
Introduction Interpreters and Compilers

Partial Evaluation

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign

Department of Computer Science



Introduction Interpreters and Compilers

Objectives
You should be able to...

I Explain the difference between Interpreters and Compilers

mathematically

I Annotate a program according to the expression binding times

I Explain the difference between online and offline partial evaluation

I Specialize a simple program according to its static input

I Describe the three Futamura projections



Introduction Interpreters and Compilers

An Interpreter

Notations

I Let S be a language.

I LetM be a program in language S.
I Let lower case letters be values in S.
I An S-interpreter is a program I such that

I(M, s, d) → x

I An S-partial evaluator is a program

P(M, s) → Ms

such that

Ms(d) = M(s, d)



Introduction Interpreters and Compilers

Some examples

P(printf, "%s") → puts

P(pow(n,x), 2) → λx . x * x

P()



Introduction Interpreters and Compilers

Basic Operation

Online

I Like eval, but distinguishes between “known” and
“unknown” values.

I Expressions that have all known sub-expressions are

specialized.

I Everything else is residualized.

I More aggressive, but can cause instability.

Offline
I A preprocessor called a binding time analyser

annotates the source program.
I Everything that is known for sure is marked as

known.
I Everything else is marked as unknown.

I The partial evaluator then follows the annotations.

I Can lose opportunity to specializes, but more

stability.



Introduction Interpreters and Compilers

BTA Example

I We underline the things that are known.

I We start with the input n.
I We annotate the “leaves”

I If all subexpressions are known, so is the expression.

I The parial evaluator will compute anything that’s underlined.

I It will unroll functions that the inputs are partially known.

1 pow n x =
2 if n > 0
3 then x * pow (n-1) x
4 else 1



Introduction Interpreters and Compilers

BTA Example

I We underline the things that are known.

I We start with the input n.
I We annotate the “leaves”

I If all subexpressions are known, so is the expression.

I The parial evaluator will compute anything that’s underlined.

I It will unroll functions that the inputs are partially known.

1 pow n x =
2 if n > 0
3 then x * pow (n-1) x
4 else 1



Introduction Interpreters and Compilers

BTA Example

I We underline the things that are known.

I We start with the input n.
I We annotate the “leaves”

I If all subexpressions are known, so is the expression.

I The parial evaluator will compute anything that’s underlined.

I It will unroll functions that the inputs are partially known.

1 pow n x =
2 if n >0
3 then x * pow (n-1) x
4 else 1



Introduction Interpreters and Compilers

BTA Example

I We underline the things that are known.

I We start with the input n.
I We annotate the “leaves”

I If all subexpressions are known, so is the expression.

I The parial evaluator will compute anything that’s underlined.

I It will unroll functions that the inputs are partially known.

1 pow n x =
2 if n >0
3 then x * pow (n-1) x
4 else 1



Introduction Interpreters and Compilers

Binding Time Analyzer

1 data AnnExp = AIntExp _
2 | AVarExp String Bool
3 | AOpExp String AnnExp AnnExp
4 ...
5 bta :: Exp -> BEnv -> AnnExp
6 bta (IntExp i) env = IntExp i
7 bta (VarExp s) env = AVarExp s bt
8 where bt = case H.lookup s env of
9 Just b -> b

10 Nothing -> False
11 bta (OpExp e1 e2) env =
12 let ae1 = bta e1 env
13 ae2 = bta e2 env
14 in AOpExp ae1 ae2 (isKnown ae1 && isKnown ae2)



Introduction Interpreters and Compilers

The First Futamura Projection

P(I, S) 7→ IS
where IS(D) = I(S,D)

Compilation

I We have fed an interpreter to our parial evaluator.

I The result is IS... this is a compiled program!

I IS usually runs 4–10 times faster than I(S, P).



Introduction Interpreters and Compilers

The Second Futamura Projection

P(P, I) 7→ PI
where PI(S) = P(I, S)
and P(I, S)(D) = IS(D) = I(S,D)

Producing a Compiler

I Notice what PI actually does.

I We wrote an interpeter, and got a compiler...

I ... for free.



Introduction Interpreters and Compilers

The Third Futamura Projection

P(P, P) 7→ PP
where PP(I) = P(P, I)
and P(P, I)(S) = PI(S) = P(I, S)
and P(I, S)(D) = IS(D) = I(S,D)

Compiler Generator

I Well, maybe not entirely free. It costs something to run P(P, I).

I But, we can specialize P to run these, so that PP is faster.

I This is called a code generator or compiler generator.


	Introduction
	Objectives

	Interpreters and Compilers

