Programming Languages and Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha
Terminology: Review

- A function is in **Direct Style** when it returns its result back to the caller.

- A function is in **Continuation Passing Style** when it, and every function call in it, passes its result to another function.

- A **Tail Call** occurs when a function returns the result of another function call without any more computations (e.g., tail recursion)

- Instead of returning the result to the caller, we pass it forward to another function giving the computation after the call.
CPS Transformation

- Step 1: Add continuation argument to any function definition:
 - let \(f \) arg = e \(\Rightarrow \) let \(f \) arg k = e
 - Idea: Every function takes an extra parameter saying where the result goes

- Step 2: A simple expression in tail position should be passed to a continuation instead of returned:
 - return a \(\Rightarrow \) k a
 - Assuming a is a constant or variable.
 - “Simple” = “No available function calls.”
CPS Transformation

- Step 3: Pass the current continuation to every function call in tail position
 - return f arg ⇒ f arg k
 - The function “isn’t going to return,” so we need to tell it where to put the result.
CPS Transformation

- Step 4: Each function call not in tail position needs to be converted to take a new continuation (containing the old continuation as appropriate)
 - return \(\text{op (f arg)} \Rightarrow f \text{ arg (fun r -> k(op r))} \)
 - \(\text{op} \) represents a primitive operation

- return \(\text{g(f arg)} \Rightarrow f \text{ arg (fun r-> g r k)} \)
Example

Before:

```ocaml
let rec add_list lst =
  match lst with
  | []  -> 0
  | 0 :: xs -> add_list xs
  | x :: xs -> (+) x (add_list xs);
```

After:

```ocaml
let rec add_listk lst k =
  (* rule 1 *)
  match lst with
  | []  -> k 0 (* rule 2 *)
  | 0 :: xs -> add_listk xs k
  | x :: xs -> add_listk xs
    (fun r -> k ((+) x r));
  (* rule 4 *)
```
Example

Before:
let rec mem (y, lst) =
match lst with
 [] -> false
| x :: xs ->
 if (x = y)
 then true
 else mem(y, xs);

After:
let rec memk (y, lst) k =
 (* rule 1 *) match lst with
 [] -> k false
| x :: xs -> eqk (x, y)
 (fun b ->
 if b (* rule 4 *)
 then k true (* rule 2 *)
 else memk (y, xs) (* rule 3 *);)
Example

Before:
let rec mem (y,lst) =
match lst with
 [] -> false
| x :: xs ->
 if (x = y) then true
 else mem(y,xs);;

After:
let rec memk (y,lst) k =
 (* rule 1 *)
 match lst with
 | [] -> k false (* rule 2 *)
 | x :: xs ->
 eqk (x, y) (fun b -> if b then k true (* rule 2 *) else memk (y, xs) (* rule 3 *)

 (* rule 4 *)
Example

Before:
let rec mem (y,lst) =
 match lst with
 [] -> false
| x :: xs ->
 if (x = y)
 then true
 else mem(y,xs);

After:
let rec memk (y,lst) k =
 (* rule 1 *)
 match lst with
 | [] -> k false (* rule 2 *)
 | x :: xs ->
 if (x = y)
 then k true (* rule 2 *)
 else memk (y, xs) k (* rule 3 *)
Example

Before:

let rec mem (y, lst) =
 match lst with
 [] -> false
 | x :: xs ->
 if (x = y)
 then true
 else mem(y, xs);;

After:

let rec memk (y, lst) k =
 (* rule 1 *)
 match lst with
 | [] -> k false (* rule 2 *)
 | x :: xs ->
 eqk (x, y)
 (fun b ->
 if b (* rule 4 *)
 then k true (* rule 2 *)
 else memk(y, xs) (* rule 3 *))

Example

Before:
let rec mem (y,lst) =
match lst with
 [] -> false
| x :: xs ->
 if (x = y)
 then true
 else mem(y,xs);;

After:
let rec memk (y,lst) k =
 (* rule 1 *)
 match lst with
 | [] -> k false (* rule 2 *)
 | x :: xs ->
 eqk (x, y)
 (fun b -> if b (* rule 4 *)
 then k true (* rule 2 *)
 else memk (y, xs) (* rule 3 *))
 then k true (* rule 2 *)
 else memk (y, xs) (* rule 3 *)
Example

Before:
let rec mem (y,lst) =
match lst with
[] -> false
| x :: xs ->
 if (x = y)
 then true
 else mem(y,xs);;

After:
let rec memk (y,lst) k =
(* rule 1 *)
match lst with
| [] -> k false (* rule 2 *)
| x :: xs ->
 eqk (x, y)
 (fun b ->if b (* rule 4 *)
 then k true (* rule 2 *)
 else memk (y, xs) k (* rule 3 *))
Example

Before:
let rec mem (y,lst) =
match lst with
 [] -> false
| x :: xs ->
 if (x = y)
 then true
 else mem(y,xs);;

After:
let rec memk (y,lst) k =
 (* rule 1 *)
match lst with
 [] -> k false (* rule 2 *)
| x :: xs ->
 eqk (x, y)
 (fun b ->if b (* rule 4 *)
 then k true (* rule 2 *)
 else memk (y, xs) k (* rule 3 *))
Data type in Ocaml: lists

- Frequently used lists in recursive program
- Matched over two structural cases
 - `[]` - the empty list
 - `(x :: xs)` a non-empty list
- Covers all possible lists
- type `'a list = [] | (::) of 'a * 'a list`
 - Not quite legitimate declaration because of special syntax
Variants - Syntax (slightly simplified)

- type \(\text{name} = C_1 [\text{of } ty_1] | \ldots | C_n [\text{of } ty_n] \)
- Introduce a type called \(\text{name} \)
- \((\text{fun } x \rightarrow C_i x) : ty_1 \rightarrow \text{name}\)
- \(C_i\) is called a constructor; if the optional type argument is omitted, it is called a constant
- Constructors are the basis of almost all pattern matching
Enumeration Types as Variants

An enumeration type is a collection of distinct values.

In C and Ocaml they have an order structure; order by order of input.
type weekday = Monday | Tuesday | Wednesday
| Thursday | Friday | Saturday | Sunday;;

type weekday =
 Monday
| Tuesday
| Wednesday
| Thursday
| Friday
| Saturday
| Sunday
Functions over Enumerations

let day_after day = match day with
 Monday -> Tuesday
| Tuesday -> Wednesday
| Wednesday -> Thursday
| Thursday -> Friday
| Friday -> Saturday
| Saturday -> Sunday
| Sunday -> Monday;;

val day_after : weekday -> weekday = <fun>
Functions over Enumerations

let rec days_later n day =
match n with 0 -> day
| _ -> if n > 0
 then day_after (days_later (n - 1) day)
else days_later (n + 7) day;;
val days_later : int -> weekday -> weekday
 = <fun>
Functions over Enumerations

days_later 2 Tuesday;;
- : weekday = Thursday

days_later (-1) Wednesday;;
- : weekday = Tuesday

days_later (-4) Monday;;
- : weekday = Thursday
Problem:

type weekday = Monday | Tuesday | Wednesday
| Thursday | Friday | Saturday | Sunday

- Write function is_weekend : weekday -> bool
 let is_weekend day =
Problem:

type weekday = Monday | Tuesday | Wednesday
 | Thursday | Friday | Saturday | Sunday

- Write function is_weekend : weekday -> bool

let is_weekend day =
 match day with Saturday -> true
 | Sunday -> true
 | _ -> false
Example Enumeration Types

```
# type bin_op = IntPlusOp | IntMinusOp
| EqOp | CommaOp | ConsOp

# type mon_op = HdOp | TlOp | FstOp
| SndOp
```
Disjoint Union Types

- Disjoint union of types, with some possibly occurring more than once

- We can also add in some new singleton elements
Disjoint Union Types

type id = DriversLicense of int | SocialSecurity of int | Name of string;;

type id = DriversLicense of int | SocialSecurity of int | Name of string

let check_id id = match id with
 DriversLicense num ->
 not (List.mem num [13570; 99999])
 | SocialSecurity num -> num < 900000000
 | Name str -> not (str = "John Doe");;

val check_id : id -> bool = <fun>
Problem

- Create a type to represent the currencies for US, UK, Europe and Japan
Problem

Create a type to represent the currencies for US, UK, Europe and Japan

type currency =
 Dollar of int
| Pound of int
| Euro of int
| Yen of int
Example Disjoint Union Type

type const =
 BoolConst of bool
| IntConst of int
| FloatConst of float
| StringConst of string
| NilConst
| UnitConst
Example Disjoint Union Type

```ocaml
# type const = BoolConst of bool |
     IntConst of int | FloatConst of float |
     StringConst of string | NilConst |
     UnitConst
```

- How to represent 7 as a const?
- **Answer:** `IntConst 7`
Polymorphism in Variants

- The type 'a option is gives us something to represent non-existence or failure.

```
# type 'a option = Some of 'a | None;;
type 'a option = Some of 'a | None
```

- Used to encode partial functions.
- Often can replace the raising of an exception.
Functions producing option

```ocaml
# let rec first p list =
    match list with [] -> None
  | (x::xs) -> if p x then Some x else first p xs;;
valuelfirst : ('a -> bool) -> 'a list -> 'a option = <fun>
# first (fun x -> x > 3) [1;3;4;2;5];;
- : int option = Some 4
# first (fun x -> x > 5) [1;3;4;2;5];;
- : int option = None
```
Functions over option

let result_ok r =
 match r with None -> false
 | Some _ -> true;;
val result_ok : 'a option -> bool = <fun>

result_ok (first (fun x -> x > 3) [1;3;4;2;5]);;
- : bool = true

result_ok (first (fun x -> x > 5) [1;3;4;2;5]);;
- : bool = false
Problem

- Write a hd and tl on lists that doesn’t raise an exception and works at all types of lists.
Problem

- Write a hd and tl on lists that doesn’t raise an exception and works at all types of lists.

- let hd list =
 match list with [] -> None
 | (x::xs) -> Some x

- let tl list =
 match list with [] -> None
 | (x::xs) -> Some xs
Mapping over Variants

```ocaml
# let optionMap f opt =
  match opt with
  | None -> None
  | Some x -> Some (f x);

val optionMap : ('a -> 'b) -> 'a option -> 'b option = <fun>

# optionMap
  (fun x -> x - 2)
  (first (fun x -> x > 3) [1;3;4;2;5]);;
- : int option = Some 2
```
Folding over Variants

let optionFold someFun noneVal opt =
 match opt with None -> noneVal
 | Some x -> someFun x;;
val optionFold : ('a -> 'b) -> 'b -> 'a option -> 'b = <fun>

let optionMap f opt =
 optionFold (fun x -> Some (f x)) None opt;;
val optionMap : ('a -> 'b) -> 'a option -> 'b option = <fun>
Recursive Types

- The type being defined may be a component of itself
Recursive Data Types

type int_Bin_Tree =
Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree);

type int_Bin_Tree = Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)
Recursive Data Type Values

let bin_tree =

Node(Node(Leaf 3, Leaf 6), Leaf (-7));;

val bin_tree : int_Bin_Tree = Node (Node (Leaf 3, Leaf 6), Leaf (-7))
Recursive Data Type Values

```
bin_tree = Node
          /    \
   Node   Leaf (-7)
 /          /
Leaf 3    Leaf 6
```
Recursive Functions

let rec first_leaf_value tree =
 match tree with (Leaf n) -> n
 | Node (left_tree, right_tree) ->
 first_leaf_value left_tree;;
val first_leaf_value : int_Bin_Tree -> int = <fun>

let left = first_leaf_value bin_tree;;
val left : int = 3
Recursive Data Types

```ocaml
# type exp =
    | VarExp of string
    | ConstExp of const
    | MonOpAppExp of mon_op * exp
    | BinOpAppExp of bin_op * exp * exp
    | IfExp of exp* exp * exp
    | AppExp of exp * exp
    | FunExp of string * exp
```
Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp
 | EqOp | CommaOp | ConsOp | ...

type const = BoolConst of bool | IntConst of int |
 ...

type exp = VarExp of string | ConstExp of const
 | BinOpAppExp of bin_op * exp * exp | ...

How to represent 6 as an exp?
Recursive Data Types

```haskell
# type bin_op = IntPlusOp | IntMinusOp
    | EqOp | CommaOp | ConsOp | ...
# type const = BoolConst of bool | IntConst of int | ...
# type exp = VarExp of string | ConstExp of const
    | BinOpAppExp of bin_op * exp * exp | ...
```

- How to represent 6 as an exp?
- Answer: ConstExp (IntConst 6)
Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp
 | EqOp | CommaOp | ConsOp | ...

type const = BoolConst of bool | IntConst of int | ...

type exp = VarExp of string | ConstExp of const
 | BinOpAppExp of bin_op * exp * exp | ...

- How to represent \((6, 3)\) as an exp?
type bin_op = IntPlusOp | IntMinusOp
 | EqOp | CommaOp | ConsOp | ...
type const = BoolConst of bool | IntConst of int |
 ...
type exp = VarExp of string | ConstExp of const
 | BinOpAppExp of bin_op * exp * exp | ...

- How to represent (6, 3) as an exp?
- BinOpAppExp (CommaOp, ConstExp (IntConst 6), ConstExp (IntConst 3))
Recursive Data Types

```ocaml
# type bin_op = IntPlusOp | IntMinusOp | EqOp | CommaOp | ConsOp | ...
# type const = BoolConst of bool | IntConst of int | ...
# type exp = VarExp of string | ConstExp of const | BinOpAppExp of bin_op * exp * exp | ...
```

How to represent [(6, 3)] as an exp?

```ocaml
BinOpAppExp (ConsOp, BinOpAppExp (CommaOp, ConstExp (IntConst 6), ConstExp (IntConst 3)), ConstExp NilConst))));;
```
Problem

type int_Bin_TreeNode = Leaf of int
| Node of (int_Bin_TreeNode * int_Bin_TreeNode);

- Write sum_tree : int_Bin_TreeNode -> int
- Adds all ints in tree

let rec sum_tree t =
Problem

```
type int_Bin_Tree = Leaf of int
| Node of (int_Bin_Tree * int_Bin_Tree);
```

- Write `sum_tree : int_Bin_Tree -> int`
- Adds all ints in tree

```
let rec sum_tree t =
  match t with
    Leaf n -> n
  | Node(t1, t2) -> sum_tree t1 + sum_tree t2
```
Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
| BinOpAppExp of bin_op * exp * exp
| FunExp of string * exp | AppExp of exp * exp

- How to count the number of variables in an exp?
Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
| BinOpAppExp of bin_op * exp * exp
| FunExp of string * exp | AppExp of exp * exp

- How to count the number of variables in an exp?

let rec varCnt exp =
match exp with VarExp x ->
| ConstExp c ->
| BinOpAppExp (b, e1, e2) ->
| FunExp (x,e) ->
| AppExp (e1, e2) ->
Recursion over Recursive Data Types

```ocaml
# type exp = VarExp of string | ConstExp of const
  | BinOpAppExp of bin_op * exp * exp
  | FunExp of string * exp | AppExp of exp * exp

- How to count the number of variables in an exp?

# let rec varCnt exp =
  match exp with VarExp x -> 1
  | ConstExp c -> 0
  | BinOpAppExp (b, e1, e2) -> varCnt e1 + varCnt e2
  | FunExp (x,e) -> 1 + varCnt e
  | AppExp (e1, e2) -> varCnt e1 + varCnt e2
```
Your turn now

Try Problem 3 on MP5
Mapping over Recursive Types

```ml
# let rec ibtreeMap f tree =
    match tree with (Leaf n) -> Leaf (f n)
  | Node (left_tree, right_tree) ->
     Node (ibtreeMap f left_tree, ibtreeMap f right_tree);

val ibtreeMap : (int -> int) -> int_Bin_Tree -> int_Bin_Tree = <fun>
```
Mapping over Recursive Types

ibtreeMap ((+) 2) bin_tree;;

- : int_Bin_Tree = Node (Node (Leaf 5, Leaf 8), Leaf (-5))
Folding over Recursive Types

let rec ibtreeFoldRight leafFun nodeFun tree =
match tree with Leaf n -> leafFun n
| Node (left_tree, right_tree) ->
 nodeFun
 (ibtreeFoldRight leafFun nodeFun left_tree)
 (ibtreeFoldRight leafFun nodeFun right_tree);;
val ibtreeFoldRight : (int -> 'a) -> ('a -> 'a -> 'a) ->
 int_Bin_Tree -> 'a = <fun>
Folding over Recursive Types

let tree_sum =

 ibtreeFoldRight (fun x -> x) (+);

val tree_sum : int_Bin_Tree -> int = <fun>

tree_sum bin_tree;;

- : int = 2
600 minutes
Mutually Recursive Types

type 'a tree = TreeLeaf of 'a
 | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree
 | More of ('a tree * 'a treeList);

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList)
Mutually Recursive Types - Values

```ocaml
# let tree =
TreeNode
  (More (TreeLeaf 5,
    (More (TreeNode
      (More (TreeLeaf 3,
        Last (TreeLeaf 2)))))
    Last (TreeLeaf 7)))
```

Mutually Recursive Types - Values

val tree : int tree =
 TreeNode
 (More
 (TreeLeaf 5,
 More
 (TreeNode (More (TreeLeaf 3, Last (TreeLeaf 2))), Last (TreeLeaf 7))))
Mutually Recursive Types - Values

TreeNode

More

TreeLeaf

More

Last

TreeLeaf

More

Last

TreeLeaf

More

3

2
Mutually Recursive Types - Values

A more conventional picture

5

3

2

7
let rec fringe tree =
 match tree with (TreeLeaf x) -> [x]
 | (TreeNode list) -> list_fringe list
and list_fringe tree_list =
 match tree_list with (Last tree) -> fringe tree
 | (More (tree,list)) ->
 (fringe tree) @ (list_fringe list);;

val fringe : 'a tree -> 'a list = <fun>
val list_fringe : 'a treeList -> 'a list = <fun>
Mutually Recursive Functions

fringe tree;

- : int list = [5; 3; 2; 7]
Problem

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);

Define tree_size
Problem

```ocaml
# type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);

Define tree_size
let rec tree_size t =
  match t with TreeLeaf _ ->>
  | TreeNode ts ->
```
Problem

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size

let rec tree_size t =
 match t with TreeLeaf _ -> 1
 | TreeNode ts -> treeList_size ts
Problem

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList)

Define tree_size and treeList_size

let rec tree_size t =
 match t with
 | TreeLeaf _ -> 1
 | TreeNode ts -> treeList_size ts

and treeList_size ts =
Problem

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);

Define tree_size and treeList_size

let rec tree_size t =
 match t with TreeLeaf _ -> 1
 | TreeNode ts -> treeList_size ts

and treeList_size ts =
 match ts with Last t ->
 | More t ts' ->
Problem

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size

let rec tree_size t =
 match t with TreeLeaf _ -> 1
 | TreeNode ts -> treeList_size ts

and treeList_size ts =
 match ts with Last t -> tree_size t
 | More t ts' -> tree_size t + treeList_size ts'
Problem

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);

Define tree_size and treeList_size

let rec tree_size t =
 match t with TreeLeaf _ -> 1
 | TreeNode ts -> treeList_size ts

and treeList_size ts =
 match ts with Last t -> tree_size t
 | More t ts' -> tree_size t + treeList_size ts'
Nested Recursive Types

```ocaml
# type 'a labeled_tree =
   TreeNode (\a \a labeled_tree list);

type 'a labeled_tree = TreeNode ('a * 'a labeled_tree list)
```

type 'a labeled_tree =
 TreeNode ('a * 'a labeled_tree list);;

type 'a labeled_tree = TreeNode ('a * 'a labeled_tree list)
Nested Recursive Type Values

let ltree =
TreeNode(5,
 [TreeNode (3, []);
 TreeNode (2, [TreeNode (1, []);
 TreeNode (7, []))];
 TreeNode (5, [])]);
val ltree : int labeled_tree =
TreeNode
(5,
 [TreeNode (3, []); TreeNode (2,
 [TreeNode (1, []); TreeNode (7, [])]);
 TreeNode (5, [])])
Nested Recursive Type Values

Ltree = TreeNode(5)

```
TreeNode(3)   TreeNode(2)   TreeNode(5)
[ ]             [ ]        [ ]
TreeNode(1)  TreeNode(7)
[ ]              [ ]
```

[]
Nested Recursive Type Values

```
  5
 / \
3   2
 / \
1   7
```

5

1

7
Mutually Recursive Functions

```ocaml
# let rec flatten_tree labtree =
match labtree with TreeNode (x,treelist) -> x::flatten_tree_list treelist
and flatten_tree_list treelist =
match treelist with [] -> []
| labtree::labtrees -> flatten_tree labtree
@ flatten_tree_list labtrees;;
```
Mutually Recursive Functions

val flatten_tree : 'a labeled_tree -> 'a list = <fun>
val flatten_tree_list : 'a labeled_tree list -> 'a list = <fun>

flatten_tree ltree;;
- : int list = [5; 3; 2; 1; 7; 5]

- Nested recursive types lead to mutually recursive functions
Why Data Types?

Data types play a key role in:

- *Data abstraction* in the design of programs
- *Type checking* in the analysis of programs
- *Compile-time code generation* in the translation and execution of programs
 - Data layout (how many words; which are data and which are pointers) dictated by type
Terminology

- Type: A type t defines a set of possible data values
 - E.g. `short` in C is $\{x| 2^{15} - 1 \geq x \geq -2^{15}\}$
 - A value in this set is said to have type t

- Type system: rules of a language assigning types to expressions
Types as Specifications

- Types describe properties
- Different type systems describe different properties, eg
 - Data is read-write versus read-only
 - Operation has authority to access data
 - Data came from “right” source
 - Operation might or could not raise an exception
- Common type systems focus on types describing same data layout and access methods
Sound Type System

- If an expression is assigned type t, and it evaluates to a value v, then v is in the set of values defined by t

- SML, OCAML, Scheme and Ada have sound type systems
- Most implementations of C and C++ do not
Strongly Typed Language

- When no application of an operator to arguments can lead to a run-time type error, language is *strongly typed*
 - Eg: 1 + 2.3;;
- Depends on definition of “type error”
Strongly Typed Language

- C++ claimed to be “strongly typed”, but
 - Union types allow creating a value at one type and using it at another
 - Type coercions may cause unexpected (undesirable) effects
 - No array bounds check (in fact, no runtime checks at all)
- SML, OCAML “strongly typed” but still must do dynamic array bounds checks, runtime type case analysis, and other checks
Static vs Dynamic Types

- **Static type**: type assigned to an expression at compile time
- **Dynamic type**: type assigned to a storage location at run time
- **Statically typed language**: static type assigned to every expression at compile time
- **Dynamically typed language**: type of an expression determined at run time
Type Checking

- When is \text{op}(\text{arg1}, \ldots, \text{argn}) allowed?
- \textit{Type checking} assures that operations are applied to the right number of arguments of the right types
 - Right type may mean same type as was specified, or may mean that there is a predefined implicit coercion that will be applied
- Used to resolve overloaded operations
Type Checking

- Type checking may be done statically at compile time or dynamically at run time.
- Dynamically typed (aka untyped) languages (e.g., LISP, Prolog) do only dynamic type checking.
- Statically typed languages can do most type checking statically.
Dynamic Type Checking

- Performed at run-time before each operation is applied
- Types of variables and operations left unspecified until run-time
 - Same variable may be used at different types
Dynamic Type Checking

- Data object must contain type information
- Errors aren’t detected until violating application is executed (maybe years after the code was written)
Static Type Checking

- Performed after parsing, before code generation
- Type of every variable and signature of every operator must be known at compile time
Static Type Checking

- Can eliminate need to store type information in data object if no dynamic type checking is needed
- Catches many programming errors at earliest point
- Can’t check types that depend on dynamically computed values
 - Eg: array bounds
Static Type Checking

- Typically places restrictions on languages
 - Garbage collection
 - References instead of pointers
 - All variables initialized when created
 - Variable only used at one type
 - Union types allow for work-arounds, but effectively introduce dynamic type checks