
MP 1 – Implementing a System Call in Linux
CS 423 – Spring 2011

Revision 1.2

Assigned January 26, 2011
Due February 9, 2011, 11:59 PM
Extension 48 hours (penalty 20% of total points possible)

1 Change Log
1.0 Initial Release.

1.1 Correct some mistakes resulting from mixing the way things were handle in older versions of Linux, particularly
on the x86 32 bit architecture with the way they are handled now for the x86 64 bit architecture. Cleaned up
some garbled sentences. Added some addition hints for Problem 1.

1.2 Fixed the overflow in Problem 3.

2 Objectives and Background
The purpose of this MP is to help the students:

• Add a new system call to Linux and install the modified kernel.

• Setting up a virtual environment (using Qemu) for testing the modified kernel.

• Understand the concept of processes, threads and thread groups, as presented by Linux.

3 Resources
In order to do this assignment and test it, you will need to be able to use QEMU and install a custom kernel in it.
Please read Guide to Testing a Kernel and follow its instructions to set up an environment for your use in doing this
assignment.

A good place to start learning about Linux kernel programming is Kernel Newbies
The Linux kernel has millions of lines of code and using traditional grep for searching is not advisable in most of

the cases. You are advised to use cscope and LXR instead (or at least in addition and before). Csocpe’s database can
be generated by invoking make cscope on the Linux source.

A resource that has been useful to students in past semesters is Robert Love’s Linux Kernel Programming. To
understand how Linux kernel programming differs from application level programming, you might consult Chapter 2
(Section A beast of a different nature).

As the Linux kernel’s source code is fairly complex, before reading the source code, try to get an overall picture.
Both the above book and Understanding the Linux Kernel by Daniel P. Bovet and Marco Cesati can help.

4 Adding a System Call in Linux
Once you have carried out all the instructions in Guide to Testing a Kernel, you should have created a COW disk image
file called mp1.img and a directory called linux.

Adding a new system call in Linux involves three steps:

1

http://www.cs.illinois.edu/class/sp11/cs423/mps/guide.html
http://kernelnewbies.org/
http://cscope.sourceforge.net/
http://lxr.linux.no/linux
http://www.amazon.com/Linux-Kernel-Development-Robert-Love/dp/0672329468/ref=sr_1_1?ie=UTF8&qid=1295996785&sr=8-1
http://oreilly.com/catalog/9780596005658
http://www.cs.illinois.edu/class/sp11/cs423/mps/guide.html

1. Define the basic system call in kernel/sys.c, i.e. implement the function that’ll be called when this system
call is invoked. (It can go in another file, but for this MP we will expect you to put it here.)

2. Add an entry to include/linux/syscalls.h giving prototype of the system call.

3. Associate a number to the system call in the pertinent library file (arch/x86/include/asm/unistd 64.h).
You need to define your system call number after the last system call already listed in the file. (You no longer
need to increment NR syscalls; this is now computed for you.)

In this assignment, you will be asked to return a value, which requires copying data from kernel space to user
space. First, when passing a pointer to receive the data, you will need to add to the function argument type the modifier
user, as in int time(long __user *t). This is a macro that tells the compiler not to dereference the

pointer, as it will not be meaningful in the kernel address space.
So, how do you get information into user space then? For basic types, you can use put user to write data out to

user space (and get user to read data of basic type in from user space). For copying blocks of data such as arrays
or structures to or from user space, you should use copy to user and copy from user. (Strings have their own
special functions.) For a better understanding, you are encouraged to read the article Adding a Linux system call here.

5 Thread Groups
Thread groups were implemented in Linux to provide convinience in implementing the POSIX’s pthread library in
Linux. POSIX defines a multi-threaded process as a collection of related threads, which share all but some resources.
It also requires that certain actions can be applied to all threads of a process at once. Linux, on the other hand,
deals at thread level, not at process level. Thus, support for thread groups was added in Linux, for grouping together
all the threads of a multi-threaded process, as required by POSIX. Interested students can find more details in this
paper: www.kernel.org/doc/ols/2002/ols2002-pages-330-337.pdf. You should have encountered
programming with pthreads in CS241. Additional help in programming with POSIX threads may be found at POSIX
Threads Programming.

6 Problems
1. (15 pts) Add the structure

struct thread_group_data {
pid_t tgid; //thread group id
int num_threads; //number of threads in the thread group

}

to the very end of the file include/linux/sched.h. Add to the end of kernel/sys.c a system call
implementation conforming to the following function prototype:

int k_get_thread_group_numbers(pid_t tid, thread_group_data *data)

that, given a thread id tid (see gettid() system call), returns the associated thread group data. If the id
number given is invalid (fails to correspond to an existing thread), the system call should return -ESRCH. If the
buffer pointer specified is invalid, the system call should return -EFAULT. If it succeeds, it should return 0.

NOTE: gettid() might not be available on your system. Use syscall(186) instead, where 186 is the
number associated with gettid() for x86-64 systems.

Hints:

• To gather information about a thread, you will need to look in its process descriptor, which is an entity of
type task struct. The structure task struct is defined in include/linux/sched.h. This is the
file at the end of which you are to put the definition of struct thread group data. One entity of type

2

http://www.ibm.com/developerworks/linux/library/l-system-calls/
http://en.wikipedia.org/wiki/POSIX
https://computing.llnl.gov/tutorials/pthreads/
https://computing.llnl.gov/tutorials/pthreads/

task struct that always exists is init task. It is defined in linux/arch/x86/kernel/init task.c.
Another is current. The structure task struct makes heavy use of doubly linked lists via the structure
list head. Functions supporting list head are defined in include/linux/list.h.

• Shared data structures of the kernel need locking to avoid concurrent access, which might result in corruption
of the data structure, or inconsistent results.

• Use LXR to find out the existing instances of usage of a shared data structure in kernel. Check what kind
of locking is used to protect the data structure elsewhere; you should use the same in your system-call
implementation.

• When in kernel, it’s OK to use goto, esp. for handling error conditions.

2. (5 pts) Add to the end of kernel/sys.c the code to make the system call get thread group numbers vis-
ible to user space with the same prototype as k get thread group numbers . You should use SYSCALL DEFINE2
(a macro defined in terms of asmlinkage).

3. (3pts) Add an entry for the new function in include/linux/syscalls.h. Update the file
arch/x86/include/asm/unistd 64.h to associate a new system call number (the next unused number)
with the newly created system call function.

4. (5 pts) Write a multi-threaded program (using pthread library)

void test(int n)

that does the following:

1. Create n number of threads, with identical handler functions.

2. In the handler function of the threads, make the thread sleep for a random amount of time and then print the re-
sults of the newly created system call, passing the current thread’s tid (using gettid() or syscall(186))
as an argument.

Compilation of your program should be done inside qemu running a kernel including your code for the new system
call.

5. (5pt) In a file named README-cs423-mp1 put you name at the top, followed by documentation explaining your
system call implementation and any design decisions you made. This file should specifically mention each file that
was altered and concise description of those changes.

7 Deliverables
To turn in your assignment, you should create a directory mp1. In that directory, you should recreate the directory
structure of linux-2.6.37.0 for every directory containing a file you created or altered, and in the corresponding
directories you should place those files. You directory should contain a file README-cs423-mp1 containing your
name and a description of all the changes / additions you made. Once this directory is complete, you should run

tar czf mp1.tgz mp1

The resulting file mp1.tgz is what handin will upload for you.

3

http://lxr.linux.no/linux+v2.6.37/
https://computing.llnl.gov/tutorials/pthreads/

	Change Log
	Objectives and Background
	Resources
	Adding a System Call in Linux
	Thread Groups
	Problems
	Deliverables

