CS 421 — Unification Activity

Why

Unification is a major component of programming language theory. It is the basis of the programming language
Prolog, and concepts such as type checking and semantics make heavy use of it. In this activity you will complete
the operation of a unification engine written in Haskell.

Examples and Problems

{9(a,a) = g(b, B), h(v,7)=h(f(a),7)}

{fla,a) = f(v,2), W(B,g(v) = h(y,0)}



Code

First, review this code with another student. What does it do? How does it work?
1 module Unify where

s import qualified Data.HashMap.Strict as H
4 import Data.Maybe
5 import Data.List (intersperse)

7 data Entity = Var String

8 | Object String [Entity]

9 deriving (Eq)

10

11 instance Show Entity where

12 show (Var s) = s

13 show (Object s [1) = s

14 show (Object f xx) = concat $ £ : "(" : intersperse "," (map show xx) ++ [")"]
15

16 type Env = H.HashMap String Entity

17

18 initial :: Env

19 initial = H.empty

20

21 add :: String -> Entity -> Env -> Env
22 add x y b = H.insert x y b

23

24 contains :: String -> Env -> Bool

25 contains x b = H.member x b

26

27 unifyVar :: Entity -> Env -> Entity
s unifyVar x@(Var t) bindings

29 | contains t bindings = fromJust $ H.lookup t bindings
30 | otherwise = x
31 unifyVar x _ = x

32
33 unify :: Entity -> Entity -> Env -> Env
3+ unify x y bindings = aux (unifyVar x bindings) (unifyVar y bindings) bindings

35 where aux (Var s) x bindings = add s x bindings

36 aux x (Var s) bindings = - 277

37 aux (Object f ff) (Object g gg) bindings = —- 272
38

39

40

41 aux _ _ _ = H.empty



