
HADOOP

4/15/2016

Outline

• Hadoop basics

• Hadoop Distributed File System (HDFS)

• Hadoop MapReduce

• Hadoop YARN: Yet Another Resource Negotiator

Apache Hadoop Basics

• The Apache Hadoop project develops open-source software for reliable,

scalable, distributed computing

• It allows for the distributed processing of large data sets across clusters of

computers using simple programming models

• The project includes four modules

• Hadoop Common: The common utilities that support the other Hadoop modules.

• Hadoop Distributed File System (HDFS): A distributed file system that provides high-

throughput access to application data.

• Hadoop YARN: A framework for job scheduling and cluster resource management.

• Hadoop MapReduce: A YARN-based system for parallel processing of large data sets.

Hadoop Users

• Amazon

• Google

• Facebook

• Yahoo

• Ebay

• Many more…

Typical Hadoop Architecture

• Typically in 2 level architecture

• Nodes are commodity PCs

• 30-40 nodes/rack

• Uplink from rack is 8 gigabit

• Rack-internal is 1 gigabit

Aggregation switch

Rack switch

HDFS

Adapted slides from

Dhruba Borthakur

Apache Hadoop Project Management Committee

And various online sources

Goals of HDFS

• Very Large Distributed File System

• 10K nodes, 100 million files, 10PB

• Assumes Commodity Hardware

• Files are replicated to handle hardware failure

• Detect failures and recover from them

• Optimized for Batch Processing

• Data locations exposed so that computations can move to where data resides

• Provides very high aggregate bandwidth

Distributed File System

• Single Namespace for entire cluster

• Data Coherency

• Write-once-read-many access model

• Client can only append to existing files

• Files are broken up into blocks

• Typically 64MB block size

• Each block replicated on multiple DataNodes

• Intelligent Client

• Client can find location of blocks

• Client accesses data directly from DataNode

HDFS Architecture

• Master/slave

architecture

• A single NameNode

• A number of DataNodes

• Internally, a file is split

into one or more blocks

and these blocks are

stored in a set of

DataNodes

NameNode

• Manages File System Namespace

• Executes file system namespace operations like opening,

closing, and renaming files and directories

• Maps a file name to a set of blocks

• Maps a block to the DataNodes where it resides

• Cluster Configuration Management

• The existence of a single NameNode in a cluster greatly simplifies the

architecture of the system.

• The NameNode is the arbitrator and repository for all HDFS metadata.

NameNode Metadata

• Metadata in Memory

• The entire metadata is in main memory

• No demand paging of metadata

• Types of metadata

• List of files

• List of Blocks for each file

• List of DataNodes for each block

• File attributes, e.g. creation time, replication factor

• A Transaction Log

• Records file creations, file deletions etc

DataNode

• A Block Server

• Stores data in the local file system (e.g. ext3)

• Stores metadata of a block (e.g. CRC)

• Serves data and metadata to Clients

• Block Report

• Periodically sends a report of all existing blocks to the NameNode

• Facilitates Pipelining of Data

• Forwards data to other specified DataNodes

Block Placement

• Current Strategy

• One replica on local node

• Second replica on a remote rack

• Third replica on same remote rack

• Additional replicas are randomly placed

• Clients read from nearest replicas

• Would like to make this policy pluggable

Heartbeats

• DataNodes send hearbeat to the NameNode

• NameNode uses heartbeats to detect DataNode

failure

• A network partition can cause a subset of DataNodes to lose connectivity

with the NameNode.

• The NameNode marks DataNodes without recent Heartbeats as dead and

does not forward any new IO requests to them.

Data Correctness

• Use Checksums to validate data

• Use CRC32

• File Creation

• Client computes checksum per 512 bytes

• DataNode stores the checksum

• File access

• Client retrieves the data and checksum from DataNode

• If Validation fails, Client tries other replicas

Block Replication

Data Pieplining

• Client retrieves a list of DataNodes on which to place replicas of a block

• Client writes block to the first DataNode

• The first DataNode forwards the data to the next node in the Pipeline

• When all replicas are written, the Client moves on to write the next block

in file

Rebalancer

• Goal: % disk full on DataNodes should be similar

• Usually run when new DataNodes are added

• Cluster is online when Rebalancer is active

• Rebalancer is throttled to avoid network congestion

• Command line tool

Secondary NameNode

• Copies FsImage and Transaction Log from Namenode to a temporary

directory

• Merges FSImage and Transaction Log into a new FSImage in temporary

directory

• Uploads new FSImage to the NameNode

• Transaction Log on NameNode is purged

User Interface

• Commads for HDFS User:

• hadoop dfs -mkdir /foodir

• hadoop dfs -cat /foodir/myfile.txt

• hadoop dfs -rm /foodir/myfile.txt

• Commands for HDFS Administrator

• hadoop dfsadmin -report

• hadoop dfsadmin -decommision datanodename

• Web Interface

• http://host:port/dfshealth.jsp

MAP REDUCE

Adapted slides from

Owen O’Malley (Yahoo!)

and

Christophe Bisciglia, Aaron Kimball & Sierra Michells-Slettvet

MapReduce

• MapReduce is a programming model for efficient distributed computing

• It works like a Unix pipeline
• cat input | grep | sort | uniq -c | cat > output

• Input | Map | Shuffle & Sort | Reduce | Output

• Efficiency from

• Streaming through data, reducing seeks

• Pipelining

• A good fit for a lot of applications

• Log processing

• Web index building

MapReduce - Dataflow

MapReduce - Features

• Fine grained Map and Reduce tasks

• Improved load balancing

• Faster recovery from failed tasks

• Automatic re-execution on failure

• In a large cluster, some nodes are always slow or flaky

• Framework re-executes failed tasks

• Locality optimizations

• With large data, bandwidth to data is a problem

• Map-Reduce + HDFS is a very effective solution

• Map-Reduce queries HDFS for locations of input data

• Map tasks are scheduled close to the inputs when possible

Word Count Example

• Mapper

• Input: value: lines of text of input

• Output: key: word, value: 1

• Reducer

• Input: key: word, value: set of counts

• Output: key: word, value: sum

• Launching program

• Defines this job

• Submits job to cluster

Word Count Dataflow

Word Count Mapper

public static class Map extends MapReduceBase implements Mapper<LongWritable,Text,Text,IntWritable> {

private static final IntWritable one = new IntWritable(1);

private Text word = new Text();

public static void map(LongWritable key, Text value, OutputCollector<Text,IntWritable> output, Reporter reporter) throws IOException {

String line = value.toString();

StringTokenizer = new StringTokenizer(line);

while(tokenizer.hasNext()) {

word.set(tokenizer.nextToken());

output.collect(word,one);

}

}

}

Word Count Reducer

public static class Reduce extends MapReduceBase implements

Reducer<Text,IntWritable,Text,IntWritable> {

public static void map(Text key, Iterator<IntWritable> values, OutputCollector<Text,IntWritable>

output, Reporter reporter) throws IOException {

int sum = 0;

while(values.hasNext()) {

sum += values.next().get();

}

output.collect(key, new IntWritable(sum));

}

}

Word Count Example

• Jobs are controlled by configuring JobConfs

• JobConfs are maps from attribute names to string values

• The framework defines attributes to control how the job is executed

• conf.set(“mapred.job.name”, “MyApp”);

• Applications can add arbitrary values to the JobConf

• conf.set(“my.string”, “foo”);

• conf.set(“my.integer”, 12);

• JobConf is available to all tasks

Putting it all together

• Create a launching program for your application

• The launching program configures:

• The Mapper and Reducer to use

• The output key and value types (input types are inferred from the InputFormat)

• The locations for your input and output

• The launching program then submits the job and typically waits for it to
complete

Putting it all together

JobConf conf = new JobConf(WordCount.class);
conf.setJobName(“wordcount”);

conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);

conf.setMapperClass(Map.class);
conf.setCombinerClass(Reduce.class);
conf.setReducer(Reduce.class);

conf.setInputFormat(TextInputFormat.class);
Conf.setOutputFormat(TextOutputFormat.class);

FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

JobClient.runJob(conf);

How many Maps and Reducers

• Maps
• Usually as many as the number of HDFS blocks being processed, this is the default

• Else the number of maps can be specified as a hint

• The number of maps can also be controlled by specifying the minimum split size

• The actual sizes of the map inputs are computed by:

• max(min(block_size,data/#maps), min_split_size

• Reducers

• Unless the amount of data being processed is small

• 0.95*num_nodes*mapred.tasktracker.tasks.maximum

HADOOP YARN

Adapted slides from

various online resources

YARN

• Yet Another Resource Negotiator

• Remedies the scalability issues of “classic” MapReduce

• Is more of a general purpose framework of which classic MapReduce is

one application.

Classic MapReduce

• Job Tracker

• Manages cluster resources and

job scheduling

• Task Tracker

• Per-node agent

• Manage tasks

Classic MapReduce Limitations

• Scability

• Maximum cluster size ~4000 nodes

• Maximum concurrent tasks ~40,000

• Coarse synchronization in JobTracker

• Availability

• Failures kills all queued and running tasks

• Hard partition of resources into map and reduce slots

• Low resource utilization

YARN Architecture

• Scability

• Cluster 6,000-10,000 machines

• 100,000 concurrent tasks

• 10,000 concurrent jobs

YARN

• Splits up the two major functions of JobTracker

• Global Resource Manager - Cluster resource management

• Application Master - Job scheduling and monitoring (one per application). The Application

Master negotiates resource containers from the Scheduler, tracking their status and

monitoring for progress. Application Master itself runs as a normal container.

• Tasktracker

• NodeManager (NM) - A new per-node slave is responsible for launching the applications’

containers, monitoring their resource usage (cpu, memory, disk, network) and reporting to

the Resource Manager.

• YARN maintains compatibility with existing MapReduce applications and users.

Classic MapReduce vs YARN

• Fault Tolerance and Availability

• Resource Manager

• No single point of failure – state saved in ZooKeeper

• Application Masters are restarted automatically on RM restart

• Application Master

• Optional failover via application-specific checkpoint

• MapReduce applications pick up where they left off via state saved in HDFS

• Compatibility

• Protocols are wire-compatible

• Old clients can talk to new servers

• Rolling upgrades

Classic MapReduce vs YARN

• Support for programming paradigms other than MapReduce

• Tez – Generic framework to run a complex DAG

• HBase on YARN(HOYA)

• Machine Learning: Spark

• Graph processing: Giraph

• Real-time processing: Storm

• Enabled by allowing the use of paradigm-specific application master

• Run all on the same Hadoop cluster!

