Object-Oriented Programming

» Class is a form of abstract type
* Instances of class called objects
» Operators of class called methods

* Applying a method to an object In
the class called message passing

—Messages take object as implicit
argument

Variables and Methods

* Classes have two kinds of
methods and two kinds of
variables:

—|nstance methods and instance
variables

—Class methods and class variable

Instance Variables and
Methods

 |[nstance variables:

— Instance variables hold state of single
object

— Different objects have different (copies of)
iInstance variables

— sometimes called fields
* |nstance methods:

— Instance methods act on a single object,
usually acting on instance variables

Class Variables and Methods

 Class variables hold state that is shared
in common among all objects of class

 Class methods act on attributes of the
whole class through class variables

 Class methods can’t access instance
variables

* Will only use instance variables and
methods here

Creating Objects

» Class usually has an initialization
method (usually called the same as the
class, or initialize)

» Creates an object of class ¢ by
new c(args)

 Creates new instance variables;
executes code in def of initialization
method

Sending a message

A message is a method is a function

Sending a message to an object is
invoking that method on that object is
applying the function to the object

Common notation: o . m(args)
Apply m to o and additional args

Self

* Methods have formal parameters for all
arguments accept ojbect to which it is

sent
* Problem: How to access that argument?

« Answer: use self

Example

class a

{vari;
var | ;
method a()
{i=#1;)j:=1+#1;returnj};
method f() { return self . a() };
method g() { return self . () };
method h() { return (i +j) }

Self and Recursion

class oddeven
{ method oddeven() { return true }
method odd(n)
{if n = 0 then return false
else self . even (n-1) };
method even(n)
{if n = 0 then return true
elseself.odd (n-1)}

}

Subclasses

» Classes form a hierarchy of parent
classes and children classes

 Child is a subclass of, derived class of,
iInherits from, extends the parent,
superclass

 Common syntax:
class ¢ extends ¢’

Inheritance

* Inheritance allows all variables
and methods exported from
parent class to be part of a
subclass

Inheritance

* Export information:
—public: everybody sees
— private: only seen inside class

—protected: exported only to
subclasses

» We will use only public for methods
protected for variables

Single Versus Multiple
Inheritance

« Single inheritance: Class may only be a
subclass of one parent

« Multiple inheritance: Class may be immediate
subclass of two or more parents
* Problem with multiple inheritance:
class A:B,C{...}

What if we have both B.m and C.m? Which
method is A.m?

Answer: Language dependent, usually B.m (first
extended)

Variable Hiding and Static
Scope

 |nstance variables of superclass may be
hidden by declarations in subclass
classa{vari; varj; ...}
class b extends a
{var j; var k; method f(){...} ...}

class cextends b {... }
* |nstance variables available to methods of b

areifromaandj, kfromb
« Will not change when method of b sent to

object of c

Method Hiding and Super

* Instance method of subclass may hide
(or shadow) method of superclass

* Access hidden method m of parent
class by using super m (args)

Example

class b extends a

{varj;vark;
method a() { return self . b() }
method b()
{call supera();j=#10; k=j + #1 ;

return k }

method g() { return super h() }
method h() { return self. g() } }

Example

class c extends b
{ method a() { return super a() }
method b() { return super b() }
method c(){i=#100;)=i+#1 ; k=
j + #1 ; return k } method g() { return
(i+k™*j)}}

Inheritance Polymorphism

 |f a method is added to a
subclass with the same name
(and usually signature) as in the
parent class the new version
overrides inherited version In
subclass

Inheritance Polymorphism and
Dynamic Dispatch

* Method of superclass may be
overridden in subclass
 Dynamic dispatch: when a method of

superclass is applied to object of
subclass, methods of subclass are used
in computing result, instead of methods

of superclass

class A{ var i; method int:h (); method int: f (X) {x + h();};
method A () {i = 3} }
class B extends A { method g() {f()} method h() {4;} ...}

Virtual (or Abstract) Methods

* Virtual method: has declaration but no
function body

 For subclass to be instantiated it must
override all virtual methods with
methods with fully concrete bodies

Elsa L. Gunter
class A { var i; method int:h (); method int: f (x) {x + h();};
 method A () {i = 3} }
class B extends A { method g() {f(i)} method h() {4;} … }

