CS 421 — Algebraic Data Type Activity

Mattox Beckman

Tuples
1. Can you write a function tupLen that takes a tuple and returns how many parts it has? For example:

Prelude> tupLen (1,5)

2

Prelude> tuplen (4,3,6,5)
4

2. Write the function assoc that takes a key, a value, and an associative list, and inserts the key-value pair into
the list, preserving the property that the list is sorted by key.

Prelude> :t assoc

assoc :: Ord a =>a ->t -> [(a, t)] -> [(a, t)]

Prelude> assoc "Jenni" 8675309 [("Emergency",911), ("Empire",5882300)]
[("Emergency",911), ("Empire",5882300), ("Jenni",8675309)]

3. Write a function get that takes a pair of pairs and two integers and traverses the pairs to find an element. 0
means “go left”, and 1 means “go right”.

For example, get 1 0 means take the left element of the right pair, as below.

Prelude> :t get

get :: (Eq a, Eq al, Num a, Num al) => a -> al -> ((t, t), (t, t)) >t
Prelude> get 1 0 ((2,4),(5,6))

5

Maybe

4. Write a function maybePlus that adds two Maybe types.

Prelude> maybePlus Nothing (Just 3)
Nothing

Prelude> maybePlus (Just 10) (Just 22)
Just 32

5. Write a function maybeMap that takes a maybe and a list and maps the function in the maybe to the list (or
else just returns the list.)

Prelude> maybeMap (Just (+1)) [1,2,3]
[2,3,4]

Prelude> maybeMap Nothing [1,2,3]
[1,2,3]

6. Write afunction 1ift that takes an operator and returns a new one that works with maybes the way maybePlus
does.

Prelude> let maybeTimes = lift (%)
Prelude> maybeTimes Nothing (Just 4)
Nothing

Prelude> maybeTimes (Just 4) (Just 3)
Just 12

Trees

Here is a data type to implement a binary tree.

data Tree a = Node a (Tree a) (Tree a)
| Empty
deriving Show

7. Write the function add :: a -> Tree a -> Tree a that will add according to the binary search tree
protocol.

8. Write a function 1ist2tree that will create a tree out of all the elements of the list.

(a) Can you do it so that the first element of the list is the root?

(b) Can you do it using higher order functions?

9. Write a function isBST that takes a tree and determines if it is in fact a binary search tree or not. The best
solution will run in O(n).

