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Goals for Today

e | earning Objectives:
* Understand the role and types of of Interrupts
 Announcements:
« C4 Week 2 Summaries due today! Week 3 is out.
 MPO is available on Compass! Due Jan 29
« HWO is available on Compass! Due Jan 29

Reminder: Please put away
devices at the start of class
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What's a ‘real’ CPU!

What’s the STATE of a real CPU?

Program instructions
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The Context Switch
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Process Control Block

The state for processes that are not running on the CPU are
maintained in the Process Control Block (PCB) data structure
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Where We Are: [

Last class, we discussed how context switches allow a

single CPU to handle multiple tasks:
What’s missing from this picture?

“Virtual” “Virtual” . “Virtual”
CPU CPU CPU
\ J
Context Switching !
+ Scheduling The Hardware
(CPU)
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Where We Are;

Interrupts to drive scheduling decisions!

Interrupt handlers are also tasks that share the CPU.

R e—
.
é é | Interrupt

“Virtual” “Virtual” | | “Virtual” Handler |1~
CPU CPU CPU
\ J
Context Switching !
+ Scheduling The Hardware
(CPU) External
Devices
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C T X Switch: Interrupt
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Stack Stack
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SE Segment egmen Segment
Offset Offset
rogram rogram
Counter Counter
v
Stack —

v
Stack —

Pointer

Pointer
Program instructions Stack Program instructions Stack
Save PC on thread stack Handler _
Jump to Interrupt handler - Save thread state in thread control block
/’ (SP, registers, segment pointers, ...)
- Handle Interrupt
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Thread - Load thread state from control block Thread
Control - Pop PC from thread stack (return from handler) Control
- Resume prior task
Block Block
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Can also CTX Switch from Yield

Registers Registers
Code < Code
SE g:;::ent Segment gfa.agc.:ent
Offset Offset
rogram rogram
Counter Counter
v v
Stack — Stack — |
Pointer Pointer
Program instructions Stack Program instructions Stack
Save PC on thread stack yield() _
Jump to yield() function - Save thread state in thread control block
/’ (SP, registers, segment pointers, ...)
- Choose next thread
¥ - Load thread state from control block o /—\
Thread - Pop PC from thread stack (return from handler) Thread
Control Control
Block Block
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How do we take interrupts safely??

e Interrupt vector
* Where the processor looks for a handler
 Limited number of entry points into kernel
e Atomic transfer of control
 Single instruction to change:
e Program counter
« Stack pointer
« Memory protection
« Kernel/user mode
e Transparent restartable execution
« User program does not know interrupt occurred
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Interrupt Vector lable

Table set up by OS kernel; pointers to code to run on
different events

Processor Interrupt
Register Vector

................................. hand|eTimer|nterrupt() {

}

................................. hand|eDivideByZero() {

}

................................. handIeSystemCaII() {

}
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Interrupt Stack I

« Per-processor, located in kernel (not user) memory
« Fan fact! Usually a process/thread has both a kernel
and user stack

e Why can’t the interrupt handler run on the
stack of the interrupted user process?
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Interrupt Stack

User Stack

Kernel Stack
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Hardware Interrupts

- Hardware generated:

- Different I/O devices are connected to different

physical lines (pins) of an “Interrupt controller”

- Device hardware signals the corresponding line

- Interrupt controller signals the CPU (by signaling the
Interrupt pin and passing an interrupt number)

- CPU saves return address after next instruction and
jumps to corresponding interrupt handler
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Why Hardware INTs!
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Why Hardware INTs! I

- Hardware devices may need asynchronous and

immediate service. For example:
- Timer interrupt: Timers and time-dependent activities need
to be updated with the passage of time at precise intervals
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Why Hardware INTs!

- Hardware devices may need asynchronous and
immediate service. For example:
- Timer interrupt: Timers and time-dependent activities need
to be updated with the passage of time at precise intervals

- Network interrupt: The network card interrupts the CPU
when data arrives from the network

- I/O device interrupt: I/O devices (such as mouse and

keyboard) issue hardware interrupts when they have input
(e.g., a new character or mouse click)
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A Note on Multicore
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A Note on Multicore

- How are interrupts handled on multicore machines?
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A Note on Multicore

- How are interrupts handled on multicore machines?

- On x86 systems each CPU gets its own local Advanced
Programmable Interrupt Controller (APIC). They are wired
in @ way that allows routing device interrupts to any
selected local APIC.

- The OS can program the APICs to determine which
interrupts get routed to which CPUs.

- The default (unless OS states otherwise) is to route all
interrupts to processor 0O
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Instruction Cycle I

How does interrupt handling change the instruction cycle?

Fetch next Execute
instruction Instruction

HALT
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Instruction Cycle w/ INTs | [[

How does interrupt handling change the instruction cycle?

Fetch Stage Execute Stage Interrupt Stage

interrupts
disabled

Check for
INT, init INT
handler

Fetch next Execute

START —Pp-i : :
instruction Instruction

HALT
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Hardware

A

Device controller or other
hardware issues an interrupt.

Processor finishes execution
of current instruction.

Processor signals
acknowledgment of interrupt.

Processor pushes PSW and
PC onto control stack.

Processor loads new PC value
based on interrupt.
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Software

A
r —

Save remainder of state
information.

Process interrupt.

Restore process state
information.

Restore old PSW and PC.

Program Status Word (PSW) contains
interrupt masks, privilege states, etc.




Other Interrupts

= Software Interrupts:
- Interrupts caused by the execution of a software

Instruction:

- INT <interrupt number>
- Used by the system call interrupt()

- Initiated by the

= Cause current p
transfers contro

‘unning (user level) process
rocessing to be interrupted and

to the corresponding interrupt

handler in the kernel
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Other Interrupts

= Exceptions
- Initiated by processor hardware itself

- Example: divide by zero

- Like a software interrupt, they cause a transfer
of control to the kernel to handle the
exception
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I hey're all Interrupts

HW -> CPU -> Kernel: Classic HW Interrupt

* User -> Kernel: SW Interrupt

CPU -> Kernel: Exception

* Interrupt Handlers used in all 3 scenarios
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INTs, Priorities, & Blocking | [

CS 423: Operating Systems Design



INTs, Priorities, & Blocking | [

 Interrupts (as the name suggests) have the
highest priority (compared to user and kernel

threads) and therefore run first
- What are the implications on regular program
execution?
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INTs, Priorities, & Blocking

 Interrupts (as the name suggests) have the
highest priority (compared to user and kernel

threads) and therefore run first

- What are the implications on regular program
execution?
- Must keep interrupt code short in order not to keep

other processing stopped for a long time
- Cannot block (regular processing does not resume until
interrupt returns, so if the interrupt blocks in the middle

the system “hangs”)
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INTs, Priorities, & Blocking | [
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INTs, Priorities, & Blocking | [

= Can an interrupt handler use malloc()?
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INTs, Priorities, & Blocking | [

= Can an interrupt handler use malloc()?
- Can an interrupt handler write data to disk?

CS 423: Operating Systems Design



INTs, Priorities, & Blocking | [

= Can an interrupt handler use malloc()?
- Can an interrupt handler write data to disk?

= Can an interrupt handler use busy wait?
- E.G. —while (!event) loop;
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Interrupt Masking

* |Interrupt handler runs with interrupts off
— Re-enabled when interrupt completes

* OS kernel can also turn interrupts off
— Eg., when determining the next process/thread to run
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Interrupt Handlers

Designing an Interrupt Handler (Bottom Half):

= Since the interrupt handler must be minimal, all other
processing related to the event that caused the

interrupt must be deferred

- Example:
- Network interrupt causes packet to be copied from network card
- Other processing on the packet should be deferred until its time
comes

= The deferred portion of interrupt processing is called
the “"Bottom Half”
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soft_irg's

= 32 handlers that must be statically defined in the Linux
kernel.

= A hardware interrupt (before returning) uses raise_softirqg()
to mark that a given soft_irg must execute the bottom half

- At a later time, when scheduling permits, the marked

soft_irg handler is executed

- When a hardware interrupt is finished
- When a process makes a system call
- When a new process is scheduled
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soft_irg types

. HI_SOFTIRQ
. TIMER_SOFTIRQ

. NET_TX_SOFTRQ
. NET_RX_SOFTIRQ
. BLOCK_SOFTIRQ

+ TASKLET SOFTIRQ
. SCHED_SOFTIRQ
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soft_irg types

+ HI_SOFTIRQ
. TIMER_SOFTIRQ

. NET_TX_SOFTRQ
. NET_RX_SOFTIRQ
. BLOCK_SOFTIRQ

+ TASKLET SOFTIRQ
. SCHED_SOFTIRQ
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lask let J(

- Bottom halves multiplexed on top of soft_irg’s

= Scheduled using

- tasklet_schedule()
- tasklet_hi_schedule()

= Same tasklet invocations are serialized

« Tasklets can be created or removed
dynamically

= Cannot sleep (cannot save their context)
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Work Queues

- Work deferred to its own thread

Can be scheduled together with other threads according to
priorities set by a scheduling policy

= Associated with its thread control block and hence can block

(and save context)
- DECLARE_WORK(nhame, void (*func)(void *), void *data);

- INIT_WORK(struct work_struct *work, void (*func)(void *), void *data);
- schedule_work(&work);
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