CS 421 Spring 2012 Midterm 1

Tuesday, February 21, 2012

Name Answer sheet
NetID

You have 70 minutes to complete this exam
This is a closed book exam.

Do not share anything with other students. Do not talk to other students. Do not look
at another student’s exam. Do not expose your exam to easy viewing by other students.
Violation of any of these rules will count as cheating.

If you believe there is an error, or an ambiguous question, seek clarification from one of the
TAs. You must use a whisper, or write your question out.

Including this cover sheet, there are eight pages to the exam. Please verify that you have all
eight pages.

Please write your name and NetID in the spaces above, and at the top of every page.

| Question | Value | Score |

1 18
2 18
3 8
4a 6
4b 15
5 15
6 10
7 10
] Total \ 100 \

CS 421 Midterm 1 Name:

1. (18 pts) Fill in the types of these expressions and functions (some are polymorphic), or write
"type error.” For function definitions, give the type of the function (both argument and result

types):

"4, 24°) int * string * char

(a
(b

[3; [31; 4; [4]] type error

) (
)

(c) let £ (a,b,c) = atbint * int * o — int
)

(d) let intvals p = let (a,b) = p in [a+1l; hd b] int * int list — int list

2. (18 pts) Write the following functions. (You will not need, and should not use, auxiliary
functions.)

(a) revpairs: (a*) list — (8*«) list reverses each pair in its argument: revpairs [(1,2);

3,4)] = [(2,1); (4,3)].

let rec revpairs lis = match lis with
0 -> 10
| (a,b)::t -> (b,a) :: revpairs t

(b) lookup: string — (string * «/) list — « returns the value in the second argument that
is associated with the first argument. Think of the second argument as a “dictionary”
mapping names to values. E.g. lookup "i" [("a", 3); ("i", 5)] = 5.

let rec lookup s dict = match dict with
(a,v) :: t -> if s=a then v else lookup s t

(c) partition: int list — int — (int list * int list) divides its first argument into two lists,
one containing all elements less than its second argument, and the other all the elements
greater than or equal to its second argument. partition [5; 2; 10; 4] 4 = ([2],
[5; 10; 41).

let rec partition lis pivot = match lis with
- a1,
| h::t -> let (lisl, 1is2) = partition t pivot
in if h<pivot then (h::1isl, 1lis2)
else (lisl, h::1is2)

CS 421 Midterm 1 Name:

3. (8 pts) Write a DFA to recognize a simplified form of email addresses. The username part
is a non-empty sequence of lower-case letters and digits. This is followed by the customary
@. The host or domain part consists of lower-case letters separated by periods. Specifically,
it has at least one period, can not have two consecutive periods, can not begin or end with
a period, and has at least two lower-case letters after the last period. Each state should be
labelled as either Email or Error; unlike our examples in class, most of the states will be
labelled Error. (Hint: our solution has a total of seven states.)

6‘—?:
o-9 £

n @)
v

a-¢&
e

o~ 2 -

4. (20 pts) This is a simplified portion of the abstract syntax of MiniJava:

type statement = Block of (statement list)
| While of exp * statement
| Assignment of id * exp

and exp = Operation of exp * binary_operation * exp
| Id of string | Integer of int

and binary_operation = Equal | LessThan | Plus

(a) (6 pts) Write the expression of type statement representing the abstract syntax of this
statement:

while(x < 5) y = a + b;

While(Operation(Id "x", LessThan, Integer 5),
Assignment ("y", Operation(Id "a", Plus, Id "b")));;

CS 421 Midterm 1 Name:

(b) (15 pts) Write the function eval : exp — (string * value) list — value, which
evaluates an expression, given that the values of any variables occurring in the expression
are given by the second argument (the “dictionary”). The type value is

type value = Int of int | Bool of bool
For example:

eval (Operation(Id "x", Plus, Integer 10)) [("a", Int 5), ("x", Int 7)]
==> Int 17

You will want to use the function lookup defined in problem 2 above. You can as-
sume that any variables occurring in the expression occur in the dictionary, and that
the expression uses all values in a type-correct way — don’t worry about type errors.
Specifically: < and + only apply to integers; = applies to two bools or two integers.

You must use auxiliary function apply : binary operation — value — value —
value that applies an operation to its arguments (again, assuming the arguments have
the correct type). E.g. apply Plus (Int 3) (Int 7) = Int 10

let rec eval e dict = match e with
Operation(el, bop, e2) -> apply bop (eval el dict) (eval e2 dict)
| Id x -> lookup x dict
| Integer i -> Int i

and apply bop vl v2 = match bop with
Equal -> (match (vl, v2) with
(Int i1, Int i2) -> Bool (il = i2)
| (Bool bl, Bool b2) -> Bool (bl = b2))
| LessThan -> (match (v1, v2) with (Int i1, Int i2) -> Bool (il<i2))
| Plus -> (match (v1, v2) with (Int i1, Int i2) -> Int (i1+i2)) ;;

or:

and apply bop vl v2 = match (vl, v2) with
(Int i1, Int i2) -> (match bop with
Equal -> Bool (i1=i2)
| LessThan -> Bool (i1<i2)
| Plus -> Int (i1+i2))
| (Bool bl, Bool b2) -> (match bop with
Equal -> Bool (b1=b2)) ;;

or:

and apply bop vl v2 = match (bop, vl, v2) with
(Equal, Int il, Int i2) -> Bool (il=i2)
(Equal, Bool bl, Bool b2) -> Bool (bl=b2)
(LessThan, Int i1, Int i2) -> Bool (i1<i2)
(Plus, Int il, Int i2) -> Bool (il+i2)

CS 421 Midterm 1 Name:

5. (15 pts) Consider these two expression grammars:
G1
A—-B|B*A|B/A
B—-C|B+C|B-C
C —id | int

G2
A—id |int | A+A | A-A| A¥A | AJA

(a) (8 pts) Draw the parse tree for x+y*10 in G1:

A

P B

& =< b

PZRN !

B+ C 6
(

C J C\

) 0

(b) (6 pts) What precedences and associativities are enforced by G1, if any?

Plus and minus have precedence over Multiplication and Division.

Plus and minus are left-associative.

Multiplication and division are right-associative.

(c) (6 pts) Provide ocamlyacc precedence declarations for G2 so that the precedence and
associativity of all operators is the same as those enforced by G1. (For tokens, use: Star,

Slash, Plus, Minus, Id of string, and Int of int.)

%right Star Slash
%left Plus Minus

CS 421 Midterm 1 Name:

6. (10 pts) For this problem, the algorithms for computing FIRST and FOLLOW sets are copied
on the last page of the exam (so you can tear it off).

S—ACB|CbB|Ba
A—da|BC
B—g|e

C—hle

G3:

(a) (5 pts) Perform the FIRST sets calculation on G3. (As usual, fstsg should be left blank.)
We have filled in the final table (you just have to fill in the intermediate steps).

fstso: fstsy:

N

s ®

d’ h’ g’ a? b
d’ g’ h’ b

g, ®
h, e

?h9g9a’b’.
9g9h?.

fstso: fstss:

s ®

QW 0| | QW x| ®n
SlRialal |Fe| s

9

a? b7 d7 g7 h7 L4
d7 g? h7 L4

g ®
h, e

fstsy:

QWb & Q| e|®n QW x| ®»

(b) (5 pts) Perform the FOLLOW sets calculation on G3. As usual, flwsg is empty except
that the start symbol contains eof.

S | eof S | eof
A | A | h, g, eof
flwsg: 5 flwsy: B [eof, a, b
C C | g,eof, b
S | eof S | eof
| A | h, g, eof | A | h, g, eof
Jhwss: B | eof, a, h, g Jhwss: B | eof, a, h, g
C | g,eof, b, h C | g, eof, b, h

CS 421 Midterm 1 Name:

7. (10 pts) Write a recursive-descent recognizer for the following grammar. We have provided
the FIRST sets; since the grammar has no e-productions, you do not need FOLLOW sets.

S—id=F|if(E)T FIRST(S)={1id,if}
T — S |else S FIRST(T) = { id, if, else }
E —id | int FIRST(F) = { id, int }
Use the following tokens:
type token = Id of string | Int of int | Equal | LParen | RParen | If | Else

As usual, raise SyntaxError when appropriate.

let rec parseS toklis = match toklis with

Id _ :: Equal :: t -> parseE t
| If :: LParen :: t -> (match parseE t with
RParen :: t’ -> parseT t’

| _ -> raise SyntaxError)
| _ -> raise SyntaxError

and parseT toklis = match toklis with
Else :: t -> parseS t
| _ -> parseS toklis

and parseE toklis = match toklis with
Id _ :: t > ¢t
| Int _ :: t >t
| _ -> raise SyntaxError;;

CS 421 Midterm 1 Name:

FIRST(G) =
fstsy = empty table (i.e. maps every A € N to {})
1=20
repeat { i = i+1; fsts; = empty table
for every production A — «a in G:
fsts;(A) = fsts;(A) U RHSFirst(c, fsts;_y)
} until fsts; = fsts;_;
return fsts;

RHSFirst(X1Xs ... Xy, fsts) =
if n=0 return {e}
else if X; € T return { X; }
else if @ & fsts|X1] return fsts[X;]
else return (fsts[X;] — {®}) U RHSFirst(Xs ... X, fsts)

FOLLOW(G) =

flwsy = table mapping S to { eof }, and every other A € N to {}

1=10

repeat {
1 = i+1; flwus; = flws
for every B € N:

for every occurrence of B in a production A — aBf:
flws;|B] = flws;[B] U (FIRST() — {e})

if @ € FIRST(3) then flws;[B] = flws;[B] U flws;_;[A]

}until flws; = flws;_4
return flws;

