CS 423 — Operating Systems Design

Lecture 9 — Lock Implementation

Klara Nahrstedt
Fall 201 |

Based on slides by Sam King, Elsa Gunter and Andrew S.
Tanenbaum



Overview

e Administrative Issues
> MP2 will be posted today

* Lock Implementation
e Read Tanenbaum Section 2.3.3-2.3.6

cs423 Fall 2011



Implementing locks

e Concurrent programs use high-level
synchronization operations

> Used with multiple threads so they need to worry
about atomicity (e.g., they use data structures)

o Can’t use the high-level synchronization operations
themselves

cs423 Fall 201 |



Interrupt enable/disable for atomicity

* On uniprocessor, operation is atomic as
long as context switch does not occur

> How does thread get context switched out!?

> Prevent context switches at wrong time by
preventing these events



Interrupt enable/disable for atomicity

e With interrupt enable/disable, why do we need
locks?

o User program could call interrupt disable before
entering critical section and call interrupt enable
after leaving

> What is wrong with this!?



Lock impl.#| (disable interrupts w/ busy

waiting)
Lock() {
disable interrupts Unlock() {
while(value '= FREE){ disable interrupts
enable interrupts value = FREE
disable interrupts enable interrupts
J }
value = BUSY
enable interrupts
}

* Why does lock() disable interrupts in the beginning
of the function?
* Does this guarantee atomicity and allow progress?



Big picture

e The critical sections are the accesses to

the “lock variable” (value on previous
slide)

* We use interrupt enable/disable as a
“lock” for this critical section

e Can’t use higher-level primitives



Lock impl. #1

* Why ok to disable interrupts in lock()’s
critical section and not user-mode code?

* Do we need to disable interrupts in
unlock()?

* Why does body of while enable, then
disable interrupts?



Lock impl. #1

* Why ok to disable interrupts in lock()’s
critical section and not user-mode code!?

o Because we are in kernel mode and control
everything, won’t starve anyone

* Do we need to disable interrupts in
unlock()?
> Yes, because we are accessing protected data

* Why does body of while enable, then disable
interrupts!?

> So that a context switch may occur for any
pending interrupts so someone else may work



Read-modify-write instructions

* Interrupt disable works on a uniprocessor
> Does not work on multiprocessor

e Could use atomic load / atomic store
instructions (Too Much Milk #3)

* Modern processors provide an easier way
with atomic read-modify-write instructions
> Atomically {read value from memory into

register, then write new value to memory
location}

o Test and Set



Test and set

* Var (say X) shared across all processors

e Atomically writes | to X memory location
(set) and returns previous the value (test)

Test_and_set(x) {
tmp = X
X=1
return(tmp)

}

* Note that only | process can see a
transition from 0 -> |



Lock impl. #2 (test&set w/ busy waiting)

(value initially Q)
Lock() {
while(test_and_set(value) == 1)

.
)

}

Unlock() {
value = 0;

}

e If lock is free(value = 0), test_and_set sets value to | and
return 0, so the while loop finishes

o If lock is busy(value = 1), test_and_set doesn’t change the
value and returns |, so loop continues



Problem with lock impl. #| and #2

* Waiting thread uses lots of CPU time
waiting for lock to free (Busy Waiting)

 Better for thread to go to sleep and let
other threads run

* Strategy for reducing busy-waiting:
integrate the lock implementation with
the thread dispatcher data structures and
have the lock code manipulate thread
queues



Interrupt disable / enable, Try |

* What is wrong with the following?

lock() {
disable interrupts;

If(lock Is busy) {

enable interrupts;

add thread to lock walit queue;
switch to next runnable thread,;

}




Interrupt disable / enable, Try |

* What is wrong with the following?

lock() {
disable interrupts;

If(lock is busy) {

enable interrupts;

add thread to lock wait queue;
switch to next runnable thread,;

}

e If interrupt is handled as soon as enabled, lock
might be freed, control returned, and thread
would go on wait queue even though lock free



Interrupt disable / enable, Try 2

* What is wrong with the following?

lock() {
disable interrupts;

If(lock Is busy) {

add thread to lock walit queue;
enable interrupts;

switch to next runnable thread,;

}




Interrupt disable / enable, Try 2

* What is wrong with the following?

lock() {
disable interrupts;

if(lock is busy) {

add thread to lock wait queue;
enable interrupts;

switch to next runnable thread;

}

e If interrupt is handled as soon as enabled, thread
put on preemption queue

e Thread on two queues! Bad — wrong queue (wait)
might be used first



Making add to (queue & switch) atomic

* Adding thread to wait queue and switching to
the next thread must be atomic

e Solution:

> WVaiting thread leaves interrupts disabled when it calls
switch

> Next thread to run must be the responsibility of re-
enabling interrupts before returning to user code

> When waiting thread wakes up, it returns from switch
with interrupts disabled (from last thread).

e Think of interrupt state as shared variable



Lock impl.#3 (interrupt disable/enable, no
busy wait)

Lock() { Unlock() {
disable interrupts disable interrupts
If(value == FREE) { value = FREE
value = BUSY If(any thread waiting
} else { for this lock) {
add thread to wait move wait thread to
gueue for this lock ready queue
switch to next thread value = BUSY
} }
enable interrupts enable interrupts

} }



Handoff locks

» Thread calling unlock() gives lock to
waiting thread to guarantee FIFO
ordering of lock usage

> No control over scheduling algorithm, but we
do control access to locks

* What does it mean for a thread to add
current thread to lock wait queue!?

> |s this the point at which it saves state!

* Why do we need a separate lock queue!?



Lock impl. #3

e Invariant:

> All threads promise to have interrupts
disabled when they call schedule

> All threads promise to re-enable interrupts
after they get returned to from schedule



Invariant Example

Thread A

yield() {
disable interrupts;

switch;

back from switch

enable interrupts}

<user code runs>

unlock() // move a to readyq
yield()

{disable interrupts

switch

Thread B

back from switch
enable interrupts}
<user code runs>
lock() {

disable interrupts

switch

back from switch
enable interrupts}



Lock impl. #4

e Can’t implement locks using test&set
without some amount of busy-waiting, but
can minimize it

* Ildea: use busy waiting only to atomically
execute lock code. Give up CPU if busy



Lock impl. #4

lock() { unlock() {
while(test&set(guard){ while(test&set(guard)){
} }
if(value == FREE) { value = FREE
value = BUSY If(wait_q nonempty) {
} else { move thread to ready q
add thread to wait_g value = BUSY
switch to next run t }
) guard =0
guard = 0 }

}



Conclusion

e Careful consideration of lock
implementation is important

» Consideration of hardware support is
important

» Consideration of lock implementation for
user and kernel space is important



