HADOOP

4/15/2016

- Outline o
- : Hadoop basics
* Hadoop Distributed File System (HDFS)
* Hadoop MapReduce
9

* Hadoop YARN: Yet Another Resource Negotiator

— \ / ‘,7
N/ i@ =[a/a]a]o

Apache Hadoop Basics

'

~ * The Apache Hadoop project develops open-source software for reliable,

scalable, distributed computing

* |t allows for the distributed processing of large data sets across clusters of

computers using simple programming models

* The project includes four modules

* Hadoop Common: The common utilities that support the other Hadoop modules.

* Hadoop Distributed File System (HDFS): A distributed file system that provides high-

throughput access to application data.
* Hadoop YARN: A framework for job scheduling and cluster resource management.

* Hadoop MapReduce: A YARN-based system for parallel processing of large data sets. \/

o)
NS i@ —[a/a]a]o

- Hadoop Users

'

~ ¢ Amazon
* Google
* Facebook
* Yahoo
* Ebay

* Many more...

9
N i@ =[a/a]a]o

\/ Typical Hadoop Architecture

)
Aggregation switch
<+—» 8 gigabit
. <—» 1 gigabit
Rack SWItChA
Node Node
= =
* Typically in 2 level architecture
* Nodes are commodity PCs
* 30-40 nodes/rack
* Uplink from rack is 8 gigabit =
* Rack-internal is 1 gigabit j

) o EChED

vache Hadoop Project Man

HDFS

Adapted slides from
Dhruba Borthakur

dgeiy

o,

Goals of HDFS

'

~ ¢ Very Large Distributed File System
* 10K nodes, 100 million files, 10PB

* Assumes Commodity Hardware
* Files are replicated to handle hardware failure

* Detect failures and recover from them

* Optimized for Batch Processing
* Data locations exposed so that computations can move to where data resides

* Provides very high aggregate bandwidth

Distributed File System

'

~ ¢ Single Namespace for entire cluster

* Data Coherency
* Write-once-read-many access model

* Client can only append to existing files

* Files are broken up into blocks
* Typically 64MB block size

* Each block replicated on multiple DataNodes

* Intelligent Client
e Client can find location of blocks

* Client accesses data directly from DataNode

HDFS Architecture

HDFS Architecture
Metadata (Name, replicas, ...):
Metadatg,opé"[Namenode /home/ffoo/data, 3, ...
@ Block ops
Read Datanodes Datanodes
1 | |
= = - a Replication = -
D L] Blocks
" \ / Y,
e A4
Rack 1 Rack 2
~ Y

* Master/slave

architecture
* A single NameNode
* A number of DataNodes

* Internally, a file is split
into one or more blocks
and these blocks are
stored in a set of @

DataNodes /

N / —/[a/a]a]o

HDFS Architecture

Metadata (Name, replicas, ...): ‘

Namenode /homeffoo/data, 3, ...

NameNode

L Re, d Datanodes

Datanodes

M F'I S N O |j S % m; Replication JDj = BIDK
~ * Manages File System Namespace - \
5 : . 3 R;:; Wiite Rack 2
* Executes file system namespace operations like opening, Grent

closing, and renaming files and directories
* Maps a file name to a set of blocks

* Maps a block to the DataNodes where it resides
* Cluster Configuration Management

* The existence of a single NameNode in a cluster greatly simplifies the

architecture of the system. ~

* The NameNode is the arbitrator and repository for all HDFS metadata. -/
e — N7/ / —/[a/a]a]o

'

~ ¢ Metadata in Memory

NameNode Metadata

* The entire metadata is in main memory

* No demand paging of metadata

* Types of metadata

e List of files

List of Blocks for each file

List of DataNodes for each block

* File attributes, e.g. creation time, replication factor

* A Transaction Log

* Records file creations, file deletions etc

HDFS Architecture

Metadata (Name, replicas, ...): ‘

Namenode /homeffoo/data, 3, ...

Metadata ops -

Re, d Datanodes

Datanodes

/ \ \
Om S = Replication o e =
O Jj Blocks
T \) %
Rack 1 Write Rack 2
=

'

~ o A Block Server

DataNode

* Stores data in the local file system (e.g. ext3)

* Stores metadata of a block (e.g. CRC)

* Serves data and metadata to Clients

* Block Report

HDFS Architecture

Metadata (Name, replicas, ...): ‘

Namenode /homeffoo/data, 3, ...

Metadata ops -

Re, d Datanodes

Datanodes

/ \ \
Om S = Replication o e =
O Jj Blocks
Rack 1 Write Rack 2

* Periodically sends a report of all existing blocks to the NameNode

* Facilitates Pipelining of Data

* Forwards data to other specified DataNodes

Nt

Block Placement

'

~ o Current Strategy
* One replica on local node
* Second replica on a remote rack
* Third replica on same remote rack

* Additional replicas are randomly placed

* Clients read from nearest replicas

* Would like to make this policy pluggable

Nt

Metadata ops -

Re, d Datanodes

HDFS Architecture

Namenode /homeffoo/data, 3, ...

Metadata (Name, replicas, ...): ‘

Datanodes

/ \ \
Om S = Replication o e =
O Jj Blocks
T \) V
Rack 1 Write Rack 2
=
»
L —Ja/a]a]o

HDFS Architecture

Metadata (Name, replicas, ...): ‘
Heartbeats
@ Block ops
— Read Datanodes Datanodes

= |j S % m Replication ‘D = =
~ ¢ DataNodes send hearbeat to the NameNode 0 B | [Boode
R\i1 \Write %R(kz—j
* NameNode uses heartbeats to detect DataNode Gient

failure

* A network partition can cause a subset of DataNodes to lose connectivity

with the NameNode.

* The NameNode marks DataNodes without recent Heartbeats as dead and

does not forward any new IO requests to them.

'

Data Correctness

~ o Use Checksums to validate data

e Use CRC32

* File Creation

* Client computes checksum per 512 bytes

* DataNode stores the checksum

* File access

* Client retrieves the data and checksum from DataNode

* If Validation fails, Client tries other replicas

HDFS Architecture

Metadata (Name, replicas, ...): ‘

Namenode /homeffoo/data, 3, ...

Metadata ops -

Re, d Datanodes

Datanodes

/ \ \
Om S = Replication o e =
O Jj Blocks
Rack 1 Write Rack 2
=

\—/ HDFS Architecture
Metadata (Name, replicas, ...): ‘
° ° .
i Block Replication
: Block ops
Read Datanodes

Datanodes

' \ !
Om - = Replication a8 =
| = jn Blocks

HDFS Block Replication e V

Block Size = 64MB
Replication Factor =3

Blocks

=

clouat;ra \/
2 Cilhednom

Data Pieplining

—

'

~ ¢ Client retrieves a list of DataNodes on which to place replicas of a block
* Client writes block to the first DataNode
* The first DataNode forwards the data to the next node in the Pipeline

* When all replicas are written, the Client moves on to write the next block

in file

Rebalancer

'

~ o Goal: % disk full on DataNodes should be similar

* Usually run when new DataNodes are added
* Cluster is online when Rebalancer is active
* Rebalancer is throttled to avoid network congestion

e Command line tool

Secondary NameNode

'

~ ¢ Copies Fslmage and Transaction Log from Namenode to a temporary

directory

* Merges FSImage and Transaction Log into a new FSImage in temporary

directory

* Uploads new FSImage to the NameNode

* Transaction Log on NameNode is purged

User Interface

'

~ ¢ Commads for HDFS User:
* hadoop dfs -mkdir /foodir
* hadoop dfs -cat /foodir/myfile.txt
* hadoop dfs -rm /foodir/myfile.txt

e Commands for HDFS Administrator

* hadoop dfsadmin -report

* hadoop dfsadmin -decommision datanodename

* Web Interface
* http:/ /host:port/dfshealth.jsp

D o © o

MAP REDUCE

Adapted slides from
Owen O’Malley (Yahoo!)

and

i

S = =

MapReduce

'

-~ * MapReduce is a programming model for efficient distributed computing

* It works like a Unix pipeline
* cat input | grep | sort | unig-c | cat > output
* Input | Map | Shuffle & Sort | Reduce | Output
* Efficiency from
* Streaming through data, reducing seeks
* Pipelining
* A good fit for a lot of applications

* Log processing
* Web index building &

MapReduce - Dataflow

Pre-loaded local
input data

Intermediate data
from mappers

Values exchanged
by shuffle process

Reducing process
es outputs

Qutputs stored
locally

Node 1

EErEETy

Mapping process

000

Node 2

L1Iily

Mapping proces

iine

Node 3

TELI117

Mapping process

0000

=K

Node 1

35y

Reducing process

L

Node 2

9155 T

Reducing process

L

Node 3

PPT ey

Reducing process

'

=

~/

~ =Y

N’/

R

MapReduce - Features

— * Fine grained Map and Reduce tasks

* Improved load balancing
* Faster recovery from failed tasks

* Automatic re-execution on failure
* In a large cluster, some nodes are always slow or flaky
* Framework re-executes failed tasks

* Locality optimizations
* With large data, bandwidth to data is a problem
* Map-Reduce + HDFS is a very effective solution
* Map-Reduce queries HDFS for locations of input data -/
* Map tasks are scheduled close to the inputs when possible \/

MY

@

) G liErbmp

Word Count Example
— * Mapper
* Input: value: lines of text of input

* Output: key: word, value: 1

* Reducer
* Input: key: word, value: set of counts

* Output: key: word, value: sum

* Launching program
* Defines this job
* Submits job to cluster

Word Count Dataflow

The overall MapReduce word count process

Input Splitting Mapping Shuffling Reducing Final result
Bear,1 —w» Bear, 2
Deer,1 —w» Bear, 1
Deer Bear River —— | Bear, 1
River, 1
/ Car, 1
Car,1 ———m» Car,3 | —m» Bear 2
Deer Bear River Car, 1 Car, 1 Car, 3
Car Car River ——w» Car CarRiver ——w» Car, 1 Deer, 2
Deer Car Bear River, 1 River, 2
Deer,1 —» Deer,2 ——m=
Deer, 1
Deer, 1
Deer CarBear ———» Car, 1 /
Bear, 1 River, 1 —— = River, 2
River, 1

N

-

- Word Count Mapper

-

public static class Map extends MapReduceBase implements Mapper<LongWritable,Text,Text,IntWritable> {
private static final IntWritable one = new IntWritable(1);

private Text word = new Text();

public static void map(LongWritable key, Text value, OutputCollector<Text,IntWritable> output, Reporter reporter) throws IOException {
String line = value.toString();
StringTokenizer = new StringTokenizer(line);
while(tokenizer.hasNext()) {
word.set(tokenizer.nextToken());

output.collect(word,one);

}

9
N/ i@ =[a/a]a]o

Word Count Reducer

'

/ public static class Reduce extends MapReduceBase implements
Reducer<Text,IntWritable,Text, IntWritable> {

public static void map(Text key, Iterator<IntWritable> values, OutputCollector<Text,IntWritable>
output, Reporter reporter) throws |IOException {

int sum = O;
while(values.hasNext()) {
sum += values.next().get();

}

output.collect(key, new IntWritable(sum));

Word Count Example

Jobs are controlled by configuring JobConfs
JobConfs are maps from attribute names to string values

The framework defines attributes to control how the job is executed

M«

« conf.set(“mapred.job.name”, “MyApp”);

Applications can add arbitrary values to the JobConf

7 (13

« conf.set(“my.string”, “foo”);
- conf.set(*my.integer”, 12);

JobConf is available to all tasks

Putting it all together

'

- * Create a launching program for your application

* The launching program configures:
* The Mapper and Reducer to use
* The output key and value types (input types are inferred from the InputFormat)

* The locations for your input and output

* The launching program then submits the job and typically waits for it to
complete

e

-
Putting it all together

JobConf conf = new JobConf(WordCount.class);

conf.setJobName (“wordcount”);

conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);

conf.setMapperClass(Map.class);
conf.setCombinerClass(Reduce.class);

conf.setReducer(Reduce.class);

conf.setlnputFormat(TextInputFormat.class);
Conf.setOutputFormat(TextOutputFormat.class);

FileInputFormat.setinputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

JobClient.runJob(conf);

How many Maps and Reducers

— * Maps
* Usually as many as the number of HDFS blocks being processed, this is the default
* Else the number of maps can be specified as a hint
* The number of maps can also be controlled by specifying the minimum split size
* The actual sizes of the map inputs are computed by:

* max(min(block_size,data/#maps), min_split_size

* Reducers
* Unless the amount of data being processed is small

* 0.95*num_nodes*mapred.tasktracker.tasks.maximum

J @ ¢ Q

HADOOP YARN

Adapted slides from

various online resources

YARN

'

~ ¢ Yet Another Resource Negotiator
* Remedies the scalability issues of “classic” MapReduce

* Is more of a general purpose framework of which classic MapReduce is

one application.

0
N7 i@ —[a/a]a]o

i Classic MapReduce

o~

~ o Job Tracker

* Manages cluster resources and

job scheduling

* Task Tracker

* Per-node agent

* Manage tasks

MapReduce Status -~
Job Submission ~=====~ >

Classic MapReduce Limitations

'

~ ¢ Scability
* Maximum cluster size ~4000 nodes
* Maximum concurrent tasks ~40,000
* Coarse synchronization in JobTracker
* Availability

* Failures kills all queued and running tasks

* Hard partition of resources into map and reduce slots

* |ow resource utilization

i YARN Architecture

'

~ * Scability
* Cluster 6,000-10,000 machines

* 100,000 concurrent tasks

* 10,000 concurrent jobs

MapReduce Status ————#
Job Submission ------ -

Node Status ——-— -
Resource Reguest ---..-.-.. -

YARN

'

~ ¢ Splits up the two major functions of JobTracker
* Global Resource Manager - Cluster resource management

* Application Master - Job scheduling and monitoring (one per application). The Application
Master negotiates resource containers from the Scheduler, tracking their status and

monitoring for progress. Application Master itself runs as a normal container.

* Tasktracker

* NodeManager (NM) - A new per-node slave is responsible for launching the applications’
containers, monitoring their resource usage (cpu, memory, disk, network) and reporting to

the Resource Manager. ®)

* YARN maintains compatibility with existing MapReduce applications and users. /

9 |
N/ i@ =[a/a]a]o

Classic MapReduce vs YARN

'

~ ¢ Fault Tolerance and Availability

* Resource Manager
* No single point of failure — state saved in ZooKeeper

* Application Masters are restarted automatically on RM restart

* Application Master
* Optional failover via application-specific checkpoint

* MapReduce applications pick up where they left off via state saved in HDFS
* Compatibility
* Protocols are wire-compatible

* Old clients can talk to new servers

* Rolling upgrades

Classic MapReduce vs YARN

'

~ * Support for programming paradigms other than MapReduce
* Tez — Generic framework to run a complex DAG
* HBase on YARN(HOYA)
* Machine Learning: Spark
* Graph processing: Giraph

* Real-time processing: Storm

Enabled by allowing the use of paradigm-specific application master

Run all on the same Hadoop cluster!

