Programming Languages and Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha
Unification Problem

Given a set of pairs of terms ("equations")
{(s₁, t₁), (s₂, t₂), ..., (sₙ, tₙ)}
(the unification problem) does there exist
a substitution σ (the unification solution)
of terms for variables such that
σ(sᵢ) = σ(tᵢ),
for all i = 1, ..., n?
Uses for Unification

- Type Inference and type checking
- Pattern matching as in OCaml
 - Can use a simplified version of algorithm
- Logic Programming - Prolog
- Simple parsing
Unification Algorithm

- Let $S = \{(s_1 = t_1), (s_2 = t_2), \ldots, (s_n = t_n)\}$ be a unification problem.

- Case $S = \{\}$: $\text{Unif}(S) = \text{Identity function}$ (i.e., no substitution)

- Case $S = \{(s, t)\} \cup S'$: Four main steps
Unification Algorithm

- **Delete:** if \(s = t \) (they are the same term) then \(\text{Unif}(S) = \text{Unif}(S') \)

- **Decompose:** if \(s = f(q_1, \ldots, q_m) \) and \(t = f(r_1, \ldots, r_m) \) (same \(f \), same \(m \)!), then
 \[
 \text{Unif}(S) = \text{Unif}(\{(q_1, r_1), \ldots, (q_m, r_m)\} \cup S')
 \]

- **Orient:** if \(t = x \) is a variable, and \(s \) is not a variable, \(\text{Unif}(S) = \text{Unif}(\{(x = s)\} \cup S') \)
Unification Algorithm

Eliminate: if \(s = x \) is a variable, and \(x \) does not occur in \(t \) (the occurs check), then

- Let \(\varphi = \{x \rightarrow t\} \)
 - \(\text{Unif}(S) = \text{Unif}(\varphi(S')) \circ \{x \rightarrow t\} \)
- Let \(\psi = \text{Unif}(\varphi(S')) \)
- \(\text{Unif}(S) = \{x \rightarrow \psi(t)\} \circ \psi \)
 - Note: \(\{x \rightarrow a\} \circ \{y \rightarrow b\} = \{y \rightarrow (\{x \rightarrow a\}(b))\} \circ \{x \rightarrow a\} \) if \(y \) not in \(a \)
Tricks for Efficient Unification

- Don’t return substitution, rather do it incrementally
- Make substitution be constant time
 - Requires implementation of terms to use mutable structures (or possibly lazy structures)
 - We won’t discuss these
Example

- x, y, z variables, f, g constructors

- Unify $\{ (f(x) = f(g(f(z), y))), (g(y, y) = x) \} = ?$
Example

- **x, y, z** variables, **f, g** constructors
- \(S = \{ (f(x) = f(g(f(z), y))), (g(y, y) = x) \} \) is nonempty

- Unify \(\{ (f(x) = f(g(f(z), y))), (g(y, y) = x) \} \) = ?
Example

- x, y, z variables, f, g constructors
- Pick a pair: \((g(y, y) = x)\)

Unify \{((f(x) = f(g(f(z), y))), (g(y, y) = x))\} = ?
Example

- **x, y, z** variables, **f, g** constructors
- Pick a pair: \((g(y, y)) = x\)
- Orient: \((x = g(y, y))\)

Unify \{\((f(x) = f(g(f(z), y))), (g(y, y) = x)\)\} =

Unify \{\((f(x) = f(g(f(z), y))), (x = g(y, y))\)\} by Orient
Example

- x, y, z variables, f, g constructors

- Unify $\{(f(x) = f(g(f(z), y))), (x = g(y, y))\} = ?$
Example

- x, y, z variables, f, g constructors
- $\{(f(x) = f(g(f(z),y))), (x = g(y,y))\}$ is non-empty

- Unify $\{(f(x) = f(g(f(z),y))), (x = g(y,y))\} = ?$
Example

- x, y, z variables, f, g constructors
- Pick a pair: $(x = g(y, y))$

- Unify $\{(f(x) = f(g(f(z), y))), (x = g(y, y))\} = ?$
Example

- **Variables and Constructors**: \(x, y, z \) variables, \(f, g \) constructors
- **Pick a Pair**: \(x = g(y, y) \)
- **Eliminate** \(x \) **with Substitution**: \(\{ x \mapsto g(y, y) \} \)
 - **Check**: \(x \) not in \(g(y, y) \)
- **Unify** \(\{(f(x) = f(g(f(z), y))), (x = g(y, y))\} = ? \)
Example

- x, y, z variables, f, g constructors
- Pick a pair: $(x = g(y, y))$
- Eliminate x with substitution $\{x \mapsto g(y, y)\}$

- Unify $\{(f(x) = f(g(f(z), y))), (x = g(y, y))\} = \{f(g(y, y)) = f(g(f(z), y))\}$

 $\circ \{x \mapsto g(y, y)\}$
Example

- x, y, z variables, f, g constructors

- Unify $\{(f(g(y,y)) = f(g(f(z),y)))\}$
 $\circ \{x \mapsto g(y,y)\} = ?$
Example

- x, y, z variables, f, g constructors
- $\{(f(g(y,y)) = f(g(f(z),y)))\}$ is non-empty

- Unify $\{(f(g(y,y)) = f(g(f(z),y)))\}$
 $\circ \{x \mapsto g(y,y)\} = ?$
Example

- x,y,z variables, f,g constructors
- Pick a pair: $(f(g(y,y)) = f(g(f(z),y)))$

- Unify $\{(f(g(y,y)) = f(g(f(z),y)))\}$
 $\circ \{x \mapsto g(y,y)\} = ?$
Example

- x, y, z variables, f, g constructors
- Pick a pair: $(f(g(y,y)) = f(g(f(z),y)))$
- Decompose: $(f(g(y,y)) = f(g(f(z),y)))$
 becomes $\{(g(y,y) = g(f(z),y))\}$

- Unify $\{(f(g(y,y)) = f(g(f(z),y)))\}$
 $\circ \{x \mapsto g(y,y)\} =$

Unify $\{(g(y,y) = g(f(z),y))\}$ $\circ \{x \mapsto g(y,y)\}$
Example

- x, y, z variables, f, g constructors
- $\{(g(y, y) = g(f(z), y))\}$ is non-empty

- Unify $\{(g(y, y) = g(f(z), y))\}$
 $\circ \{x \rightarrow g(y, y)\} = ?$
Example

- x, y, z variables, f, g constructors
- Pick a pair: $(g(y,y) = g(f(z),y))$

- Unify $\{(g(y,y) = g(f(z),y))\}$
- $\{x \mapsto g(y,y)\} = ?$
Example

- \(x, y, z\) variables, \(f, g\) constructors
- Pick a pair: \((f(g(y, y)) = f(g(f(z), y)))\)
- Decompose: \((g(y, y)) = g(f(z), y))\) becomes
 \(\{(y = f(z)); (y = y)\}\)

- Unify \(\{(g(y, y) = g(f(z), y))\} \circ \{x \mapsto g(y, y)\} =\)
 Unify \(\{(y = f(z)); (y = y)\} \circ \{x \mapsto g(y, y)\}\)
Example

- x, y, z variables, f, g constructors

- Unify $\{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y,y)\} = ?$
Example

- x, y, z variables, f, g constructors
- $\{(y = f(z)); (y = y)\} \circ \{x \mapsto g(y,y)\}$ is non-empty

- Unify $\{(y = f(z)); (y = y)\} \circ \{x \mapsto g(y,y)\} = ?$
Example

- x,y,z variables, f,g constructors
- Pick a pair: $(y = f(z))$

- Unify $\{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y,y)\} = ?$
Example

- x, y, z variables, f, g constructors
- Pick a pair: $(y = f(z))$
- Eliminate y with $\{y \rightarrow f(z)\}$
- Unify $\{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y, y)\} =$
 Unify $\{(f(z) = f(z))\}$
 \[\circ \{(y \rightarrow f(z)) \circ \{x \rightarrow g(y, y)\}\} =\]
 Unify $\{(f(z) = f(z))\}$
 \[\circ \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\}\]
Example

- x,y,z variables, f,g constructors

- Unify $\{(f(z) = f(z))\}$

 $\circ \{y \rightarrow f(z); \quad x \rightarrow g(f(z), f(z))\} = ?$
Example

- x, y, z variables, f, g constructors
- $\{ (f(z) = f(z)) \}$ is non-empty

Unify $\{ (f(z) = f(z)) \}
\circ \{ y \rightarrow f(z); x \rightarrow g(f(z), f(z)) \} = ?$
Example

- x,y,z variables, f,g constructors
- Pick a pair: $(f(z) = f(z))$

Unify $\{(f(z) = f(z))\}$

$\circ \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\} = ?$
Example

- x,y,z variables, f,g constructors
- Pick a pair: $(f(z) = f(z))$
- Delete
- Unify $\{(f(z) = f(z))\}$
 - $\circ \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\} = \text{Unify } \{\} \circ \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\}$
Example

- x,y,z variables, f,g constructors

- Unify $\{\} \circ \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\} = ?$
Example

- x, y, z variables, f, g constructors
- $\{\}$ is empty
- $\text{Unify } \{\} = \text{identity function}$
- $\text{Unify } \{\} \circ \{y \mapsto f(z); x \mapsto g(f(z), f(z))\} =$
 $$\{y \mapsto f(z); x \mapsto g(f(z), f(z))\}$$
Example

Unify \{ (f(x) = f(g(f(z),y))) , (g(y,y) = x) \} =
\{ y \rightarrow f(z) ; x \rightarrow g(f(z), f(z)) \}

\[
f(x) = f(g(f(z), y))
\]
\[
\rightarrow f(g(f(z), f(z))) = f(g(f(z), f(z)))
\]

\[
g(y , y) = x
\]
\[
\rightarrow g(f(z),f(z)) = g(f(z), f(z))
\]
Example of Failure: Decompose

- Unify\{((f(x,g(y)) = f(h(y),x))}\}
- Decompose: \((f(x,g(y)) = f(h(y),x))\)
- \(= \text{Unify}\ \{(x = h(y)), \ (g(y) = x)\}\)
- Orient: \((g(y) = x)\)
- \(= \text{Unify}\ \{(x = h(y)), \ (x = g(y))\}\)
- Eliminate: \((x = h(y))\)
- Unify \{((h(y) = g(y))) \circ \{x \rightarrow h(y)\}\}
- No rule to apply! Decompose fails!
Example of Failure: Occurs Check

- Unify\{((f(x,g(x)) = f(h(x),x))}\}
- Decompose: \((f(x,g(x)) = f(h(x),x))\)
- = Unify \{((x = h(x)), (g(x) = x))\}
- Orient: \((g(x) = x)\)
- = Unify \{((x = h(x)), (x = g(x)))\}
- No rules apply.
Three Main Topics of the Course

I.
New Programming Paradigm

II.
Language Translation

III.
Language Semantics
II : Language Translation

Type Systems

Lexing and Parsing

Interpretation
Major Phases of a Compiler

1. Source Program
 - Lex
 - Parse
 - Abstract Syntax
 - Semantic Analysis
 - Symbol Table
 - Translate
 - Intermediate Representation

2. Optimized IR
 - Optimize
 - Instruction Selection
 - Unoptimized Machine-Specific Assembly Language
 - Optimize
 - Optimized Machine-Specific Assembly Language
 - Emit code
 - Assembly Language
 - Assembler

3. Relocatable Object Code
 - Linker
 - Machine Code

Modified from “Modern Compiler Implementation in ML”, by Andrew Appel
Where We Are Going Next?

- We want to turn strings (code) into computer instructions
- Done in phases
- Turn strings into abstract syntax trees (parse)
- Translate abstract syntax trees into executable instructions (interpret or compile)
Meta-discourse

- Language Syntax and Semantics
- Syntax
 - Regular Expressions, DFSAs and NDFSA
 - Grammars
- Semantics
 - Natural Semantics
 - Transition Semantics
Language Syntax

- Syntax is the description of which strings of symbols are meaningful expressions in a language.
- It takes more than syntax to understand a language; need meaning (semantics) too.
- Syntax is the entry point.
Syntax of English Language

- **Pattern 1**

<table>
<thead>
<tr>
<th>Subject</th>
<th>Verb</th>
</tr>
</thead>
<tbody>
<tr>
<td>David</td>
<td>sings</td>
</tr>
<tr>
<td>The dog</td>
<td>barked</td>
</tr>
<tr>
<td>Susan</td>
<td>yawned</td>
</tr>
</tbody>
</table>

- **Pattern 2**

<table>
<thead>
<tr>
<th>Subject</th>
<th>Verb</th>
<th>Direct Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>David</td>
<td>sings</td>
<td>ballads</td>
</tr>
<tr>
<td>The professor</td>
<td>wants</td>
<td>to retire</td>
</tr>
<tr>
<td>The jury</td>
<td>found</td>
<td>the defendant guilty</td>
</tr>
</tbody>
</table>
Elements of Syntax

- Character set – previously always ASCII, now often 64 character sets
- Keywords – usually reserved
- Special constants – cannot be assigned to
- Identifiers – can be assigned to
- Operator symbols
- Delimiters (parenthesis, braces, brackets)
- Blanks (aka white space)
Elements of Syntax

- Expressions

 if ... then begin ... ; ... end else begin ... ; ... end

- Type expressions

 \[\text{typlexpr}_1 \rightarrow \text{typlexpr}_2\]

- Declarations (in functional languages)

 let pattern = expr

- Statements (in imperative languages)

 a = b + c

- Subprograms

 let pattern_1 = expr_1 in expr
Elements of Syntax

- Modules
- Interfaces
- Classes (for object-oriented languages)
Lexing and Parsing

- Converting strings to abstract syntax trees done in two phases
 - **Lexing**: Converting string (or streams of characters) into lists (or streams) of tokens (the “words” of the language)
 - Specification Technique: Regular Expressions
 - **Parsing**: Convert a list of tokens into an abstract syntax tree
 - Specification Technique: BNF Grammars
Formal Language Descriptions

- Regular expressions, regular grammars, finite state automata

- Context-free grammars, BNF grammars, syntax diagrams

- Whole family more of grammars and automata – covered in automata theory
Grammars

- Grammars are formal descriptions of which strings over a given character set are in a particular language
- Language designers write grammar
- Language implementers use grammar to know what programs to accept
- Language users use grammar to know how to write legitimate programs
Regular Expressions - Review

- Start with a given character set — a, b, c...
- \(L(\varepsilon) = \{"\"\} \)
- Each character is a regular expression
 - It represents the set of one string containing just that character
 - \(L(a) = \{a\} \)
If x and y are regular expressions, then xy is a regular expression

- It represents the set of all strings made from first a string described by x then a string described by y

If $L(x) = \{a,ab\}$ and $L(y) = \{c,d\}$ then $L(xy) = \{ac,ad,abc,abd\}$
If x and y are regular expressions, then $x \lor y$ is a regular expression

- It represents the set of strings described by either x or y

If $L(x) = \{a, ab\}$ and $L(y) = \{c, d\}$

then $L(x \lor y) = \{a, ab, c, d\}$
Regular Expressions

- If x is a regular expression, then so is (x)
 - It represents the same thing as x
- If x is a regular expression, then so is x^*
 - It represents strings made from concatenating zero or more strings from x

 If $L(x) = \{a, ab\}$ then $L(x^*) = \{\text{""}, a, ab, aa, aab, abab, \ldots\}$
- ϵ
 - It represents $\{\text{""}\}$, set containing the empty string
- \emptyset
 - It represents $\{\}$, the empty set
Example Regular Expressions

- \((0 \lor 1)^* 1\)
 - The set of all strings of 0’s and 1’s ending in 1, \(\{1, 01, 11, \ldots\}\)

- \(a^* b(a^*)\)
 - The set of all strings of a’s and b’s with exactly one b

- \(((01) \lor (10))^*\)
 - You tell me

- Regular expressions (equivalently, regular grammars) important for lexing, breaking strings into recognized words
Right Regular Grammars

- Subclass of BNF (covered in detail sool)
- Only rules of form
 \[<\text{nonterminal}> ::= <\text{terminal}> <\text{nonterminal}>\] or
 \[<\text{nonterminal}> ::= <\text{terminal}>\] or
 \[<\text{nonterminal}> ::= \varepsilon\]
- Defines same class of languages as regular expressions
- Important for writing lexers (programs that convert strings of characters into strings of tokens)
- Close connection to nondeterministic finite state automata – nonterminals \(\cong\) states; rule \(\cong\) edge
Example

- Right regular grammar:

 `<Balanced> ::= ε`
 `<Balanced> ::= 0<OneAndMore>`
 `<Balanced> ::= 1<ZeroAndMore>`
 `<OneAndMore> ::= 1<Balanced>`
 `<ZeroAndMore> ::= 0<Balanced>`

- Generates even length strings where every initial substring of even length has same number of 0’s as 1’s
Implementing Regular Expressions

- Regular expressions reasonable way to generate strings in language
- Not so good for recognizing when a string is in language
- Problems with Regular Expressions
 - which option to choose,
 - how many repetitions to make
- Answer: finite state automata
- Should have seen in CS374
Example: Lexing

- Regular expressions good for describing lexemes (words) in a programming language
 - Identifier = \((a \lor b \lor \ldots \lor z \lor A \lor B \lor \ldots \lor Z) (a \lor b \lor \ldots \lor z \lor A \lor B \lor \ldots \lor Z \lor 0 \lor 1 \lor \ldots \lor 9)^*\)
 - Digit = \((0 \lor 1 \lor \ldots \lor 9)\)
 - Number = \(0 \lor (1 \lor \ldots \lor 9)(0 \lor \ldots \lor 9)^* \lor \sim (1 \lor \ldots \lor 9)(0 \lor \ldots \lor 9)^*\)
 - Keywords: if = if, while = while,...
Lexing

- Different syntactic categories of “words”: tokens

Example:

- Convert sequence of characters into sequence of strings, integers, and floating point numbers.

 "asd 123 jkl 3.14" will become:
 [String "asd"; Int 123; String "jkl"; Float 3.14]
Lex, ocamllex

- Could write the reg exp, then translate to DFA by hand
 - A lot of work
- Better: Write program to take reg exp as input and automatically generates automata
- Lex is such a program
- ocamllex version for ocaml
How to do it

- To use regular expressions to parse our input we need:
 - Some way to identify the input string — call it a lexing buffer
 - Set of regular expressions,
 - Corresponding set of actions to take when they are matched.
How to do it

- The lexer will take the regular expressions and generate a state machine.
- The state machine will take our lexing buffer and apply the transitions...
- If we reach an accepting state from which we can go no further, the machine will perform the appropriate action.
Mechanics

- Put table of reg exp and corresponding actions (written in ocaml) into a file `<filename>.mll`
- Call `ocamllex `<filename>.mll`
- Produces Ocaml code for a lexical analyzer in file `<filename>.ml`
Sample Input

rule main = parse

['0'-'9']+ { print_string "Int\n"}
| ['0'-'9']+.'['0'-'9']+ { print_string "Float\n"}
| ['a'-'z']+ { print_string "String\n"}
| _ { main lexbuf }

{ let newlexbuf = (Lexing.from_channel stdin) in main newlexbuf }
General Input

```plaintext
{ header }

let ident = regexp ...

rule entrypoint [arg1... argn] = parse
    regexp { action }
    | ...
    | ...
    | regexp { action }

and entrypoint [arg1... argn] = parse ... and
... 

{ trailer }
```
Ocamllex Input

- *header* and *trailer* contain arbitrary ocaml code put at top and bottom of `<filename>.ml`

- let *ident* = *regexp* ... Introduces *ident* for use in later regular expressions
<filename>.ml contains one lexing function per *entrypoint*

- Name of function is name given for *entrypoint*
- Each entry point becomes an Ocaml function that takes $n+1$ arguments, the extra implicit last argument being of type Lexing.lexbuf

arg1... argn are for use in *action*
Ocamllex Regular Expression

- Single quoted characters for letters: ‘a’
- _: (underscore) matches any letter
- Eof: special “end_of_file” marker
- Concatenation same as usual
- “string”: concatenation of sequence of characters
- e_1 / e_2: choice - what was $e_1 \lor e_2$
Ocamlllex Regular Expression

- \([c_1 - c_2]\): choice of any character between first and second inclusive, as determined by character codes
- \([^c_1 - c_2]\): choice of any character NOT in set
- \(e^*\): same as before
- \(e+\): same as \(e\ e^*\)
- \(e?\): option - was \(e \lor \varepsilon\)
- \((e)\): same as \(e\)
Ocamllex Regular Expression

- $e_1 \# e_2$: the characters in e_1 but not in e_2; e_1 and e_2 must describe just sets of characters
- **ident**: abbreviation for earlier reg exp in
 let ident = regexp
- e_1 as id: binds the result of e_1 to id to be used in the associated action
More details can be found at

Version for ocaml 4.07:
https://v2.ocaml.org/releases/4.07/htmlman/lexyacc.html

Current version (ocaml 4.14)
https://v2.ocaml.org/releases/4.14/htmlman/lexyacc.html

(same, except formatting, I think)
End of Lect 18
Example: test.mll

```ml
{ type result = Int of int | Float of float | String of string }

let digit = ['0'- '9']

let digits = digit +

let lower_case = ['a'- 'z']

let upper_case = ['A'- 'Z']

let letter = upper_case | lower_case

let letters = letter +
```
Example : test.mll

rule main = parse
 (digits)'.'digits as f { Float (float_of_string f) }
| digits as n { Int (int_of_string n) }
| letters as s { String s}
| _ { main lexbuf }
{ let newlexbuf = (Lexing.from_channel stdin) in
print_newline ();
main newlexbuf }
Example

```ocaml
# use "test.ml";;
...
val main : Lexing.lexbuf -> result = <fun>
val __ocaml_lex_main_rec : Lexing.lexbuf -> int ->
   result = <fun>
hi there 234 5.2
- : result = String "hi"
```

What happened to the rest?!?
Example

```plaintext
# let b = Lexing.from_channel stdin;;
# main b;;
hi 673 there
- : result = String "hi"
# main b;;
- : result = Int 673
# main b;;
- : result = String "there"
```
Your Turn

- Work on MP8
 - Add a few keywords
 - Implement booleans and unit
 - Implement Ints and Floats
 - Implement identifiers
Problem

- How to get lexer to look at more than the first token at one time?

- Answer: *action* has to tell it to -- recursive calls
 - Not what you want to sew this together with ocamlyacc

- Side Benefit: can add “state” into lexing

- Note: already used this with the _ case
Example

rule main = parse
 (digits) '.' digits as f { Float (float_of_string f) :: main lexbuf}
| digits as n { Int (int_of_string n) :: main lexbuf }
| letters as s { String s :: main lexbuf }
| eof { [] }
| _ { main lexbuf }
Example Results

hi there 234 5.2

- : result list = [String "hi"; String "there"; Int 234; Float 5.2]

Used Ctrl-d to send the end-of-file signal
Dealing with comments

First Attempt

let open_comment = "(*"
let close_comment = "*)"

rule main = parse
 (digits) '.' digits as f { Float (float_of_string f) :: main lexbuf}
| digits as n { Int (int_of_string n) :: main lexbuf }
| letters as s { String s :: main lexbuf}
Dealing with comments

open_comment	{ comment lexbuf}
eof	{ [] }
_	{ main lexbuf }
_	{ main lexbuf }

and comment = parse

close_comment	{ main lexbuf }
_	{ comment lexbuf }
Dealing with nested comments

rule main = parse ...
 | open_comment { comment 1 lexbuf}
 | eof { [] }
 | _ { main lexbuf }
and comment depth = parse
 open_comment { comment (depth+1) lexbuf }
 close_comment { if depth = 1
 then main lexbuf
 else comment (depth - 1) lexbuf }
 _ { comment depth lexbuf }
Dealing with nested comments

```plaintext
rule main = parse
  (digits) '.' digits as f { Float (float_of_string f) ::
    main lexbuf}
| digits as n          { Int (int_of_string n) :: main lexbuf } 
| letters as s         { String s :: main lexbuf } 
| open_comment         { (comment 1 lexbuf} 
| eof                  { [] } 
| _ { main lexbuf }
```
Dealing with nested comments

and comment depth = parse

 open_comment { comment (depth+1) lexbuf }
| close_comment { if depth = 1 then main lexbuf else comment (depth - 1) lexbuf }
| _ { comment depth lexbuf }
Types of Formal Language Descriptions

- Regular expressions, regular grammars
- Context-free grammars, BNF grammars, syntax diagrams
- Finite state automata
- Pushdown automata
- Whole family more of grammars and automata – covered in automata theory
Sample Grammar

- Language: Parenthesized sums of 0’s and 1’s

- `<Sum> ::= 0`
- `<Sum> ::= 1`
- `<Sum> ::= <Sum> + <Sum>`
- `<Sum> ::= (<Sum>)`
BNF Grammars

- Start with a set of characters, \(a, b, c, \ldots \)
 - We call these *terminals*
- Add a set of different characters, \(X, Y, Z, \ldots \)
 - We call these *nonterminals*
- One special nonterminal \(S \) called *start symbol*
BNF Grammars

- BNF rules (aka *productions*) have form
 \[X ::= y \]
 where \(X\) is any nonterminal and \(y\) is a string of terminals and nonterminals

- BNF *grammar* is a set of BNF rules such that every nonterminal appears on the left of some rule
Sample Grammar

- Terminals: 0 1 + ()
- Nonterminals: <Sum>
- Start symbol = <Sum>

<Sum> ::= 0
<Sum> ::= 1
<Sum> ::= <Sum> + <Sum>
<Sum> ::= (<Sum>)

Can be abbreviated as
<Sum> ::= 0 | 1
 | <Sum> + <Sum> | (<Sum>)
Given rules

\[X ::= yZw \text{ and } Z ::= \nu \]

we may replace \(Z \) by \(\nu \) to say

\[X \Rightarrow yZw \Rightarrow y\nu w \]

Sequence of such replacements called \textit{derivation}

Derivation called \textit{right-most} if always replace the right-most non-terminal
BNF Derivations

- Start with the start symbol:

\[\langle \text{Sum} \rangle \Rightarrow \]
BNF Derivations

- Pick a non-terminal

\(<\text{Sum}>\) =>
BNF Derivations

- Pick a rule and substitute:
 - \(<\text{Sum}\> ::= <\text{Sum}\> + <\text{Sum}\>\)

\(<\text{Sum}\> \Rightarrow <\text{Sum}\> + <\text{Sum} >\)
Pick a non-terminal:

<Sum> => <Sum> + <Sum>
BNF Derivations

Pick a rule and substitute:

- `<Sum> ::= (<Sum>)`

`<Sum> => <Sum> + <Sum>`

`=> (<Sum>) + <Sum>`
BNF Derivations

- Pick a non-terminal:

\[
<\text{Sum}> \Rightarrow <\text{Sum}> + <\text{Sum}>
\]

\[
\Rightarrow (<\text{Sum}>) + <\text{Sum}>
\]
Pick a rule and substitute:

- `<Sum> ::= <Sum> + <Sum>`

`<Sum> => <Sum> + <Sum>`

`=> (<Sum>) + <Sum>`

`=> ((<Sum> + <Sum>)) + <Sum>`
BNF Derivations

1. Pick a non-terminal:

 \[
 \langle \text{Sum} \rangle \Rightarrow \langle \text{Sum} \rangle + \langle \text{Sum} \rangle \\
 \Rightarrow (\langle \text{Sum} \rangle) + \langle \text{Sum} \rangle \\
 \Rightarrow (\langle \text{Sum} \rangle + \langle \text{Sum} \rangle) + \langle \text{Sum} \rangle
 \]
Pick a rule and substitute:

- `<Sum>::= 1`

`<Sum>` => `<Sum>` + `<Sum>`

=> (`<Sum>`) + `<Sum>`

=> (`<Sum>` + `<Sum>`) + `<Sum>`

=> (`<Sum>` + 1) + `<Sum>`
BNF Derivations

Pick a non-terminal:

\[<\text{Sum}> \rightarrow <\text{Sum}> + <\text{Sum}> \]
\[\rightarrow (<\text{Sum}>) + <\text{Sum}> \]
\[\rightarrow (<\text{Sum}> + <\text{Sum}>) + <\text{Sum}> \]
\[\rightarrow (<\text{Sum}> + 1) + <\text{Sum}> \]
BNF Derivations

- Pick a rule and substitute:
 - `<Sum> ::= 0`

```plaintext
<Sum> => <Sum> + <Sum>

=> ( <Sum> ) + <Sum>

=> ( <Sum> + <Sum> ) + <Sum>

=> ( <Sum> + 1 ) + <Sum>

=> ( <Sum> + 1 ) + 0
```
Pick a non-terminal:

\[\text{<Sum>} \Rightarrow \text{<Sum>} + \text{<Sum>} \]
\[\Rightarrow (\text{<Sum>}) + \text{<Sum>} \]
\[\Rightarrow (\text{<Sum>} + \text{<Sum>}) + \text{<Sum>} \]
\[\Rightarrow (\text{<Sum>} + 1) + \text{<Sum>} \]
\[\Rightarrow (\text{<Sum>} + 1) + 0 \]
BNF Derivations

Pick a rule and substitute

- `<Sum> ::= 0`

- `<Sum> => <Sum> + <Sum>`

 => (`<Sum> `) + `<Sum>`

 => (`<Sum> + `<Sum>`) + `<Sum>`

 => (`<Sum> + 1 `) + `<Sum>`

 => (`<Sum> + 1 `) 0

 => (0 + 1) + 0
BNF Derivations

(0 + 1) + 0 is generated by grammar

<Sum> => <Sum> + <Sum>

=> (<Sum>) + <Sum>

=> (<Sum> + <Sum>) + <Sum>

=> (<Sum> + 1) + <Sum>

=> (<Sum> + 1) + 0

=> (0 + 1) + 0
BNF Derivations

- Pick a non-terminal:

\[
\text{<Sum>} \Rightarrow \text{<Sum>} + \text{<Sum>}
\]

\[
\Rightarrow (\text{<Sum>}) + \text{<Sum>}
\]

\[
\Rightarrow (\text{<Sum>} + \text{<Sum>}) + \text{<Sum>}
\]

\[
\Rightarrow (\text{<Sum>} + 1) + \text{<Sum>}
\]