
CS 423 – Operating Systems Design 

 

Lecture 9 – Lock Implementation  

Klara Nahrstedt 

Fall 2011 

 

Based on slides by Sam King, Elsa Gunter and Andrew S. 
Tanenbaum 

cs423 Fall 2011 



Overview 

 Administrative Issues 

◦ MP2 will be posted today 

 Lock Implementation 

 Read Tanenbaum Section 2.3.3-2.3.6 

cs423 Fall 2011 



Implementing locks 

 Concurrent programs use high-level 
synchronization operations 

◦ Used with multiple threads so they need to worry 
about atomicity (e.g., they use data structures) 

◦ Can’t use the high-level synchronization operations 
themselves 

Concurrent programs 

High-level synchronization  

provided by software 

Low-level atomic operations  

provided by hardware 

cs423 Fall 2011 



Interrupt enable/disable for atomicity 

 On uniprocessor, operation is atomic as 

long as context switch does not occur 

◦ How does thread get context switched out? 

 

 

 

◦ Prevent context switches at wrong time by 

preventing these events 

cs423 Fall 2011 



Interrupt enable/disable for atomicity 

 With interrupt enable/disable, why do we need 

locks? 

◦ User program could call interrupt disable before 

entering critical section and call interrupt enable 

after leaving 

 

 

◦ What is wrong with this?  

cs423 Fall 2011 



Lock impl. #1 (disable interrupts w/ busy 

waiting) 
Lock() { 

  disable interrupts 

  while(value != FREE){ 

    enable interrupts 

    disable interrupts 

  } 

  value = BUSY 

  enable interrupts 

} 

Unlock() { 

  disable interrupts 

  value = FREE 

  enable interrupts 

} 

•  Why does lock() disable interrupts in the beginning  

   of the function? 

• Does this guarantee atomicity and allow progress?  

cs423 Fall 2011 



Big picture 

 The critical sections are the accesses to 

the “lock variable” (value on previous 

slide)  

 

 We use interrupt enable/disable as a 

“lock” for this critical section 

 

 Can’t use higher-level primitives 

cs423 Fall 2011 



Lock impl. #1 

 Why ok to disable interrupts in lock()’s 

critical section and not user-mode code? 

◦ Because we are in kernel mode and control 

everything 

 Do we need to disable interrupts in 

unlock()? 

◦   

 Why does body of while enable, then 

disable interrupts? 

cs423 Fall 2011 



Lock impl. #1 

 Why ok to disable interrupts in lock()’s 
critical section and not user-mode code? 

◦ Because we are in kernel mode and control 
everything, won’t starve anyone 

 Do we need to disable interrupts in 
unlock()? 

◦ Yes, because we are accessing protected data 

 Why does body of while enable, then disable 
interrupts? 

◦ So that a context switch may occur for any 
pending interrupts so someone else may work 

cs423 Fall 2011 



Read-modify-write instructions 

 Interrupt disable works on a uniprocessor 

◦ Does not work on multiprocessor 

 Could use atomic load / atomic store 
instructions (Too Much Milk #3) 

 Modern processors provide an easier way 
with atomic read-modify-write instructions 

◦ Atomically {read value from memory into 
register, then write new value to memory 
location}  

◦ Test and Set 

cs423 Fall 2011 



Test and set 

 Var (say X) shared across all processors 

 Atomically writes 1 to X memory location 
(set) and returns previous the value (test) 

 

Test_and_set(x) { 
  tmp = X 
  X = 1 
  return(tmp) 
} 

 

 Note that only 1 process can see a 
transition from 0 -> 1 

cs423 Fall 2011 



Lock impl. #2 (test&set w/ busy waiting) 

(value initially 0) 

Lock() { 

  while(test_and_set(value) == 1) 

    ; 

} 

Unlock() { 

  value = 0; 

} 

 

 If lock is free(value = 0), test_and_set sets value to 1 and 
return 0, so the while loop finishes 

 If lock is busy(value = 1), test_and_set doesn’t change the 
value and returns 1, so loop continues 

cs423 Fall 2011 



Problem with lock impl. #1 and #2 

 Waiting thread uses lots of CPU time 

waiting for lock to free (Busy Waiting) 

 Better for thread to go to sleep and let 

other threads run 

 Strategy for reducing busy-waiting: 

integrate the lock implementation with 

the thread dispatcher data structures and 

have the lock code manipulate thread 

queues 

cs423 Fall 2011 



Interrupt disable / enable, Try 1 

 What is wrong with the following? 

lock() { 

disable interrupts; 

... 

if(lock is busy) { 

 enable interrupts; 

 add thread to lock wait queue; 

 switch to next runnable thread; 

} 

cs423 Fall 2011 



Interrupt disable / enable, Try 1 

 What is wrong with the following? 
lock() { 

disable interrupts; 

... 

if(lock is busy) { 

 enable interrupts; 

 add thread to lock wait queue; 

 switch to next runnable thread; 

} 

 If interrupt is handled as soon as enabled, lock 
might be freed, control returned, and thread 
would go on wait queue even though lock free 

cs423 Fall 2011 



Interrupt disable / enable, Try 2 

 What is wrong with the following? 

lock() { 

disable interrupts; 

... 

if(lock is busy) { 

 add thread to lock wait queue; 

 enable interrupts; 

 switch to next runnable thread; 

} 

cs423 Fall 2011 



Interrupt disable / enable, Try 2 

 What is wrong with the following? 
lock() { 

disable interrupts; 

... 

if(lock is busy) { 

 add thread to lock wait queue; 

 enable interrupts; 

 switch to next runnable thread; 

} 

 If interrupt is handled as soon as enabled, thread 
put on preemption queue 

 Thread on two queues!  Bad – wrong queue (wait) 
might be used first 

cs423 Fall 2011 



Making add to (queue & switch) atomic 

 Adding thread to wait queue and switching to 
the next thread must be atomic 

 Solution:  

◦ Waiting thread leaves interrupts disabled when it calls 
switch 

◦ Next thread to run must be the responsibility of re-
enabling interrupts before returning to user code 

◦ When waiting thread wakes up, it returns from switch 
with interrupts disabled (from last thread). 

 

 Think of interrupt state as shared variable 

cs423 Fall 2011 



Lock impl. #3 (interrupt disable/enable, no 

busy wait) 

Lock() { 

  disable interrupts 

  if(value == FREE) { 

    value = BUSY 

  } else { 

    add thread to wait 

      queue for this lock 

    switch to next thread 

  } 

  enable interrupts 

} 

Unlock() { 

  disable interrupts 

  value = FREE 

  if(any thread waiting 

     for this lock) { 

     move wait thread to 

       ready queue 

     value = BUSY 

  } 

  enable interrupts 

} 

cs423 Fall 2011 



Handoff locks 

 Thread calling unlock() gives lock to 

waiting thread to guarantee FIFO 

ordering of lock usage 

◦ No control over scheduling algorithm, but we 

do control access to locks 

 What does it mean for a thread to add 

current thread to lock wait queue? 

◦ Is this the point at which it saves state?  

 Why do we need a separate lock queue? 

cs423 Fall 2011 



Lock impl. #3 

 Invariant: 

◦ All threads promise to have interrupts 

disabled when they call schedule 

◦ All threads promise to re-enable interrupts 

after they get returned to from schedule 

 

cs423 Fall 2011 



 Thread A 

 

 

back from switch 

enable interrupts} 

<user code runs>  

lock() { 

 disable interrupts 

 ...  

switch 

 

 

 

 

 

 

 

 

 

back from switch 

enable interrupts} 

  

 Thread B 

yield() { 

disable interrupts; 

switch;  

 

 

 

 

 

back from switch 

enable interrupts} 

<user code runs>  

unlock() // move a to readyq  

yield() 

 {disable interrupts 

 switch 

cs423 Fall 2011 

Invariant Example 



Lock impl. #4 

 Can’t implement locks using test&set 

without some amount of busy-waiting, but 

can minimize it 

 

 Idea: use busy waiting only to atomically 

execute lock code. Give up CPU if busy 

cs423 Fall 2011 



Lock impl. #4 
lock() { 

 while(test&set(guard){ 

 } 

  if(value == FREE) { 

  value = BUSY 

 } else {  

  add thread to wait_q 

  switch to next run t 

 } 

 guard = 0 

} 

 

unlock() { 

 while(test&set(guard)){ 

 } 

 value = FREE 

 if(wait_q nonempty) { 

 move thread to ready_q 

value = BUSY 

} 

guard = 0 

} 

cs423 Fall 2011 



Conclusion 

 Careful consideration of lock 

implementation is important 

 Consideration of hardware support is 

important 

 Consideration of lock implementation for 

user and kernel space is important  

 

cs423 Fall 2011 


