
CS 421 Spring 2013 Midterm 1

Monday, February 18, 2013

Name

NetID

• You have 70 minutes to complete this exam

• This is a closed book exam.

• Do not share anything with other students. Do not talk to other students. Do not look
at another student’s exam. Do not expose your exam to easy viewing by other students.
Violation of any of these rules will count as cheating.

• If you believe there is an error, or an ambiguous question, seek clarification from one of the
proctors. You must use a whisper, or write your question out.

• Including this cover sheet, there are eight pages to the exam. Please verify that you have all
eight pages.

• Please write your name and NetID in the spaces above, and at the top of every page.

Question Value Score

1 15

2 15

3 15

4 15

5 15

6 15

7 10

Total 100

1



CS 421 Midterm 1 Name:

1. (15 pts) Write the following functions.

(a) (5 pts) keep greater: α list→ α list→ α list takes two lists of the same length. It com-
pares the corresponding elements and returns the elements of the first list that are greater
than the corresponding element in the second, e.g.: keep greater [10;20;30;40;50]
[31;9;43;37;50] = [20;40]. (You should not use any auxiliary functions.)

let rec keep_greater lis1 lis2 = match (lis1, lis2) with
([], []) -> []

|

(b) (5 pts) Given two lists of the same length, zip constructs a list of pairs: zip [x1, . . . , xn]
[y1, . . . , yn] = [(x1, y1); . . .; (xn, yn)]. Give the (polymorphic) type of zip (not its
definition), including both argument and result types:

zip :

(c) (5 pts) Fill in this definition to give an alternative definition of keep greater:

let keep_greater lis1 lis2 =
let rec aux_fun lis = match lis with

[] -> []
|

in aux_fun (zip lis1 lis2)

2



CS 421 Midterm 1 Name:

2. (15 pts) In this question, you will define a dictionary type — a mapping from strings to
integers — using binary search trees. Define the type like this:

type dictionary = Node of string * int * dictionary * dictionary
| Null

Here, Null represents an empty dictionary; leaf nodes are represented by terms of the form
Node(s, i, Null, Null).

Dictionaries are binary search trees — that is, given a node Node(s, i, t, t′), every string
occurring in t is less than s and every string in t′ is greater than s (using OCaml’s definition
of < on strings).

(a) (7 pts) Define get: string → dictionary → int. (No auxiliary functions should be
used.)

let rec get str dict = match dict with
Null -> raise NotInDictionaryException

| Node(s,i,d,d’) ->

(b) (8 pts) Define add: string → int → dictionary → dictionary, so as to preserve the
search tree property. You may assume that the string is not yet in the dictionary.

let rec add str i dict = match dict with

Null ->

| Node(s,i’,d,d’) ->

3



CS 421 Midterm 1 Name:

3. (15 pts) Java has four types of integer literals:

• Decimal: Single digit zero, or a non-zero digit followed by zero or more digits.

• Octal: Zero followed by one or more octal digits (0–7).

• Hex: Zero followed by x followed by one or more hex digits (0-9, a-f).

• Binary: Zero followed by b followed by one or more binary digits (0 and 1).

(a) (7 pts) Write a single DFA for all four types of integer literals. As we did in class, the
states should be labelled either Start, Error, or one of the token types (Int, Octal, Hex,
Binary). (The Discard label isn’t needed here.) Hint: our solution has a total of eight
states.

(b) (8 pts) Write separate regular expressions, in ocamllex notation, for each of the four
types of literals:

• Decimal:

• Octal:

• Hex:

• Binary:

4



CS 421 Midterm 1 Name:
4. (15 pts) This is an abstract syntax for part of OCaml, similar to the one discussed in lecture 4:

type exp = Integer of int | Var of string | Add of exp * exp | Let of def * exp
and def = Defn of string * exp

Define eval: exp→ dictionary→ int, where dictionary is the type defined in question 2.
Here is an example, using the abstract syntax for expression “let a=4 in a+x”:

# let dict1 = add "x" 5 Null;;
# eval (Let(Defn("a", Integer 4), Add(Var "a", Var "x"))) dict1;;
- : int = 9

In the call eval e dict, you can assume any free variables in e — that is, variables not defined
in a let expression inside e — are defined in dict. (In the example just given, x is a free
variable — so it is given in the dictionary — but a is not.)

The clause for Let should call auxiliary function evaldef: def→ dictionary→ dictionary.
evaldef adds the value of an expression to a dictionary; that is evaldef (Defn(s,e)) dict
returns a dictionary that is the same as dict except the value of e has been bound to s.

You can use get and add from problem 2 in your solution.

let rec eval e dict = match e with

Integer i ->

| Var s ->

| Add(e1, e2) ->

| Let(d, e1) ->

and evaldef (Defn(s,e)) dict =

5



CS 421 Midterm 1 Name:

5. (15 pts) Here is a concrete syntax for the same part of OCaml:

E → let D in E | E + E | int | string | ( E )
D → string = E

(a) (6 pts) Give the parse tree for the sentence let x=10 in x.

(b) (9 pts) Give the shift-reduce parse for that sentence. To reduce the amount of writing,
just use ”S” for shift and ”R” for reduce; you do not need to write the production you
use. (Hint: it has 11 steps.)

Action Stack Input
Shift let x=10 in x

Accept E eof

6



CS 421 Midterm 1 Name:

6. (15 pts) The OCaml grammar in the last problem is not LL(1) because it is ambiguous and
also uses left-recursion. This is a version that is unambiguous, and doesn’t use left-recursion:

E → let D in E | F
F → G + F | G
G → int | string | ( E )
D → string = E

(a) (3 pts) However, this grammar is still not LL(1) because the rules for F need to be left-
factored. Write the left-factored version of the rules for F (and just those; the others
don’t need to be changed):

(b) (12 pts) Write a recursive-descent recognizer for this grammar. You can assume parseF
and parseD are already done; you have to write parseE and parseG. Recall that each of
the functions has type token list→ token list. You should write raise SyntaxError
when you detect a syntax error. Here is the list of tokens:

type token = LetKW | InKW | Plus | LParen | RParen | Eq
| Int of int | Id of string | EOF

let rec parseE toklis = match toklis with

and parseG toklis = match toklis with

and parseF toklis = (* consider this one done *)
and parseD toklis = (* consider this one done *)

7



CS 421 Midterm 1 Name:

7. (10 pts) In lecture 10, we introduced type judgments for expressions and statements:

π, Γ ` S S is a type-correct statement, where Γ gives all variable declarations
surrounding S (fields, parameters, locals)

π, Γ ` e : τ e is a type-correct expression of type τ , where Γ gives the types of
any variables occurring in e.

Fill in the missing lines for these inference rules:

(a) π, Γ ` e1 + e2 : int

(b) π, Γ ` x = e;

(c) π, Γ ` if (e) S1 else S2

8


