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CS 423  
Operating System Design: 
Far too much information 

about interrupts
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• Learning Objectives: 
• Understand the role and types of of Interrupts 

• Announcements: 
• C4 Week 2 Summaries due today! Week 3 is out.  
• MP0 is available on Compass! Due Jan 29
• HW0 is available on Compass! Due Jan 29

Goals for Today

Reminder: Please put away 
devices at the start of class
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What’s a ‘real’ CPU?
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The Context Switch
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Process Control Block
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The state for processes that are not running on the CPU are 
maintained in the Process Control Block (PCB) data structure

Updated during 
context switch

An alternate PCB diagram
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Where We Are:
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Last class, we discussed how context switches allow a 
single CPU to handle multiple tasks:

What’s missing from this picture?
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Where We Are:
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Interrupts to drive scheduling decisions!

Interrupt handlers are also tasks that share the CPU.
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CTX Switch: Interrupt
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How do we take interrupts safely??

• Interrupt vector 
• Where the processor looks for a handler 
• Limited number of entry points into kernel 

• Atomic transfer of control 
• Single instruction to change:  

• Program counter 
• Stack pointer 
• Memory protection 
• Kernel/user mode 

• Transparent restartable execution 
• User program does not know interrupt occurred

10



CS423: Operating Systems Design

Interrupt Vector Table
Table set up by OS kernel; pointers to code to run on 

different events 
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h a n d l e T i m e r I n t e r r u p t ( )  {
 . . .
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h a n d l e D i v i d e B y Z e r o ( )  {
 . . .
}

h a n d l e S y s t e m C a l l ( )  {
 . . .
}
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Interrupt Stack
• Per-processor, located in kernel (not user) memory 

• Fan fact! Usually a process/thread has both a kernel 
and user stack 

• Why can’t the interrupt handler run on the 
stack of the interrupted user process? 

12
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Interrupt Stack
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Hardware Interrupts
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■ Hardware generated: 
■ Different I/O devices are connected to different 

physical lines (pins) of an “Interrupt controller” 
■ Device hardware signals the corresponding line 
■ Interrupt controller signals the CPU (by signaling the 

Interrupt pin and passing an interrupt number) 
■ CPU saves return address after next instruction and 

jumps to corresponding interrupt handler 
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Why Hardware INTs?
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Why Hardware INTs?

15

■ Hardware devices may need asynchronous and 
immediate service. For example:
■ Timer interrupt: Timers and time-dependent activities need 

to be updated with the passage of time at precise intervals
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Why Hardware INTs?
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■ Hardware devices may need asynchronous and 
immediate service. For example:
■ Timer interrupt: Timers and time-dependent activities need 

to be updated with the passage of time at precise intervals
■ Network interrupt: The network card interrupts the CPU 

when data arrives from the network
■ I/O device interrupt: I/O devices (such as mouse and 

keyboard) issue hardware interrupts when they have input 
(e.g., a new character or mouse click)
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Ex: Itanium 2 Pinout

16



CS 423: Operating Systems Design

Ex: Itanium 2 Pinout
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LINTx — lines/pins for 
hardware interrupts. 

In this case… 

LINT0 — line for 
unmaskable interrupts 

LINT1 — line for 
maskable interrupts

Ex: Itanium 2 Pinout
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A Note on Multicore
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A Note on Multicore
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■ How are interrupts handled on multicore machines?
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A Note on Multicore
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■ How are interrupts handled on multicore machines?
■ On x86 systems each CPU gets its own local Advanced 

Programmable Interrupt Controller (APIC). They are wired 
in a way that allows routing device interrupts to any 
selected local APIC.

■ The OS can program the APICs to determine which 
interrupts get routed to which CPUs.

■ The default (unless OS states otherwise) is to route all 
interrupts to processor 0
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Instruction Cycle
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How does interrupt handling change the instruction cycle?



CS 423: Operating Systems Design

Instruction Cycle w/ INTs
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Processing HW INT’s
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Hardware

Device controller or other 
hardware issues an interrupt.

Processor finishes execution 
of current instruction.

P r o c e s s o r s i g n a l s 
acknowledgment of interrupt.

Processor pushes PSW and 
PC onto control stack.

Software

Save remainder of s ta te 
information.

Process interrupt.

R e s t o r e p r o c e s s s t a t e 
information.

Restore old PSW and PC.

Processor loads new PC value 
based on interrupt.

Program Status Word (PSW) contains 
interrupt masks, privilege states, etc.
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Other Interrupts
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■ Software Interrupts: 
■ Interrupts caused by the execution of a software 

instruction: 
■ INT <interrupt_number>

■ Used by the system call interrupt()
■ Initiated by the running (user level) process 
■ Cause current processing to be interrupted and 

transfers control to the corresponding interrupt 
handler in the kernel
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Other Interrupts
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■ Exceptions 
■ Initiated by processor hardware itself 
■ Example: divide by zero 

■ Like a software interrupt, they cause a transfer 
of control to the kernel to handle the 
exception
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They’re all interrupts
• HW -> CPU -> Kernel:  Classic HW Interrupt 

• User -> Kernel: SW Interrupt

• CPU -> Kernel: Exception

• Interrupt Handlers used in all 3 scenarios

25
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INTs, Priorities, & Blocking
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INTs, Priorities, & Blocking
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■ Interrupts (as the name suggests) have the 
highest priority (compared to user and kernel 
threads) and therefore run first
■ What are the implications on regular program 

execution?
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INTs, Priorities, & Blocking
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■ Interrupts (as the name suggests) have the 
highest priority (compared to user and kernel 
threads) and therefore run first
■ What are the implications on regular program 

execution?
■ Must keep interrupt code short in order not to keep 

other processing stopped for a long time
■ Cannot block (regular processing does not resume until 

interrupt returns, so if the interrupt blocks in the middle 
the system “hangs”) 
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INTs, Priorities, & Blocking
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INTs, Priorities, & Blocking
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■ Can an interrupt handler use malloc()?
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INTs, Priorities, & Blocking
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■ Can an interrupt handler use malloc()?
■ Can an interrupt handler write data to disk?



CS 423: Operating Systems Design

INTs, Priorities, & Blocking
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■ Can an interrupt handler use malloc()?
■ Can an interrupt handler write data to disk?
■ Can an interrupt handler use busy wait? 

■ E.G. — while (!event) loop; 
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Interrupt Masking
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•  Interrupt	handler	runs	with	interrupts	off	
–  Re-enabled	when	interrupt	completes	

•  OS	kernel	can	also	turn	interrupts	off	
–  Eg.,	when	determining	the	next	process/thread	to	run	
– On	x86	

•  CLI:	disable	interrrupts	
•  STI:	enable	interrupts	
•  Only	applies	to	the	current	CPU	(on	a	mulJcore)	

•  We’ll	need	this	to	implement	synchronizaJon	in	
chapter	5	
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Interrupt Handlers
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Designing an Interrupt Handler (Bottom Half): 
■ Since the interrupt handler must be minimal, all other 

processing related to the event that caused the 
interrupt must be deferred 
■ Example:  

■ Network interrupt causes packet to be copied from network card 
■ Other processing on the packet should be deferred until its time 

comes 

■ The deferred portion of interrupt processing is called 
the “Bottom Half” 
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soft_irq’s
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■ 32 handlers that must be statically defined in the Linux 
kernel.  

■ A hardware interrupt (before returning) uses raise_softirq() 
to mark that a given soft_irq must execute the bottom half 

■ At a later time, when scheduling permits, the marked 
soft_irq handler is executed 
■ When a hardware interrupt is finished 
■ When a process makes a system call 
■ When a new process is scheduled
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soft_irq types
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■ HI_SOFTIRQ 
■ TIMER_SOFTIRQ 
■ NET_TX_SOFTRQ 
■ NET_RX_SOFTIRQ 
■ BLOCK_SOFTIRQ 
■ TASKLET_SOFTIRQ 
■ SCHED_SOFTIRQ 
■ …
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soft_irq types
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■ HI_SOFTIRQ 
■ TIMER_SOFTIRQ 
■ NET_TX_SOFTRQ 
■ NET_RX_SOFTIRQ 
■ BLOCK_SOFTIRQ 
■ TASKLET_SOFTIRQ 
■ SCHED_SOFTIRQ 
■ …
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Task let
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■ Bottom halves multiplexed on top of soft_irq’s 
■ Scheduled using 

■ tasklet_schedule()  
■ tasklet_hi_schedule() 

■ Same tasklet invocations are serialized 
■ Tasklets can be created or removed 

dynamically 
■ Cannot sleep (cannot save their context)
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Work Queues
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■ Work deferred to its own thread 
■ Can be scheduled together with other threads according to 

priorities set by a scheduling policy 
■ Associated with its thread control block and hence can block 

(and save context) 
■ DECLARE_WORK(name, void (*func)(void *), void *data); 
■ INIT_WORK(struct work_struct *work, void (*func)(void *), void *data); 
■ schedule_work(&work);


