
CS 421 Spring 2012 Midterm 2

Tuesday, April 10, 2012

Name

NetID

• You have 70 minutes to complete this exam

• This is a closed book exam.

• Do not share anything with other students. Do not talk to other students. Do not look
at another student’s exam. Do not expose your exam to easy viewing by other students.
Violation of any of these rules will count as cheating.

• If you believe there is an error, or an ambiguous question, seek clarification from one of the
TAs. You must use a whisper, or write your question out.

• Including this cover sheet, there are eight pages to the exam. Please verify that you have all
eight pages.

• Please write your name and NetID in the spaces above, and at the top of every page.

Question Value Score

1a 15
1b 15
1c/d 15
1e 10
2 15
3 15
4 15

Total 100

1

CS 421 Midterm 2 Name:

1. This question is in several parts, all based on the following subset of OCaml, which we call
MicroOcaml, or µOCaml:

type exp = Int of int | Var of string | App of exp * exp
| Fun of string * exp | Binop of exp * binop * exp

Here are the evaluation rules for µOCaml, in the substitution model:

(Const) Int x ⇓ Int x (Fun) Fun(a,e) ⇓ Fun(a,e)

(δ) e op e′ ⇓ v OP v′

e ⇓ v
e′ ⇓ v′

(App) e e′ ⇓ v
e ⇓ Fun(a, e′′)
e′ ⇓ v′

e′′[v′/a] ⇓ v

(a) (15 pts) Assume you are given function subst: string→ exp→ exp→ exp (subst x e e′

= e′[e/x]), and applyOp : binop → exp → exp → exp. Write reduce for µOCaml:

reduce e = match e with

Int i -> e

| Fun(a,e) -> Fun(a,e)

| Binop(e1,bop,e2) -> applyOp op (reduce e1) (reduce e2)

| App(e1, e2) ->
(match reduce e1 with

Fun(x, e) -> reduce (subst x e2 e)
| _ -> raise (TypeError "applying non-function"))

2

CS 421 Midterm 2 Name:

(b) (15 pts) Here are the rules for the environment-based evaluator:

(Const) Int i, ρ ⇓ Int i (Var) a, ρ ⇓ ρ(a)

(δ) e op e′, ρ ⇓ v OP v′

e, ρ ⇓ v
e′, ρ ⇓ v′

(App) e e′, ρ ⇓ v
e, ρ ⇓ <Fun(a, e′′), ρ′ >
e′, ρ ⇓ v′

e′′, ρ′[a 7→ v′] ⇓ v

(Fun) Fun(a,e), ρ ⇓ <Fun(a,e), ρ >

Assume you are given definitions for type environment and functions fetch: string
→ environment → exp and extend: string → exp → environment → environment.
Also assume the abstract syntax has the additional constructor:

| Closure of exp * environment

Write eval for µOCaml (note that there is no Rec constructor in µOCaml, so no need
to handle that case):

eval e env = match e with

Int i -> e

| Var a -> fetch a env

| Fun(a,e) -> Closure(e, env)

| Binop(e1,bop,e2) -> applyOp op (eval e1 env) (eval e2 env)

| App(e1, e2) -> (match (eval e1 env) with
Closure(Fun(x, e), env’) -> eval e (extend x (eval e2 env) env’)

| _ -> raise (TypeError "applying non-function"))

3

CS 421 Midterm 2 Name:

(c) (8 pts) Suppose we add two new abstract syntax constructors:

| Fun2 of string * string * exp | Pair of exp * exp

Fun2 represents a very simple form of pattern matching for pairs, and Pair is like Tuple
from MP8, but only for constructing pairs. A function of the form “fun (x,y) -> e”
would translate to abstract syntax Fun2(x,y,e), and a pair (e, e′) would translate to
Pair(e, e′). A Fun2 is applicable only to values of the form Pair(v, v′).
We need three new rules for evaluation with pairs: two for the new abstract syntax
operators, plus a new rule for App when the function is a Fun2. Fill in those rules for
the substitution-based evaluator:

(Fun2) Fun2(a, b, e) ⇓ Fun2(a, b, e)

(Pair) Pair(e1,e2) ⇓ Pair(v1, v2)
e1 ⇓ v1
e2 ⇓ v2

(App2) e e′ ⇓ v
e ⇓ Fun2(a, b, e′′)
e′ ⇓ Pair(v1, v2)
e′′[v1/a][v2/b] ⇓ v

(d) (7 pts) Fill in those rules for the environment-based evaluator:

(Fun2) Fun2(a, b, e), ρ ⇓ <Fun2(a, b, e), ρ>

(Pair) Pair(e1,e2), ρ ⇓ Pair(v1,v2)
e1, ρ ⇓ v1
e2, ρ ⇓ v2

(App2) e e′, ρ ⇓ v
e, ρ ⇓ <Fun2(a, b, e′′), ρ′>
e′, ρ ⇓ Pair(v1, v2)
e′′, ρ′[a 7→ v1][b 7→ v2] ⇓ v

4

CS 421 Midterm 2 Name:

(e) (10 pts) Type judgments for µOCaml expressions, like those for MiniJava expressions,
have the form Γ ` e : τ , where Γ is a type environment giving types for the variables
occurring free in e. Read this judgment as “e has type τ , if the variables occurring in
e have the types given by Γ.” Types are either “int” or a function from type τ to τ ′,
written τ → τ ′. Here are the type rules for µOCaml, where we have included Let as
well:

(Const) Γ ` Int i : int (Var) Γ ` a : Γ(a)

(Fun) Γ ` Fun(a,e) : τ → τ ′

Γ[a:τ] ` e : τ ′
(δ) Γ ` e op e′ : int

Γ ` e : int
Γ ` e′ : int

(App) Γ ` e e′ : τ ′

Γ ` e : τ → τ ′

Γ ` e′ : τ

(Let) Γ ` Let(x, e, e′) : τ ′

Γ ` e : τ
Γ[x:τ] ` e′ : τ ′

i. (5 pts) Here is a partial proof that let x=3 in let y=x+1 in y*x has type int.
Fill in the missing lines in the proof, being sure to indent appropriately, and write
in the blank lines the name of the rule used in every line. (Hint: it is just based on
the abstract syntax constructor for the expression.)

Let {} ` let x=3 in let y=x+1 in y*x : int
Const {} ` 3 : int
Let {x:int} ` let y=x+1 in y*x : int
δ {x:int} ` x+1 : int

Var {x:int} ` x : int
Const {x:int} ` 1 : int
δ {x:int, y:int} ` y*x : int

Var {x:int, y:int} ` y : int
Var {x:int, y:int} ` x : int

ii. (5 pts) To include pairs, we expand the set of types to include pairs, written τ*τ ′.
Give type rules for the expressions involving pairs:

(Pair) Γ ` (e1, e2) : τ1 * τ2
Γ ` e1 : τ1
Γ ` e2 : τ2

(Fun2) Γ ` Fun2(x,y,e) : τ1 * τ2 → τ

Γ[x:τ1][y:τ2] ` e : τ

5

CS 421 Midterm 2 Name:

2. (15 pts) (Higher-order functions) This problem uses a variant of the functional definition of
environments from MP8. The abstract syntax above is extended by adding the constructor
Missing:

type exp = Int of int | Var of string | ... | Missing

(The precise constructors in exp don’t matter for this problem.)

Define environments as functions:

type environment = string -> exp

Unlike in MP8, if you look up a variable in an environment that doesn’t have that variable,
it returns value Missing:

let emptyEnv = fun s -> Missing

(a) (7 pts) Define fetch and extend:

let fetch (s:string) (env:environment) : exp = env s

let extend (s:string) (e:exp) (env:environment) : environment =
fun s’ -> if s’=s then e else env s’

(b) (4 pts) Define retract, which removes a binding for a variable (so if we fetch a from
retract a env, it will return Missing):

let retract (s:string) (env:environment) : environment =
fun s’ -> if s’=s then Missing else env s’

(c) (4 pts) Define combine, which combines two environments, giving precedence to the first
for any names that are defined in both. That is, if env = combine env1 env2, then if
we fetch variable a from env, it will return Missing if a is not defined in either env1
or env2; the value from env1 if it is defined only in env1; the value from env2 if it is
defined only in env2; and the value from env1 if it is defined in both.

let combine (env1:environment) (env2:environment) : environment =
fun s -> if env1 s <> Missing then env1 s else env2 s

6

CS 421 Midterm 2 Name:

3. (15 pts) For each of the following Java class definitions, fill in its “v-table” (virtual function
table). Each entry should have the form “<function name> in <class name>”, meaning
this table entry points to the definition of <function name> given in <class name>. The
functions in each table should appear in the correct order, as they would in a v-table for Java
or C++. We have given the first one.

class B {
void f() {}
void g() {}

}

f in B

g in B

class C1 extends B {
void h() {}

}

f in B

g in B

h in C1

class C2 extends B {
void g() {}

}

f in B

g in C2

class D extends C1 {
void i() {}
void g() {}

}

f in B

g in D

h in C1

i in D

7

CS 421 Midterm 2 Name:

4. (15 pts) (MiniJava compilation) This is the compilation scheme for while statements in Mini-
Java (from MP 7 extra credit):

while (e) S, m [JUMP m′] @ ils @ ile @ [CJUMP loc,m+ 1, m′′], m′′

(where m′′ = m′ + |ile|+ 1)
S, m+ 1 ils, m′

e, loc ile

Note that it uses the non-short-circuit compilation scheme for the condition, e.

(a) (10 pts) Give a compilation rule for the statement

whilebreak { S1 } (cond) { S2 }

which works like this: execute S1, then test the condition; if the condition is false,
terminate the entire whilebreak statement; if it is true, then execute S2 and S1 and test
the condition again; and repeat. We have filled in some of it for you. (You do not need
any more machine instructions than what are shown in the example above.)

whilebreak {S1} (e) {S2}, m
il1 @ il @ [CJUMP loc,m′′ + 1,m′ + |il|+ 1] @ il2 @ [JMP m], m′′ + 1

S1, m il1, m′

e, loc il

S2, m′ + |il|+ 1 il2, m′′

(b) (5 pts) Recall that in short-circuit evaluation, the compilation judgment for boolean
expressions has the form:

e, m, t, f 2 il, m′

which means that il is a code sequence that, when executed, will jump to t if e is true,
and jump to f if e is false; furthermore, the code sequence starts at location m and ends
at location m′ − 1.
Give a compilation rule for the whilebreak statement using short-circuit evaluation.

whilebreak S1 (e) S2, m il1 @ il @ il2 @ [JMP m], m′′′+1
S1, m il1, m′

e, m′, m′′, m′′′ 2 il, m′′

S2, m′′ il2, m′′′

8

