
Object-Oriented Programming

• Class is a form of abstract type

• Instances of class called objects

• Operators of class called methods

• Applying a method to an object in
the class called message passing

– Messages take object as implicit
argument

Variables and Methods

• Classes have two kinds of

methods and two kinds of

variables:

–Instance methods and instance

variables

–Class methods and class variable

Instance Variables and

Methods

• Instance variables:

– Instance variables hold state of single
object

– Different objects have different (copies of)
instance variables

– sometimes called fields

• Instance methods:

– Instance methods act on a single object,
usually acting on instance variables

Class Variables and Methods

• Class variables hold state that is shared

in common among all objects of class

• Class methods act on attributes of the

whole class through class variables

• Class methods can’t access instance

variables

• Will only use instance variables and

methods here

Creating Objects

• Class usually has an initialization
method (usually called the same as the
class, or initialize)

• Creates an object of class c by

new c(args)

• Creates new instance variables;
executes code in def of initialization
method

Sending a message

• A message is a method is a function

• Sending a message to an object is

invoking that method on that object is

applying the function to the object

• Common notation: o . m(args)

• Apply m to o and additional args

Self

• Methods have formal parameters for all

arguments accept ojbect to which it is

sent

• Problem: How to access that argument?

• Answer: use self

Example
class a

 { var i ;

 var j ;

 method a()

 { i := #1 ; j := i + #1 ; return j };

 method f() { return self . a() };

 method g() { return self . f() };

 method h() { return (i + j) }

}

Self and Recursion

class oddeven

{ method oddeven() { return true }

 method odd(n)

 {if n = 0 then return false

 else self . even (n - 1) };

 method even(n)

 {if n = 0 then return true

 else self . odd (n - 1) }

}

Subclasses

• Classes form a hierarchy of parent

classes and children classes

• Child is a subclass of, derived class of,

inherits from, extends the parent,

superclass

• Common syntax:

class c extends c’

Inheritance

• Inheritance allows all variables

and methods exported from

parent class to be part of a

subclass

Inheritance

• Export information:

– public: everybody sees

– private: only seen inside class

– protected: exported only to

subclasses

• We will use only public for methods

protected for variables

Single Versus Multiple

Inheritance
• Single inheritance: Class may only be a

subclass of one parent
• Multiple inheritance: Class may be immediate

subclass of two or more parents
• Problem with multiple inheritance:
 class A:B,C {…}
 What if we have both B.m and C.m? Which

method is A.m?
Answer: Language dependent, usually B.m (first

extended)

Variable Hiding and Static
Scope

• Instance variables of superclass may be
hidden by declarations in subclass

class a { var i; var j; …}
class b extends a
{var j; var k; method f(){…} …}
class c extends b { … }

• Instance variables available to methods of b
are i from a and j, k from b

• Will not change when method of b sent to
object of c

Method Hiding and Super

• Instance method of subclass may hide

(or shadow) method of superclass

• Access hidden method m of parent

class by using super m (args)

Example
class b extends a

{ var j ; var k ;

 method a() { return self . b() }

 method b()

 { call super a() ; j = #10 ; k = j + #1 ;

 return k }

 method g() { return super h() }

 method h() { return self . g() } }

Example

 class c extends b

 { method a() { return super a() }

 method b() { return super b() }

 method c() { i = #100 ; j = i + #1 ; k =

j + #1 ; return k } method g() { return

(i + k * j) } }

Inheritance Polymorphism

• If a method is added to a

subclass with the same name

(and usually signature) as in the

parent class the new version

overrides inherited version in

subclass

Inheritance Polymorphism and

Dynamic Dispatch

• Method of superclass may be
overridden in subclass

• Dynamic dispatch: when a method of
superclass is applied to object of
subclass, methods of subclass are used
in computing result, instead of methods
of superclass

Virtual (or Abstract) Methods

• Virtual method: has declaration but no

function body

• For subclass to be instantiated it must

override all virtual methods with

methods with fully concrete bodies

Elsa L. Gunter
class A { var i; method int:h (); method int: f (x) {x + h();};
 method A () {i = 3} }
class B extends A { method g() {f(i)} method h() {4;} … }

