CS 423 — Operating Systems Design

Lecture 25 — Symbian OS

Klara Nahrstedt
Fall 201 |

Based on slides from Andrew S.Tanenbaum textbook and
other web-material (see acknowledgements)

Overview

o Administrative Issues

> Last week for re-grading
e Symbian OS Overview
* Ultra-Mobile Development Principles

cs423 Fall 2011

History of Symbian OS

e 996 — Psion designed 32-bit OS that

> Supported pointing devices on touch screens, used
multimedia, and was communication rich

> Was more object-oriented
> Was portable to different architectures and device designs

e Result EPOC OS Release |

e Further expansion towards touch screen, generalized
hardware interface, ...

o EPOC Release 3 and 5 (ER3, ER5) run on platforms Psion
Series 5 and 7.

e 2000 - Psion and its EPOC OS as basis of Symbian
OS on mobile phone platforms Nokia, Ericsson,
Motorola, Panasonic

Symbian OS Overview

¢ |s Object-oriented
* Inherited from EPOC

e Uses micro-kernel design

> Minimizes kernel overhead and pushes non-
essential functionality to user-level processes

e Uses client-server architecture

e Single-User

e Supports multi-tasking, multi-threading
» Supports extensible storage system

e |Inherited multimedia and communication
emphasis

Symbian Architecture

z
< Java J2ME

Application Services

(T]

Apphcaln
Cervices

L
£
X
5 Telephony S |1| QImims
Sernvioes & Short Link
1r iCe

i
;"f Base Services

X
i
}; E“E Kernel Services & Hardware Abstraction

cs423 Fall 201 | 5

Object Orientation

e Object-oriented design

> Creates an abstract entity called object of data and
functionality of system component

e Object
o provides data and functionality
> Hides details of implementation

o Can be removed, replaced by other object as long as
its interface remains the same

e Object-oriented kernel
> Provides kernel services through objects
> Application obtains handle to kernel-side objects

* Object orientation is designed into the entire OS
framework

Micro-kernel Design

e Minimal system functions in kernel

e Many system functions pushed out to user space
servers

° Servers do their work by obtaining handles to system

objects and making system calls through these objects into
the kernel

o User applications interact with these servers rather than

make system calls.

e Micro-Kernels

(@]

(@]

(@]

take much less memory space upon boot

the structure is more dynamic and flexible

servers start as needed, not all servers required at boot
time

implemented as pluggable architecture for systems
modules that can be loaded as needed and plugged into
the kernel.

Micro-kernel Design

e Some issues

> Microkernel uses message passing and
performance suffers because of added overhead
of communication between objects

o Efficiency of functions that are outside of kernel
diminishes
Since messages pass between user and kernel space

objects, switches in privileges levels occur, complicating
performance

Message passing and privilege switching implies that two
or more address spaces must be used to implement
microkernel service request

e Symbian OS puts emphasis on minimal,
tightly focused servers

Symbian OS Nanokernel

e Design of Symbian OS separates

° functions that require complicated implementation (kernel layer)
from

> most basic functions (nanokernel layer)
e Nanokernel - most basic (primitive) functions in Symbian OS
o Scheduling and synchronization operations
° Interrupt handling
> Mutexes, semaphores
> Most functions at this level are preemptible
* Kernel Layer -more complicated kernel functions
> Complex object services
> User-mode threads
° Scheduling and context-switching
> Dynamic memory
> Complex synchronization
> Object and inter-process communication

Microkernel Overview

privilege user
boundary kernel

physical software

EWSRV EFILE

{window sarver) (file s=rvar) ESTART
EUSER
{user library) HAL

boundary nhardware

boundary

DEVICE
EXTEMSION
ODRIVER
EKEHN Platform
(keamel) LDD indepert I
________ L Layar PERSOMALITY
' i Platform LAYER
PDD ; {EXTENSION
memary : ! hana SPI'_E'”ﬁ':_ ASSP i
| ayal
model | | kernel - ——————
' | variant
|
- | Pic
MMU CPU Peripherals .
: & timer
]
BSP

Client-Server Resource Access

o Applications that need access to system
resources are clients; servers are programs that
OS runs to coordinate access to these resources

* Example: open file
> Make connection to a file server
o Server acknowledges the connection
o Client requests ‘open’ request with the name of

specific file

 This design
o Protects resources

o |s effective for managing multiple access to system
resources

o Each server is easily upgradeable and swapped out for
new designs

Communication and Multimedia

» Pluggable messaging architecture

> New message types can be invented and
dynamically loaded by the messaging server

> New transport methods can be introduced by
implementing new object and loading into the
kernel
e Multimedia devices and content are handled

by special servers

> Allows user implement modules that describe
new and existing content and functions

> Supports various forms of objects, designed to
interact with each other

Processes and Threads (1)

e Multi-asking — Symbian OS favors threads and is
built around thread concept

* Thread support is based in nanorkernel with
nanothreads

* Nanokernel provides nanokernel scheduling,
interthread synchronization and timing services

o Nanothreads cannot run in user mode

o Nanothread needs minimal set of data location of its
stack, how big stack is

> OS keeps control of everything else (e.g., code of
each thread uses, stores thread’s context on tis run-
time stack)

> Nanothread states: suspended, fast semaphore wait,
DFC (Delayed Function Call) wait, sleep, other

Processes and Threads (2)

e Process

> Processes are Symbian OS threads grouped
together under single process control block
structure with a single memory space

> Scheduling a process means scheduling a thread
and initializing the right PCB to use for its data
needs
* Threads in one process work together, share
scheduling parameters, share memory space
objects, including device and object
descriptors

* When a process terminates, all threads in
process are terminated by kernel.

Active Obijects (3)

e Active Objects - Specialized forms of threads

> Introduced due to Symbian OS focussing on
communication
Apps have similar pattern of implementation: they write data to
socket or send data through pipe, and then block and wait for
response from receiver
> Active objects are designed so that when they are brought
back from this blocked state, they have single entry point
into their code that is called.

e Advantage of having this simplified thread model:

> Scheduling — while waiting for events, all active objects
reside within single process and can act as a single thread
to the system

> All active objects can be coordinated by a single scheduler
implemented in a single thread

> Active objects form efficient and lightweight version of
standard threads

Memory Management (|)

* Memory model restricted and does not use
virtual memory/swap space model

* No virtual memory with demand paging
* Storage = memory, no disk drive

e Two types of memory
> RAM and flash memory
> RAM stores OS code

> Flash memory used for operating memory and
permanent (file) storage

o Possible to add extra flash memory to device

Secure digital card — exclusively, for permanent storage

Memory Management (2)

» Concepts

> Paging, address translations, virtual/physical
address abstraction

> We have pages but pages cannot be swapped
from memory to external storage

> Abstraction of memory pages is used

> Pages are replaced, but the page being
replaced is just discarded

Only code pages can be replaced since on they are
backed on the flash memory

Memory Management (3)
(Tasks of Memory Management)

I. Management of application size
Application size needs to be small and object-oriented design
2. Heap management

(¢]

° Heap — space for dynamic memory allocation — must be managed
very tightly

° Heap space is bounded to force programmers to reclaim and reuse
heap space

3. Execution in-place

Flash memory is mapped into virtual address space and programs can

be executed directly from flash memory without copying them into
RAM first

4. Loading DLLs

Loading all DLLs when application is first loaded into memory is
more acceptable, but it is a choice. (users accept more DLL loading
delays at the beginning when loading the app than during the app
execution)

5. Offload memory management to hardware
If there is available MMU, use it — system performance is better

(0]

(o]

o

Memory Management (4)

e Frame size 4KB
e Two-level page table strategy

e First level, called page directory

> Kept in memory and is pointed to by TTBR
(translation table base register)

> Points to second level of page table
» Second level points to pages

e Hardware assists in virtual-to-physical
memory address mapping calculation

Two-level Page Table

Page directory index

Page table index

Page directory index

cs423 Fall 201 |

20

Input and Output (Device Driver)

e Drivers execute as
kernel-privileged code

e Drivers split into two User code
levels

o Logical device driver ‘ DriverApiClass < RBusLogicalChannel
(LDD) - interface to upper !

layers of software

o Physical device driver -
(PDD) — interacts directly
with hardware -

F 3

e LDDs and PDDs can be sovare
dynamically loaded by | parsvare
user programs if they are
not already existing in
memory

|
|
Y

/O — Kernel Extensions

e Kernel extensions — device drivers that are
loaded by Symbian OS at boot time

e Different from normal device drivers

e Most device drivers are implemented as
LDDs paired with PDDs and loaded when
needed by user-space apps.

e Kernel extensions are built into boot
procedure

> They implement special functions crucial to OS

DMA services, display management, bus control to
peripheral devices (e.g., USB bus)

/O — DMA

e Device drivers make use of DMA hardware

e DMA hardware consists of controller that controls
set of DMA channels

e Each channel provides single direction of
communication between memory and device
o Bidirectional communication requires two DMA channels

° At least one pair of DMA channels is dedicated to screen
LCD controller

e DMA service, provided by DMA hardware, is used by
PDD

e Between PDD and DMA controller, Symbian OS
implements two layers of software

> Software DMA layer
o Kernel extension that interfaces with the DMA hardware

Storage Systems

* File Systems for Mobile devices
° Arbitrary names of files
> Hierarchical directory-based file system
> Block sizes typically 512 bytes to 2048 bytes

° Flash memory cannot simply overwrite memory, it
must first erase first, then write

o Entire blocks must be erased
o Erase time for flash memory are long

File Systems

* Hence — specific flash file system design
needed

> Wear-Leveling

When flash store is to be updated, the FS will write
a new copy of the changed data over to a fresh
block, remap the file pointers, and then erase the
old block later when it has time.

e Symbian OS uses FAT-16

» Symbian File server implementation is
built much like Linux Virtual File System

Summary

e Symbian OS

> Object-oriented OS for smart phone platforms
> Microkernel design with nanokernel core
o Many features of general purpose OS

> But some specific features

Active objects make waiting on external events much
more efficient

Lack of virtual memory makes memory management
more challenging

Support of object orientation in device drivers uses
two-layer abstract design

Ultra-Mobile Development
Principles

* Responsiveness

* Power Management over Performance

> Power limiting factor
e Tight Memory Management
* Flash memory limitations

> Slow writes, limited writes

 Security and Privacy

References

* http://www.developer.nokia.com/Commu
nity/Wiki/Symbian_OS Internals

