
CS423: Operating Systems Design

Professor Adam Bates
Fall 2018

CS 423  
Operating System Design: 
Far too much information

about interrupts

CS 423: Operating Systems Design 2

• Learning Objectives:
• Understand the role and types of of Interrupts

• Announcements:
• C4 Week 2 Summaries due today! Week 3 is out.
• MP0 is available on Compass! Due Jan 29
• HW0 is available on Compass! Due Jan 29

Goals for Today

Reminder: Please put away
devices at the start of class

CS 423: Operating Systems Design

What’s a ‘real’ CPU?

3

Program
Counter

Program instructions

 Code
Segment

Offset

Heap

Data
Segment

Offset

Operand

Data
Operand

Current
Instruction

OpCode

Stack
Segment

Offset

Stack
Pointer

Stack

RegistersWhat’s the STATE of a real CPU?

CS 423: Operating Systems Design

The Context Switch

4

Program
Counter

Program instructions

 Code
Segment

Offset

Heap

Data
Segment

Operand

Data
Operand

OpCode

Stack
Segment

Stack
Pointer

Registers

Stack

Program
Counter

Program instructions

 Code
Segment

Offset

Heap

Data
Segment

Operand

Data
Operand

OpCode

Stack
Segment

Stack
Pointer

Stack

Save State
(Context)

Load State
(Context)

Registers

CS 423: Operating Systems Design

Process Control Block

5

The state for processes that are not running on the CPU are
maintained in the Process Control Block (PCB) data structure

Updated during
context switch

An alternate PCB diagram

CS 423: Operating Systems Design

Where We Are:

6

The Hardware
(CPU)

“Virtual”
CPU

“Virtual”
CPU

“Virtual”
CPU

…

Context Switching
+ Scheduling

Last class, we discussed how context switches allow a
single CPU to handle multiple tasks:

What’s missing from this picture?

CS 423: Operating Systems Design

Where We Are:

7

The Hardware
(CPU)

“Virtual”
CPU

…

Context Switching
+ Scheduling

“Virtual”
CPU

“Virtual”
CPU

External
Devices

Interrupt
Handler

Interrupt
Handler

Interrupt
Handler

Interrupts to drive scheduling decisions!

Interrupt handlers are also tasks that share the CPU.

CS 423: Operating Systems Design

CTX Switch: Interrupt

8

Program
Counter

Program instructions

 Code
Segment

Offset

Stack
Segment

Stack
Pointer

Stack

Program
Counter

Program instructions

 Code
Segment

Offset

Stack
Segment

Stack
Pointer

Stack

Save PC on thread stack
Jump to Interrupt handler

Handler
- Save thread state in thread control block
 (SP, registers, segment pointers, …)
- Handle Interrupt
- Choose next thread
- Load thread state from control block
- Pop PC from thread stack (return from handler)
- Resume prior task

Thread
Control
Block

Thread
Control
Block

Registers Registers

CS 423: Operating Systems Design 9

Program
Counter

Program instructions

 Code
Segment

Offset

Stack
Segment

Stack
Pointer

Registers

Stack

Program
Counter

Program instructions

 Code
Segment

Offset

Stack
Segment

Stack
Pointer

Registers

Stack

Save PC on thread stack
Jump to yield() function

yield()
- Save thread state in thread control block
 (SP, registers, segment pointers, …)
- Choose next thread
- Load thread state from control block
- Pop PC from thread stack (return from handler) Thread

Control
Block

Thread
Control
Block

Can also CTX Switch from Yield

CS423: Operating Systems Design

How do we take interrupts safely??

• Interrupt vector
• Where the processor looks for a handler
• Limited number of entry points into kernel

• Atomic transfer of control
• Single instruction to change:

• Program counter
• Stack pointer
• Memory protection
• Kernel/user mode

• Transparent restartable execution
• User program does not know interrupt occurred

10

CS423: Operating Systems Design

Interrupt Vector Table
Table set up by OS kernel; pointers to code to run on

different events

11

Interrupt
Vector

Processor
Register

h a n d l e T i m e r I n t e r r u p t () {
 . . .
}

h a n d l e D i v i d e B y Z e r o () {
 . . .
}

h a n d l e S y s t e m C a l l () {
 . . .
}

CS423: Operating Systems Design

Interrupt Stack
• Per-processor, located in kernel (not user) memory

• Fan fact! Usually a process/thread has both a kernel
and user stack

• Why can’t the interrupt handler run on the
stack of the interrupted user process?

12

CS423: Operating Systems Design

Interrupt Stack

13

User Stack

Kernel Stack

Proc2

Running

Proc1

Main

Proc2

Ready to Run

Proc1

Main

User CPU
State

User CPU
State

Syscall
Handler

I/O Driver
Top Half

Proc2

Syscall

Waiting for I/O

Proc1

Main

CS 423: Operating Systems Design

Hardware Interrupts

14

■ Hardware generated:
■ Different I/O devices are connected to different

physical lines (pins) of an “Interrupt controller”
■ Device hardware signals the corresponding line
■ Interrupt controller signals the CPU (by signaling the

Interrupt pin and passing an interrupt number)
■ CPU saves return address after next instruction and

jumps to corresponding interrupt handler

CS 423: Operating Systems Design

Why Hardware INTs?

15

CS 423: Operating Systems Design

Why Hardware INTs?

15

■ Hardware devices may need asynchronous and
immediate service. For example:
■ Timer interrupt: Timers and time-dependent activities need

to be updated with the passage of time at precise intervals

CS 423: Operating Systems Design

Why Hardware INTs?

15

■ Hardware devices may need asynchronous and
immediate service. For example:
■ Timer interrupt: Timers and time-dependent activities need

to be updated with the passage of time at precise intervals
■ Network interrupt: The network card interrupts the CPU

when data arrives from the network
■ I/O device interrupt: I/O devices (such as mouse and

keyboard) issue hardware interrupts when they have input
(e.g., a new character or mouse click)

CS 423: Operating Systems Design

Ex: Itanium 2 Pinout

16

CS 423: Operating Systems Design

Ex: Itanium 2 Pinout

17

CS 423: Operating Systems Design 18

LINTx — lines/pins for
hardware interrupts.

In this case…

LINT0 — line for
unmaskable interrupts

LINT1 — line for
maskable interrupts

Ex: Itanium 2 Pinout

CS 423: Operating Systems Design

A Note on Multicore

19

CS 423: Operating Systems Design

A Note on Multicore

19

■ How are interrupts handled on multicore machines?

CS 423: Operating Systems Design

A Note on Multicore

19

■ How are interrupts handled on multicore machines?
■ On x86 systems each CPU gets its own local Advanced

Programmable Interrupt Controller (APIC). They are wired
in a way that allows routing device interrupts to any
selected local APIC.

■ The OS can program the APICs to determine which
interrupts get routed to which CPUs.

■ The default (unless OS states otherwise) is to route all
interrupts to processor 0

CS 423: Operating Systems Design

Instruction Cycle

20

HALT

START Fetch next
instruction

Execute
Instruction

How does interrupt handling change the instruction cycle?

CS 423: Operating Systems Design

Instruction Cycle w/ INTs

21

HALT

START Fetch next
instruction

Execute
Instruction

interrupts
disabled

Check for
INT, init INT

handler

Interrupt StageExecute StageFetch Stage

How does interrupt handling change the instruction cycle?

CS 423: Operating Systems Design

Processing HW INT’s

22

Hardware

Device controller or other
hardware issues an interrupt.

Processor finishes execution
of current instruction.

P r o c e s s o r s i g n a l s
acknowledgment of interrupt.

Processor pushes PSW and
PC onto control stack.

Software

Save remainder of s ta te
information.

Process interrupt.

R e s t o r e p r o c e s s s t a t e
information.

Restore old PSW and PC.

Processor loads new PC value
based on interrupt.

Program Status Word (PSW) contains
interrupt masks, privilege states, etc.

CS 423: Operating Systems Design

Other Interrupts

23

■ Software Interrupts:
■ Interrupts caused by the execution of a software

instruction:
■ INT <interrupt_number>

■ Used by the system call interrupt()
■ Initiated by the running (user level) process
■ Cause current processing to be interrupted and

transfers control to the corresponding interrupt
handler in the kernel

CS 423: Operating Systems Design

Other Interrupts

24

■ Exceptions
■ Initiated by processor hardware itself
■ Example: divide by zero

■ Like a software interrupt, they cause a transfer
of control to the kernel to handle the
exception

CS423: Operating Systems Design

They’re all interrupts
• HW -> CPU -> Kernel: Classic HW Interrupt

• User -> Kernel: SW Interrupt

• CPU -> Kernel: Exception

• Interrupt Handlers used in all 3 scenarios

25

CS 423: Operating Systems Design

INTs, Priorities, & Blocking

26

CS 423: Operating Systems Design

INTs, Priorities, & Blocking

26

■ Interrupts (as the name suggests) have the
highest priority (compared to user and kernel
threads) and therefore run first
■ What are the implications on regular program

execution?

CS 423: Operating Systems Design

INTs, Priorities, & Blocking

26

■ Interrupts (as the name suggests) have the
highest priority (compared to user and kernel
threads) and therefore run first
■ What are the implications on regular program

execution?
■ Must keep interrupt code short in order not to keep

other processing stopped for a long time
■ Cannot block (regular processing does not resume until

interrupt returns, so if the interrupt blocks in the middle
the system “hangs”)

CS 423: Operating Systems Design

INTs, Priorities, & Blocking

27

CS 423: Operating Systems Design

INTs, Priorities, & Blocking

27

■ Can an interrupt handler use malloc()?

CS 423: Operating Systems Design

INTs, Priorities, & Blocking

27

■ Can an interrupt handler use malloc()?
■ Can an interrupt handler write data to disk?

CS 423: Operating Systems Design

INTs, Priorities, & Blocking

27

■ Can an interrupt handler use malloc()?
■ Can an interrupt handler write data to disk?
■ Can an interrupt handler use busy wait?

■ E.G. — while (!event) loop;

CS423: Operating Systems Design

Interrupt Masking

28

•  Interrupt	handler	runs	with	interrupts	off	
–  Re-enabled	when	interrupt	completes	

•  OS	kernel	can	also	turn	interrupts	off	
–  Eg.,	when	determining	the	next	process/thread	to	run	
– On	x86	

•  CLI:	disable	interrrupts	
•  STI:	enable	interrupts	
•  Only	applies	to	the	current	CPU	(on	a	mulJcore)	

•  We’ll	need	this	to	implement	synchronizaJon	in	
chapter	5	

CS 423: Operating Systems Design

Interrupt Handlers

29

Designing an Interrupt Handler (Bottom Half):
■ Since the interrupt handler must be minimal, all other

processing related to the event that caused the
interrupt must be deferred
■ Example:

■ Network interrupt causes packet to be copied from network card
■ Other processing on the packet should be deferred until its time

comes

■ The deferred portion of interrupt processing is called
the “Bottom Half”

CS 423: Operating Systems Design

soft_irq’s

30

■ 32 handlers that must be statically defined in the Linux
kernel.

■ A hardware interrupt (before returning) uses raise_softirq()
to mark that a given soft_irq must execute the bottom half

■ At a later time, when scheduling permits, the marked
soft_irq handler is executed
■ When a hardware interrupt is finished
■ When a process makes a system call
■ When a new process is scheduled

CS 423: Operating Systems Design

soft_irq types

31

■ HI_SOFTIRQ
■ TIMER_SOFTIRQ
■ NET_TX_SOFTRQ
■ NET_RX_SOFTIRQ
■ BLOCK_SOFTIRQ
■ TASKLET_SOFTIRQ
■ SCHED_SOFTIRQ
■ …

CS 423: Operating Systems Design

soft_irq types

32

■ HI_SOFTIRQ
■ TIMER_SOFTIRQ
■ NET_TX_SOFTRQ
■ NET_RX_SOFTIRQ
■ BLOCK_SOFTIRQ
■ TASKLET_SOFTIRQ
■ SCHED_SOFTIRQ
■ …

CS 423: Operating Systems Design

Task let

33

■ Bottom halves multiplexed on top of soft_irq’s
■ Scheduled using

■ tasklet_schedule()
■ tasklet_hi_schedule()

■ Same tasklet invocations are serialized
■ Tasklets can be created or removed

dynamically
■ Cannot sleep (cannot save their context)

CS 423: Operating Systems Design

Work Queues

34

■ Work deferred to its own thread
■ Can be scheduled together with other threads according to

priorities set by a scheduling policy
■ Associated with its thread control block and hence can block

(and save context)
■ DECLARE_WORK(name, void (*func)(void *), void *data);
■ INIT_WORK(struct work_struct *work, void (*func)(void *), void *data);
■ schedule_work(&work);

