
MP 9 – MiniOCaml Interpreter — Substitution
Model

CS 421 – Spring 2013
Revision 1.2

Assigned Tuesday, March 26, 2012
Due Sunday, March 30, 09:30
Extension (none)

1 Change Log
1.0 Initial Release.

1.1 Fixed second rec rule in figure 3.

1.2 Made the late deadline (Sunday) the on-time deadline. There is now no late extension.

1.3 Fixed second let rule in figure 3.

2 Objective
You will write an interpreter in the style of MP6, but for a simplified version of Ocaml. We will provide the lexer,
parser, and translation to abstract syntax, so, as in MP 6, your task will be to interpret programs given in abstract
syntax. (Actually, you will write two interpreters, this one and another one for MP10. The difference — unlike MP6
and 7 — is not in how many features of the language they implement, but simply in the method of evaluation. This
one uses the “substitution model,” which we will discuss in class in lecture 18.)

After completing this MP, you will have learned about the following concepts:

• How to implement functional languages using substitution

This MP is not particularly hard, although, as has been the case with most of the MPs, the write-up is complicated.
Our solution is about 80 lines of OCaml, and half of it is in functions applyOp and applyUnop, which are similar
to applyOp in MP6 and 7. (They are not exactly the same as in MP6 and 7, because we have some different values
and operators, but they are identical in concept.)

3 Style Requirements
As in all MPs, you will be expected to meet the following style requirements. Submissions that do not meet these
requirements will not receive a grade until they are resubmitted with correct styling. (Note that these requirements
will be checked manually by the grader and will not be enforced by handin, so acceptance by handin does not
indicate correct style.)

• No long lines. Lines are 80 characters long.

• No tabs. Use spaces for indentation.

• Indents should be no more than 4 spaces, and must be used consistently.

We will only enforce the rules just listed, but a more comprehensive style guide can be found at http://
caml.inria.fr/resources/doc/guides/guidelines.en.html.

1

4 What to submit
You will submit mp9.ml using the handin program. Rename mp9-skeleton.ml to mp9.ml and start working
from there.

As in previous, once you have finished appropriate sections of your interpreter, you can use the run and run with args
functions to test individual programs, or simply add programs to the test suite.

• Download mp9grader.tar.gz. This tarball contains all the files you need, including the common AST file
(mp9common.ml), the MiniOCaml lexer and parser (miniocamllex.mll and miniocamlparse.mly),
and the skeleton solution file (mp9-skeleton.ml).

• As always, once you extract the tarball, rename mp9-skeleton.ml to mp9.ml and start modifying the file.
You will modify only the mp9.ml file, and it is the only file that will be submitted.

• Compile your solution with make. Run the ./grader to see how well you do.

• Make sure to add several more test cases to the tests file; follow the pattern of the existing cases to add
a new case.

• You may use the included testing.ml file to run tests interactively. Open the OCaml repl and type #use
"testing.ml";; to load all of the related modules and enable testing. Further specifics on interactive testing
are included in that file.

5 Syntax and Semantics
To simplify the assignment, MiniOCaml lacks some significant features, especially pattern-matching, type defini-
tions, and mutually-recursive functions. The concrete syntax of MiniOCaml is the same as OCaml except for those
restrictions; you can see the precise syntax in the mly file in the tarball. The abstract syntax is given in Figure 1 (and
again in mp9common.ml in the tarball). The syntactic form “fun x -> e” (which appears in both the concrete and
abstract syntax) and the abstract syntax constructor Rec, are new. They were discussed at length in class.

In the abstract syntax in mp9common.ml, there are several operations that we are not asking you to implement
(in your evaluators you should add a default case so that OCaml doesn’t complain about not covering all the cases).
These are: binary operations ; (sequencing) and := (assignment), and unary operations ref (create a pointer) and !
(dereferencing, analogous to prefix * in C). These are the operations that implement side-effects in OCaml, something
we have avoided thus far; they are included only so that we don’t have to change the concrete and abstract syntax when
we discuss them in a couple of weeks. There are also a number of constructors in the abstract syntax that are included
with a comment “The following constructors are used only temporarily,” which you can ignore because they will never
show up in any AST you need to evaluate. (The translation from concrete syntax to abstract syntax — including, for
example, reducing all functions to functions of one argument — is somewhat involved; see file run.ml if you’re
curious. These constructors are used to represent intermediate states of the AST during the translation.)

Just as we did at first for MiniJava, you will be implementing a dynamically-typed version of MiniOCaml. The
rules for interpreting MiniOCaml programs are given in Figure 2 We call this function reduce, just to distinguish
it from the interpreter you will write in MP10, which we will call eval. Note that there is only “evaluation” for
MiniOCaml, and not “execution,” because there are only expressions and no statements. reduce uses a helper
function called subst, which implements the substitution of a variable with its binding; this function also recursively
walks the AST to do its work, so you will find yourself splitting the ”work” of the reducer into two separate recursively
defined functions. subst is defined in Figure 3).

6 Problems

6.1 Concrete and abstract syntax
You will be dealing only with the abstract syntax in this assignment (just as in MPs 6–8); we have provided a lexer
and parser for you, which translates concrete syntax to abstract syntax.

2

However, the translation from concrete to abstract syntax is a bit more involved than was the case for MiniJava,
and it may be helpful for you to understand it. As explained in class, the abstract syntax has these properties:

• Let expressions are translated to the form “Let(a, e, e′),” where a is a variable name. A let expression that
introduces a function — let f a = e in e′ — will become, in the abstract syntax, “Let(f, Fun(a,
e), e′).”

• The Rec constructor is used to indicate that a function is recursive. A recursive function definition — let
rec f a = e in e′ — becomes, in the abstract syntax, “Let(f, Rec(f, Fun(a, e)), e′).”

• Functions in the abstract syntax have only one argument. Functions of multiple arguments are “explicitly cur-
ried” — that is, turned into functions whose bodies are functions. Thus, let f a b c = e in e′ becomes,
in the abstract syntax, “Let(f, Fun(a, Fun(b, Fun(c, e))), e′).”

These translations all serve to simplify the evaluation process. As noted above, the translation to abstract syntax is
somewhat involved, but in the end all that is happening is what we have just described.

6.2 Substitution-based interpreter (reduce)
The rules for evaluating expressions using substitution for function application are given in Figure 2. These rely on the
definition of substitution (denoted in the evaluation rules by e[e′/x]), which is given in Figure 3. You need to define
the following functions:

reduce (expr:exp) : value

subst (id:id) (v:value) (expr:exp) : exp

applyOp (bop:binary_operation) (v1:value) (v2:value) : value

applyUnop (uop:unary_operation) (v:value) : value

The type value is just a synonym for exp, but is used to indicate that the argument or result in question is in
the subset of exps that qualify as values, as explained in class. applyOp is very similar to the function of that name
in MP 6, except that we have included some more operations than we did there; the arguments are expressions that
represent constants — constructors IntConst, StrConst, True, and False.

To simplify the assignment, there are some changes in applyOp: no overloading, except for Equals (that is,
Plus applies only to integers), and no short-circuit evaluation of boolean operations (so And and Or can be handled in
applyOp). The types of each of the operators is:

Equals : value * value→ bool
NotEquals : value * value→ bool
LessThan : int * int→ bool
GreaterThan : int * int→ bool
And : bool * bool→ bool
Or : bool * bool→ bool
Plus : int * int→ int
Minus : int * int→ int
Div : int * int→ int
Mult : int * int→ int
StringAppend : string * string→ string
ListAppend : value list * value list→ value list
Cons : value * value list→ value list
Not : bool→ bool
Head : value list→ value
Tail : list→ value list
Fst : tuple→ value
Snd : tuple→ value

3

type exp =
Operation of exp * binary_operation * exp

| UnaryOperation of unary_operation * exp
| Var of string | StrConst of string | IntConst of int
| True | False
| List of exp list | Tuple of exp list
| If of exp * exp * exp | App of exp * exp
| Let of string * exp * exp
| Fun of string * exp
| Rec of string * exp

and binary_operation = Semicolon | Comma | Equals | LessThan
| GreaterThan | NotEquals | Assign | And | Or
| Plus | Minus | Div | Mult
| StringAppend | ListAppend | Cons

and unary_operation = Not | Head | Tail | Fst | Snd

Figure 1: MiniOCaml abstract syntax

In other words, except for Equals and NotEquals, for each operation, you need only check for one type of value
for each argument, and otherwise raise a type error. (To be clear, since we’re using dynamic typing, we could have
overloaded operations, like Plus, just as in MP6. We’re not doing that just to shorten the assignment a little bit.)

4

(Const) Const x ⇓ Const x (Fun) Fun(a,e) ⇓ Fun(a,e)

(Rec) Rec(f ,Fun(a,e)) ⇓ Fun(a,e[Rec(f ,Fun(a,e))/f]

(δ) e op e′ ⇓ v OP v′

e ⇓ v
e′ ⇓ v′

(δ) op e ⇓ OP v
e ⇓ v

(If) If(e1, e2, e3) ⇓ v
e1 ⇓ True
e2 ⇓ v

(If) If(e1, e2, e3) ⇓ v
e1 ⇓ False
e3 ⇓ v

(List) [e1, . . ., en] ⇓ [v1, . . ., vn]
e1 ⇓ v1

...
en ⇓ vn

(App) e e′ ⇓ v
e ⇓ Fun(a, e′′)
e′ ⇓ v′
e′′[v′/a] ⇓ v

(Let) Let(a,e,e′) ⇓ v′
e ⇓ v
e′[v/a] ⇓ v′

Figure 2: Evaluation rules for substitution model

x[v/x] = v
y[v/x] = y
(let x = e in e′)[v/x] = let x = e[v/x] in e′

(let y = e in e′)[v/x] = let y = e[v/x] in e′[v/x]
(fun x→ e)[v/x] = (fun x→ e)
(fun y→ e)[v/x] = (fun y→ e[v/x])
(rec x e)[v/x] = (rec x e)
(rec y e)[v/x] = (rec y e[v/x])
The remaining rules either have no variables (literals) or simply apply substitution recursively to all components.

Figure 3: Caption: Definition of substitution, e[v/x], where v is a closed term. y is assumed to be a variable different
from x.

5

