
Programming Language Design (CS 422)

Elsa L Gunter
2112 Siebel Center, UIUC

egunter@illinois.edu
http://courses.engr.illinois.edu/cs422/sp2016

Slides based in part on previous lectures by Grigore Roşu
January 20, 2016

Elsa L Gunter Programming Language Design (CS 422)
Slides based in part on previous lectures by Grigore Roşu January 20, 2016 1

/ 26

mailto:egunter@illinois.edu
http://courses.engr.illinois.edu/cs422/sp2016

Contact Information

Office: 2112 Siebel Center

Office hours:

Wednesday 12:30pm – 1:45pm
Thursday 9:00am – 9:50am
Also by appointment

Email: egunter@illinois.edu

Elsa L Gunter Programming Language Design (CS 422)
Slides based in part on previous lectures by Grigore Roşu January 20, 2016 2

/ 26

egunter@illinois.edu

Course Website

main page - summary of news items

policy - rules governing the course

lectures - syllabus, slides and example code

mps - Information about homework

unit projects - for 4 credit students

resourses - papers, tools, and helpful info

faq - answers to some general questions about the course and course
resources

Elsa L Gunter Programming Language Design (CS 422)
Slides based in part on previous lectures by Grigore Roşu January 20, 2016 3

/ 26

Some Course References

No Required Textbook

Lecture Notes of Grigore Rosu, found in Resources

Essentials of Programming Languages (2nd Edition) by Daniel P.
Friedman, Mitchell Wand and Christopher T. Haynes, MIT Press 2001

The Formal Semantics of Programming Languages: An Introduction
by Glynn Winskel. MIT Press, 1993.

Concrete Semantics With Isabelle/HOL, by Tobias Nipkow and
Gerwin Klein. Springer, 2014.

Elsa L Gunter Programming Language Design (CS 422)
Slides based in part on previous lectures by Grigore Roşu January 20, 2016 4

/ 26

Course Grading

Homeworks – 30%

Two kinds: Handwritten and Machine Processed
Handwritten turned in as pdfs
MPs turned in as plain text files
Both subimtted via course svn student directories

Midterm – 30%

Final – 40%

Unit Project

Only for 4-credit graduate students
Worth 25%, with all other parts scaled down accordingly

Elsa L Gunter Programming Language Design (CS 422)
Slides based in part on previous lectures by Grigore Roşu January 20, 2016 5

/ 26

Collaboration on Assignments

You may discuss homeworks and their solutions with others

You may work in groups, but you must list members with whom you
worked

Each student must turn in their own solution separately

You may look at examples from class and other similar examples from
any source

Note: University policy on plagiarism still holds

Problems from homework may appear verbatim, or with some
modification on exams

Elsa L Gunter Programming Language Design (CS 422)
Slides based in part on previous lectures by Grigore Roşu January 20, 2016 6

/ 26

Default Unit Project

Design, formalize and create an interpreter for a new language with
specified features.

Will be an extension of previously describe language.

Students may develop alternate projects with instructor approval.

Elsa L Gunter Programming Language Design (CS 422)
Slides based in part on previous lectures by Grigore Roşu January 20, 2016 7

/ 26

Course Objectives

Learn different methods of specifying the meaning of language
features and how to reason about them

Structural Operational Semantics
Tranistion Semamtics
CHAM and K
denotational semantics
axiomatic semantics

Elsa L Gunter Programming Language Design (CS 422)
Slides based in part on previous lectures by Grigore Roşu January 20, 2016 8

/ 26

Courxe Objectives

Learn to specify different language features

Imperative Features
Funtional Features
Type Systems
Object Oriented Features

Elsa L Gunter Programming Language Design (CS 422)
Slides based in part on previous lectures by Grigore Roşu January 20, 2016 9

/ 26

Semantics

Expresses the meaning of syntax

Static semantics

Meaning based only on the form of the expression without executing it
Usually restricted to type checking / type inference

Dynamic semantics

Method of describing meaning of executing a program
Used for formal reasoning about programs and languages
Several different types:

Operational Semantics
Axiomatic Semantics
Denotational Semantics

Elsa L Gunter Programming Language Design (CS 422)
Slides based in part on previous lectures by Grigore Roşu January 20, 2016 10

/ 26

Dynamic Semantics

Different languages better suited to different types of semantics

Different types of semantics serve different purposes

Elsa L Gunter Programming Language Design (CS 422)
Slides based in part on previous lectures by Grigore Roşu January 20, 2016 11

/ 26

Operational Semantics

Start with a simple notion of machine

Describe how to execute (implement) programs of language on virtual
machine, by describing how to execute each program statement (ie,
following the structure of the program)

Meaning of program is how its execution changes the state of the
machine

Useful as basis for implementations

Elsa L Gunter Programming Language Design (CS 422)
Slides based in part on previous lectures by Grigore Roşu January 20, 2016 12

/ 26

Axiomatic Semantics

Also called Floyd-Hoare Logic

Based on formal logic (first order predicate calculus)

Axiomatic Semantics is a logical system built from axioms and
inference rules

Mainly suited to simple imperative programming languages

Elsa L Gunter Programming Language Design (CS 422)
Slides based in part on previous lectures by Grigore Roşu January 20, 2016 13

/ 26

Axiomatic Semantics

Used to formally prove a property (post-condition) of the state (the
values of the program variables) after the execution of program,
assuming another property (pre-condition) of the state before
execution

Written :
{Precondition}Program{Postcondition}

Source of idea of loop invariant

Elsa L Gunter Programming Language Design (CS 422)
Slides based in part on previous lectures by Grigore Roşu January 20, 2016 14

/ 26

Denotational Semantics

Construct a function M assigning a mathematical meaning to each
program construct

Lambda calculus often used as the range of the meaning function

Meaning function is compositional: meaning of construct built from
meaning of parts

Mainly used for proving properties of programs

Elsa L Gunter Programming Language Design (CS 422)
Slides based in part on previous lectures by Grigore Roşu January 20, 2016 15

/ 26

Natural Semantics

Aka “Big Step Semantics”

Originally introduced by Giles Kahn

Provide value for a program by rules and derivations

Rule conclusions look like

(C ,m) ⇓ m′

or
(E ,m) ⇓ v

Type derivation rules often take very similar shape

Elsa L Gunter Programming Language Design (CS 422)
Slides based in part on previous lectures by Grigore Roşu January 20, 2016 16

/ 26

Simple Imperative Programming Language #1

I ∈ Identifiers

N ∈ Numerals

E ::= N | I | E + E | E ∗ E | E − E

B ::= true | false | B&B | B or B | not B

| E < E | E = E

C ::= skip | C ;C | {C} | I ::= E

| if B then C else C fi

| while B do C od

Elsa L Gunter Programming Language Design (CS 422)
Slides based in part on previous lectures by Grigore Roşu January 20, 2016 17

/ 26

Natural Semantics of Atomic Expressions

Let m : Identifiers ⇀ Values be a partial function supplying values for
program variable names

Identifiers: (I ,m) ⇓ m(I)

Numerals are values: (N,m) ⇓ N

Booleans: (true,m) ⇓ true

(false,m) ⇓ false

Elsa L Gunter Programming Language Design (CS 422)
Slides based in part on previous lectures by Grigore Roşu January 20, 2016 18

/ 26

Boolean Expressions

(B,m) ⇓ false

(B&B ′,m) ⇓ false

(B,m) ⇓ true (B ′,m) ⇓ b

(B&B ′,m) ⇓ b

(B,m) ⇓ true

(B or B ′,m) ⇓ true

(B,m) ⇓ false (B ′,m) ⇓ b

(B or B ′,m) ⇓ b

(B,m) ⇓ true

(not B,m) ⇓ false

(B,m) ⇓ false

(not B,m) ⇓ true

Elsa L Gunter Programming Language Design (CS 422)
Slides based in part on previous lectures by Grigore Roşu January 20, 2016 19

/ 26

Relations

(E ,m) ⇓ U (E ′,m) ⇓ V U ∼ V = b

(E ∼ E ′,m) ⇓ b

By U ∼ V = b, we mean does (the meaning of) the relation ∼ hold
on the meaning of U and V

May be specified by a mathematical expression/equation or rules
matching U and V

Elsa L Gunter Programming Language Design (CS 422)
Slides based in part on previous lectures by Grigore Roşu January 20, 2016 20

/ 26

Arithmetic Expressions

(E ,m) ⇓ U (E ′,m) ⇓ V U ⊕ V = N

(E ⊕ E ′,m) ⇓ N

where N is the specified value for U ⊕ V

Elsa L Gunter Programming Language Design (CS 422)
Slides based in part on previous lectures by Grigore Roşu January 20, 2016 21

/ 26

Commands

Skip: (skip,m) ⇓ m

Assignment:
(E ,m) ⇓ V

(I ::= E ,m) ⇓ m[I ← V]

Sequencing:
(C ,m) ⇓ m′ (C ′,m′) ⇓ m′′

(C ;C ′,m) ⇓ m′′

Block:
(C ,m) ⇓ m′

({C},m) ⇓ m′

where m[I ← V](J) =

{
V if J = I
m(J) otherwise

Elsa L Gunter Programming Language Design (CS 422)
Slides based in part on previous lectures by Grigore Roşu January 20, 2016 22

/ 26

If Then Else Command

(B,m) ⇓ true (C ,m) ⇓ m′

(if B then C else C ′ fi,m) ⇓ m′

(B,m) ⇓ false (C ′,m) ⇓ m′

(if B then C else C ′ fi,m) ⇓ m′

Elsa L Gunter Programming Language Design (CS 422)
Slides based in part on previous lectures by Grigore Roşu January 20, 2016 23

/ 26

While Command

(B,m) ⇓ false

(while B do C od ,m) ⇓ m

(B,m) ⇓ true (C ,m) ⇓ m′ (while B do C od ,m′) ⇓ m′′

(while B do C od ,m) ⇓ m′′

Elsa L Gunter Programming Language Design (CS 422)
Slides based in part on previous lectures by Grigore Roşu January 20, 2016 24

/ 26

Simple Imperative Programming Language #2

I ∈ Identifiers

N ∈ Numerals

E ::= N | I | E + E | E ∗ E | E − E | I ::= E

B ::= true | false | B&B | B or B | not B

| E < E | E = E

C ::= skip | C ;C | {C} | E

| if B then C else C fi

| while B do C od

Elsa L Gunter Programming Language Design (CS 422)
Slides based in part on previous lectures by Grigore Roşu January 20, 2016 25

/ 26

