Programming Languages and Compilers (CS 421)

Grigore Rosu 2110 SC, UIUC

http://courses.engr.illinois.edu/cs421

Slides by Elsa Gunter, based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

Semantics

- Expresses the meaning of syntax
- Static semantics
 - Meaning based only on the form of the expression without executing it
 - Usually restricted to type checking / type inference

- Method of describing meaning of executing a program
- Several different types:
 - Operational Semantics
 - Axiomatic Semantics
 - Denotational Semantics

Dynamic Semantics

- Different languages better suited to different types of semantics
- Different types of semantics serve different purposes

Operational Semantics

- Start with a simple notion of machine
- Describe how to execute (implement)
 programs of language on virtual machine, by
 describing how to execute each program
 statement (ie, following the structure of the
 program)
- Meaning of program is how its execution changes the state of the machine
- Useful as basis for implementations

Axiomatic Semantics

- Also called Floyd-Hoare Logic
- Based on formal logic (first order predicate calculus)
- Axiomatic Semantics is a logical system built from axioms and inference rules
- Mainly suited to simple imperative programming languages

Axiomatic Semantics

- Used to formally prove a property (post-condition) of the state (the values of the program variables) after the execution of program, assuming another property (pre-condition) of the state before execution
- Written : {Precondition} Program {Postcondition}
- Source of idea of loop invariant

Denotational Semantics

- Construct a function M assigning a mathematical meaning to each program construct
- Lambda calculus often used as the range of the meaning function
- Meaning function is compositional: meaning of construct built from meaning of parts
- Useful for proving properties of programs

Natural Semantics

- Aka Structural Operational Semantics, aka "Big Step Semantics"
- Provide value for a program by rules and derivations, similar to type derivations
- Rule conclusions look like

```
(C, m) ↓ m'
or
(E, m) ↓ v
```

-

Simple Imperative Programming Language

- $I \in Identifiers$
- $N \in Numerals$
- B::= true | false | B & B | B or B | not B
 | E < E | E = E
- E::= N / I / E + E / E * E / E E / E
- C::= skip | C; C | I ::= E
 | if B then C else C fi | while B do C od

Natural Semantics of Atomic Expressions

- Identifiers: $(I,m) \lor m(I)$
- Numerals are values: (N,m) ↓ N
- Booleans: $(true, m) \lor true$ $(false, m) \lor false$

$$(B, m)$$
 ↓ false $(B \& B', m)$ ↓ false

$$(B, m)$$
 ↓ true (B', m) ↓ b $(B \& B', m)$ ↓ b

$$(B, m)$$
 ↓ true $(B \text{ or } B', m)$ ↓ true

$$(B, m)$$
 ↓ true
(not B, m) ↓ false

$$(B, m)$$
 \Downarrow false (not B, m) \Downarrow true

$$(E, m) \downarrow U \quad (E', m) \downarrow V \quad U \sim V = b$$
$$(E \sim E', m) \downarrow b$$

- By U ~ V = b, we mean does (the meaning of) the relation ~ hold on the meaning of U and V
- May be specified by a mathematical expression/equation or rules matching *U* and

Arithmetic Expressions

$$(E, m) \Downarrow U \quad (E', m) \Downarrow V \quad U \text{ op } V = N$$

$$(E \text{ op } E', m) \Downarrow N$$
where N is the specified value for $U \text{ op } V$

Skip:

(skip, m) $\downarrow m$

Assignment:

$$\frac{(E,m) \Downarrow V}{(I::=E,m) \Downarrow m[I <-- V]}$$

Sequencing:
$$(C,m) \downarrow m'$$
 $(C',m') \downarrow m''$ $(C',C',m) \downarrow m''$

If Then Else Command

(B,m) ↓ true (C,m) ↓ m'(if B then C else C'fi, m) ↓ m'

While Command

$$(B,m) \downarrow \text{false}$$

(while $B \text{ do } C \text{ od}, m) \downarrow m$

(B,m) ↓ true (C,m) ↓ m' (while B do C od, m') ↓ m'' (while B do C od, m) ↓ m''

Example: If Then Else Rule

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi,
$$\{x -> 7\}$$
) \downarrow ?

Example: If Then Else Rule

Example: Arith Relation

```
? > ? = ?

(x,(x->7)) (5,(x->7))?

(x > 5, (x -> 7))?

(if x > 5 then y:= 2 + 3 else y:= 3 + 4 fi, (x -> 7)) (x -> 7)
```

4

Example: Identifier(s)

$$7 > 5 = \text{true}$$

 $(x,(x->7))$ $(5,(x->7))$ $(x > 5, (x -> 7))$ $(x > 5, (x -> 7))$ $(x > 5)$ $(x > 7)$ $(x > 7)$ $(x -> 7)$

Example: Arith Relation

```
7 > 5 = true

(x,(x->7)) √7 (5,(x->7)) √5

(x > 5, (x -> 7)) √true

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi,

(x -> 7) √?
```


Example: If Then Else Rule

Example: Assignment

Example: Arith Op

```
? + ? = ?
                            (2,\{x->7\})\Downarrow? (3,\{x->7\})\Downarrow?
                                         (2+3, \{x->7\})\Downarrow?
       7 > 5 = true
                                         (y:=2+3, \{x->7\}
(x,(x->7)) (5,(x->7)) (5,(x->7))
                                          (x > 5, \{x -> 7\}) \cup true
       (if x > 5 then y = 2 + 3 else y = 3 + 4 fi,
                         \{x -> 7\}) \downarrow ?
```


Example: Numerals

$$2 + 3 = 5$$

$$(2,\{x->7\}) \downarrow 2 \quad (3,\{x->7\}) \downarrow 3$$

$$7 > 5 = \text{true} \qquad (2+3,\{x->7\}) \downarrow ?$$

$$(x,\{x->7\}) \downarrow 7 \quad (5,\{x->7\}) \downarrow 5 \qquad (y:= 2+3,\{x->7\})$$

$$(x > 5, \{x -> 7\}) \downarrow \text{true} \qquad \downarrow ?$$

$$(if x > 5 \text{ then } y:= 2+3 \text{ else } y:=3+4 \text{ fi,}$$

$$\{x -> 7\}) \downarrow ?$$

Example: Arith Op

```
2 + 3 = 5
                            (2,\{x->7\})\downarrow2 (3,\{x->7\})\downarrow3
                                        (2+3, \{x->7\}) \downarrow 5
      7 > 5 = true
(x,(x->7)) (5,(x->7)) 5
                                         (y:= 2 + 3, \{x-> 7\})
   (x > 5, \{x -> 7\}) \cup true
                                          (if x > 5 then y = 2 + 3 else y = 3 + 4 fi,
                         \{x -> 7\}) \downarrow ?
```


Example: Assignment

```
2 + 3 = 5
                              (2,\{x->7\}) \downarrow (3,\{x->7\}) \downarrow 3
                                           (2+3, \{x->7\}) \downarrow 5
       7 > 5 = true
(x,(x->7)) (5,(x->7)) (5,(x->7))
                                            (y:= 2 + 3, \{x-> 7\})
                                            \forall \{x->7, y->5\}
     (x > 5, \{x -> 7\}) \cup true
        (if x > 5 then y = 2 + 3 else y = 3 + 4 fi,
                           \{x -> 7\}) \downarrow ?
```


Example: If Then Else Rule

```
2 + 3 = 5
                              (2,\{x->7\}) \downarrow 2 (3,\{x->7\}) \downarrow 3
                                           (2+3, \{x->7\}) \downarrow 5
       7 > 5 = true
(x,(x->7)) (5,(x->7)) (5,(x->7))
                                            (y:= 2 + 3, \{x-> 7\})
                                              \forall \{x->7, y->5\}
    (x > 5, \{x -> 7\}) \cup true
        (if x > 5 then y := 2 + 3 else y := 3 + 4 fi,
                    \{x -> 7\}) \downarrow \{x->7, y->5\}
```


Let in Command

$$\frac{(E,m) \ \forall \ (C,m[I < -\nu]) \ \forall \ m'}{(\text{let } I = E \text{ in } C, m) \ \forall \ m''}$$

Where m''(y) = m'(y) for $y \neq I$ and m''(I) = m(I) if m(I) is defined, and m''(I) is undefined otherwise

Comment

- Simple Imperative Programming Language introduces variables implicitly through assignment
- The let-in command introduces scoped variables explictly
- Clash of constructs apparent in awkward semantics

Interpretation Versus Compilation

- A compiler from language L1 to language L2 is a program that takes an L1 program and for each piece of code in L1 generates a piece of code in L2 of same meaning
- An interpreter of L1 in L2 is an L2 program that executes the meaning of a given L1 program
- Compiler would examine the body of a loop once; an interpreter would examine it every time the loop was executed

Interpreter

- An *Interpreter* represents the operational semantics of a language L1 (source language) in the language of implementation L2 (target language)
- Built incrementally
 - Start with literals
 - Variables
 - Primitive operations
 - Evaluation of expressions
 - Evaluation of commands/declarations

Interpreter

- Takes abstract syntax trees as input
 - In simple cases could be just strings
- One procedure for each syntactic category (nonterminal)
 - eg one for expressions, another for commands
- If Natural semantics used, tells how to compute final value from code
- If Transition semantics used, tells how to compute next "state"
 - To get final value, put in a loop

4

Natural Semantics Example

- compute_exp (Var(v), m) = look_up v m
- compute_exp (Int(n), _) = Num (n)
- ...

```
compute_com(IfExp(b,c1,c2),m) =
   if compute_exp (b,m) = Bool(true)
   then compute_com (c1,m)
   else compute_com (c2,m)
```

4

Natural Semantics Example

```
compute_com(While(b,c), m) =
  if compute_exp (b,m) = Bool(false)
  then m
  else compute_com
    (While(b,c), compute_com(c,m))
```

- May fail to terminate exceed stack limits
- Returns no useful information then