred portion of interrupt processing is called
the “"Bottom Half”

CS 423: Operating Systems Design

soft_irg's

= 32 handlers that must be statically defined in the Linux
kernel.

= A hardware interrupt (before returning) uses raise_softirqg()
to mark that a given soft_irg must execute the bottom half

- At a later time, when scheduling permits, the marked

soft_irg handler is executed

- When a hardware interrupt is finished
- When a process makes a system call
- When a new process is scheduled

CS 423: Operating Systems Design

soft_irg types

. HI_SOFTIRQ
. TIMER_SOFTIRQ

. NET_TX_SOFTRQ
. NET_RX_SOFTIRQ
. BLOCK_SOFTIRQ

+ TASKLET SOFTIRQ
. SCHED_SOFTIRQ

CS 423: Operating Systems Design

soft_irg types

+ HI_SOFTIRQ
. TIMER_SOFTIRQ

. NET_TX_SOFTRQ
. NET_RX_SOFTIRQ
. BLOCK_SOFTIRQ

+ TASKLET SOFTIRQ
. SCHED_SOFTIRQ

CS 423: Operating Systems Design

lask let J(

- Bottom halves multiplexed on top of soft_irg’s

= Scheduled using

- tasklet_schedule()
- tasklet_hi_schedule()

= Same tasklet invocations are serialized

« Tasklets can be created or removed
dynamically

= Cannot sleep (cannot save their context)

CS 423: Operating Systems Design

Work Queues

- Work deferred to its own thread

Can be scheduled together with other threads according to
priorities set by a scheduling policy

= Associated with its thread control block and hence can block

(and save context)
- DECLARE_WORK(nhame, void (*func)(void *), void *data);

- INIT_WORK(struct work_struct *work, void (*func)(void *), void *data);
- schedule_work(&work);

CS 423: Operating Systems Design

