
CS 421 Spring 2013 Final Exam

Tuesday, May 7, 2013

Name

NetID

• You have 180 minutes to complete this exam

• This is a closed book exam.

• Do not share anything with other students. Do not talk to other students. Do not look
at another student’s exam. Do not expose your exam to easy viewing by other students.
Violation of any of these rules will count as cheating.

• If you believe there is an error, or an ambiguous question, seek clarification from one of the
TAs. You must use a whisper, or write your question out.

• Including this cover sheet, there are 14 pages to the exam. Please verify that you have all 14
pages.

• Please write your name and NetID in the spaces above, and at the top of every page.

Question Value Score

1 10

2 5

3 5

4 15

5 15

6 12

7 10

8 8

9 5

10 5

11 10

12 5 (ec)

13 5 (ec)

Total 100
EC 10

1

CS 421 Final Exam Solution Name:

1. (10 pts) Match each term on the left with the most appropriate phrase on the right:

e Token

j Machine-independent optimization

b Machine-dependent optimization

c Nullable non-terminal

i Extended context-free grammar

a Type error

f V-table

d Higher-order function

g Type-inference

h Type scheme

(a) Can be found at compile time

(b) Transformation of IR to native code

(c) Can produce empty string

(d) Function that takes a function as argument or
returns a function a function as result

(e) Unit of input text meaningful for parsing

(f) Data structure for implementing inheritance

(g) Algorithm to fill in type declarations

(h) Type with some type variables quantified

(i) Contains regular expressions in productions

(j) Beneficial transformation of IR

2

CS 421 Final Exam Solution Name:

2. (5 points) In this problem, we use the following types of comments:

• C++: Starts with //, ends with newline

• C: Starts with /∗, ends with ∗/, no nesting

(a) (3 points) Draw a single DFA for C++ and C comments. As we did in class, the states
should be labelled either Start, Error, Discard, or one of the token types (Slash for a
single /). Note that we have an error if we start a comment and do not end it.

(b) (2 points) Give a regular expression for C++ comments.

’/’ ’/’ [^’\n’]*

3

CS 421 Final Exam Solution Name:

3. (5 points) Consider the OCaml type token of tokens representing integers, floats, and oper-
ators + and -:

type token = PLUS | MINUS | INT of int | FLOAT of float

A float is at least one digit optionally followed by a decimal point followed by zero or more
digits, optionally followed by E or e followed by at least one digit (there is no sign before the
exponent). (Examples: 1.0e2, 2., 10e5, and 02.3E0 are floats, but .23, e8, 9E, and 9e+3

are not.)

Give an ocamllex specification converting an input stream to a list of tokens; characters not
matching an integer, float, ‘+’ or ‘-’ are ignored. You can use the following functions:

• int of string : string -> int

• float of string : string -> float

(Note that float_of_string accepts strings in the format described above, so you simply
need to capture the characters and pass them to that function.)

Hint: you will need to use “as” patterns: regexp as name matches the regular expression
and assigns the matched string to name (which can then be used in the action).

Complete the following:

let digit = [’0’ - ’9’]

rule tokenize = parse

(* add your rules below *)

digit+ as num { INT (int_of_string num) }

| (digit+ (’.’ digit*)? ([’E’’e’] digit+)?) as num

{ FLOAT (float_of_string num) }

| ’+’ { PLUS }

| ’-’ { MINUS }

| _ { tokenize lexbuf }

One alternative for float rule (among many) is three rules:

| digit+ ’.’ digit* as num { FLOAT (float_of_string num) }

| digit+ [’E’’e’] digit+ as num { FLOAT (float_of_string num) }

| digit+ ’.’ digit* [’E’’e’] digit+ as num { FLOAT (float_of_string num) }

4

CS 421 Final Exam Solution Name:

4. (15 pts) This multi-part question concerns expression grammars. Consider this grammar:

G0: E → E + E | E - E | E * E | E / E | ident | (E)

(a) (4 pts) Here is a stratified grammar for the same language:

G1: E → T | T + E | T - E
T → P | P * T | P / T
P → ident | (E)

Answer these multiple choice questions concerning G1:

i. b G1 is (a) ambiguous, (b) unambiguous, or (c) impossible to tell from provided
data.

ii. c G1 gives (a) multiplication precedence over division, (b) division precedence
over multiplication, (c) multiplication and division the same precedence, or (d) the
question of precedence between multiplication and division is meaningless.

iii. b In G1, addition and subtraction (a) are left-associative, (b) are right-associative,
(c) do not have any associativity enforced by the grammar.

iv. b G1 is (a) LL(1), or (b) not LL(1).

(b) (4 pts) Perform left-factoring on G1. (Hint: the resulting grammar has exactly 10 pro-
ductions.)

E → T E′

E′ → ε | + E | - E
T → P T ′

T ′ → ε | * T | / T
P → ident | (E)

5

CS 421 Final Exam Solution Name:

(c) (4 pts) Consider again the original grammar:

G0: E → E + E | E - E | E * E | E / E | ident | (E)

Here is a parse tree for x + y * z:

Give the shift-reduce parse corresponding to this parse tree. It has exactly 11 steps. For
reduce actions, be sure to give the production being used.

Action Stack Input

Shift x + y * z

R E → id x +y*z

Sh E +y*z

Sh E+ y*z

R E → id E+y *z

Sh E+E *z

Sh E+E* z

R E → id E+E*z eof

R E → E ∗ E E+E*E eof

R E → E + E E+E eof

Accept E eof

(d) (3 pts) Give ocamlyacc precedence declarations enforcing the usual precedence and as-
sociativities of +, -, *, and /. (Use token names PLUS, MINUS, STAR, and SLASH.)

%left PLUS MINUS

%left STAR SLASH

6

CS 421 Final Exam Solution Name:

5. (15 pts) In this question, we will ask you to fill in SOS rules in the style of MP6 (MiniJava
interpretation with one-level store), MP7 (two-level store), and MP8 (compilation). As a
reminder, the judgments in these three systems are:

Expressions Statements
One-level store (MP6) e, σ, π ⇓ v S, σ, π ⇒ σ′

Two-level store (MP7) e, (ρ, η), π ⇓ v, η′ S, (ρ, η), π ⇒ ρ′, η′

Compilation (MP8) e, loc code S,m code,m′

Specifically, for each of the three assignments, we will ask you to give rules for whilebreak.
For interpretation (MP6 and 7), there are two rules, one for when the condition is true and
one for when it is false. For compilation, there is just one rule (and it is not recursive). In
all three parts of this problem, you need to fill in the blank lines.

The statement whilebreak S1 (cond) S2 executes S1, and then tests the condition; if the
condition is FALSE, it executes S2 and S1 and tests the condition again; repeat until the
condition is TRUE.

(a) (5 pts) One-level store:

whilebreak S1 (e) S2, σ, π ⇒ σ′′′

S1, σ, π ⇒ σ′

e, σ′, π ⇓ true

S2, σ
′, π ⇒ σ′′

whilebreak S1 (e) S2, σ′′, π ⇒ σ′′′

whilebreak S1 (e) S2, σ, π ⇒ σ′

S1, σ, π ⇒ σ′

e, σ, π ⇓ false

(b) (5 pts) Two-level store:

whilebreak S1 (e) S2, (ρ, η), π ⇒ ρ̂, η̂

S1, (ρ, η), π ⇒ ρ′, η′

e, (ρ′, η′), π ⇓ true, η′′

S2, (ρ
′, η′′), π ⇒ ρ′′, η′′′

whilebreak S1 (e) S2, (ρ′′, η′′′) , π ⇒ ρ̂, η̂

whilebreak S1 (e) S2, (ρ, η), π ⇒ η′′

S1, (ρ, η), π ⇒ ρ′, η′

S1, (ρ
′, η′), π ⇓ false, η′′

7

CS 421 Final Exam Solution Name:

(c) (5 pts) Compilation

whilebreak S1 (e) S2, m il1 @ il @ [CJUMP loc, m′ + |il|+ 1 , m′′ + 1]

@ il2 @ [JUMP m], m′′ + 1

S1, m il1, m′

e, loc il

S2, m′ + |il|+ 1 il2, m′′

6. (12 pts) In the various operational semantics for OCaml, the most interesting rule in most
cases was application.

(a) (6 pts) Fill in the application rule for those cases:

Substitution (e ⇓ v): (App) e1 e2 ⇓ v
e1 ⇓ fun x -> e
e2 ⇓ v′
e[v′/x] ⇓ v

Environment (e, ρ ⇓ v): (App) e1 e2, ρ ⇓ v
e1, ρ ⇓ <fun x -> e, ρ′ >
e2, ρ ⇓ v′
e, ρ′[x 7→ v′] ⇓ v

Lazy (e ⇓` v): (App) e1 e2 ⇓` v
e1 ⇓` fun x -> e
e[e2/x] ⇓` v

8

CS 421 Final Exam Solution Name:

(b) (6 pts) In lecture 24, we introduced the side-effecting operations of OCaml. To give their
operational semantics, we start with the environment model, but we need a two-level
store (just as for Java). The new judgments have the form

e, (ρ, ω) ⇓ v, ω′

where ω is the “heap.” Here are two of the rules:

(Fun) fun x -> e, (ρ, ω) ⇓ <fun x -> e, ρ >, ω

(Ref) ref e, (ρ, ω) ⇓ `, ω′[` 7→ v] (where ` is a fresh location not used in ω′)
e, (ρ, ω) ⇓ v, ω′

Give the rules for the following expressions. Recall that the dereferencing operator, !,
takes an expression that evaluates to a heap location and returns its contents; its type
is α ref → α. The assignment operator, :=, has a left-hand argument that evaluates
to a location and a right-hand argument that evaluates to some value, and it stores the
right-hand value into the left-hand location; its type is α ref * α → unit. The addition
operator evaluates its arguments left to right.

(Plus) e1 + e2, (ρ, ω) ⇓ i1 + i2, ω′′

e1, (ρ, ω) ⇓ i1, ω′

e2, (ρ, ω′) ⇓ i2, ω′′

(Dereference) ! e, (ρ, ω) ⇓ v, ω′

e, (ρ, ω) ⇓ `, ω′ (where ω′(`) = v)

(Assign) e1 := e2, (ρ, ω) ⇓ (), ω′′[` 7→ v]

e1, (ρ, ω), ⇓, `, ω′

e2, (ρ, ω′), ⇓, v, ω′′

9

CS 421 Final Exam Solution Name:

7. (10 pts) Recall the specification of fold right:

fold_right f [x1; x2; . . .; xn] z = f x1 (f x2 (. . . f xn z) . . .))

(which is just z if n = 0).

(a) (2 pts) Give a recursive definition for fold_right:

let rec fold_right f lis z = if lis=[] then z

else f (hd lis) (fold_right f (tl lis) z)

or

let rec fold_right f lis z = match lis with

[] -> z

| h::t -> f h (fold_right f t z)

(b) (8 pts) Define the following functions as “one-liners” by using fold_right and an anony-
mous function:

i. let sum lis = (* add elements of integer list lis *)

fold_right (+) lis 0 or fold_right (fun x y -> x+y) lis 0

ii. let big_and lis = (* true iff all elements of bool list lis are true *)

fold_right (&) lis true or fold_right (fun x y -> x&y) lis true

iii. let big_or lis = (* true iff at least one element of bool list lis is true *)

fold_right (or) lis false or fold_right (fun x y -> x or y) lis false

iv. let map f lis = (* usual definition of map *)

fold_right (fun h t -> f h :: t) lis []

10

CS 421 Final Exam Solution Name:

8. (8 pts) This question is about creating comparison functions by defining “comparison com-
binators.” A comparison function, or “comparator,” is simply a function of type α → α →
bool:

type ’a comparator = ’a -> ’a -> bool

Here are a couple of examples; lt is an int comparator; sumcomp is a function from an int
comparator to an (int * int) comparator:

let lt = fun x y -> x <= y

let sumcomp = fun comp -> fun (x1,y1) (x2,y2) -> comp (x1+y1) (x2+y2)

Define these functions (2 pts each):

(a) invert: ’a comparator -> ’a comparator inverts its argument’s arguments: (invert
lt) 3 4 = false; (invert lt) 4 3 = true; (invert lt) 3 3 = true.

let invert comp = fun x y -> comp y x

(b) first: ’a comparator -> (’a*’b) comparator creates a comparison function that
uses just the first element of a pair: (first lt) (3, 4.3) (4, 2.1) = true; (first
lt) (4, 4.3) (3, 8.1) = false.

let first comp = fun (x1,x2) (y1,y2) -> comp x1 y1

(c) both: ’a comparator -> (’a*’a) comparator creates a comparison function that com-
pares both elements of a pair: (both lt) (3, 4) (4, 5) = true; (both lt) (3, 4)

(4, 3) = false.

let both comp = fun (x1,x2) (y1,y2) -> comp x1 y1 & comp x2 y2

(d) nthcomp: int -> ’a comparator -> (’a list) comparator creates a comparison func-
tion that compares lists by comparing one of their elements: nthcomp 1 lt [1;2;3;4]

[1;3;5;7] = true; nthcomp 3 lt [1;2;3;4] [1;3;5;3] = false. (You may use func-
tion nth: ’a list -> int -> ’a.)

let nthcomp n comp = fun lis1 lis2 -> comp (nth lis1 n) (nth lis2 n)

11

CS 421 Final Exam Solution Name:

9. (5 pts) In the following, fill in V if the given term violates the value restriction, NV if it does
not violate it.

NV let f = List.map (fun x -> x + 2);;

V let f = List.map (fun x -> x);;

NV let f = fun lis -> List.map (fun x -> x) lis;;

NV let f = ref (fun x -> x + 2);;

NV let f = ref 3;;

10. (5 pts) In the following, enter T if the type on the left is an instance of the type scheme on
the right, F if it is not.

T int→int ≤ ∀α.α→ α

T int→int ≤ ∀α.int→ α

F int→ β ≤ ∀α.α→ γ

F float→ (β →int) ≤ ∀β.β → (β →int)

T float→(int→int) ≤ ∀α, β.float→ (α→ β)

12

CS 421 Final Exam Solution Name:

11. (10 points) Using the rules on the last page of this exam, type check the following. We have
given underlines for each judgment at the correct indentation level.

∅ ` let id:(alpha->alpha) = fun x:alpha -> x in id[bool->bool] true : bool

∅ ` fun x:alpha -> x : alpha -> alpha

{ x : alpha } ` x : alpha

{ id: ∀ alpha. alpha → alpha } ` id[bool->bool] true : bool

{ id: ∀ alpha. alpha → alpha } ` id[bool->bool] : bool->bool

{ id: ∀ alpha. alpha → alpha } ` true : bool

13

CS 421 Final Exam Solution Name:

12. (5 pts extra credit) This is a variant of a question asked on midterm 1. Given this grammar:

E → let D in E | F
F → G F ′

F ′ → + F | ε
G → int | string | (E)

D → string = E

fill in the missing parts of a top-down recognizer for the grammar. You can assume parseE,
parseF’, and parseD are already done; you have to write parseF and parseG. Recall that each
of the functions has type token list→ token list. You should write raise SyntaxError

when you detect a syntax error. Here is the list of tokens:

type token = LetKW | InKW | Plus | LParen | RParen | Eq

| Int of int | Id of string | EOF

let rec parseE toklis = (* assume done *)

and parseF toklis = parseF’ (parseG toklis)

and parseF’ toklis = (* assume done *)

and parseG toklis = match toklis with

Int i :: toklis’ -> toklis’

| Id s :: toklis’ -> toklis’

| LParen :: toklis’ -> let toklis’’ = parseE toklis’

in (match toklis’’ with

RParen :: toklis’’’ -> toklis’’’

| _ -> raise SyntaxError)

| _ -> raise SyntaxError

and parseD toklis = (* assume done *)

14

CS 421 Final Exam Solution Name:

13. (5 pts extra credit) This question is a variation on a question from midterm 2. Fill in the
blanks.

(a) The three stages of the back-end of a compiler are, in order:

i. translation from AST to intermediate rep-

resentation (IR)

ii. optimization (transformation of IR)

iii. codegen (translation of IR to native, or machine, code)

(b) A major disadvantage of reference counting for automatic memory manage-

ment is its inability to handle cyclic data structures.

(c) Mark-sweep garbage collection takes time proportional to the size of

the heap, while stop-and-copy garbage collection takes time proportional

to the size of the reachable data.

(d) Normally, the statements “x = f(0);” and “{ x = f(0); x = f(0); }” are equiva-

lent. However, they may give different results if f has side effects .

(e) If A is declared in C as int[10][5], and integers are four bytes, then A[i][j] is at

location address(A) + i ∗ 20 + j ∗ 4 .

(f) Programs can be verified in a proof system whose judgments, called Hoare triples, have

the form P{A}Q . The truth of a Hoare triple does not mean that

the statement terminates; if we can prove that a statement satisfies a Hoare triple and

always terminates, we have proven its “ total correctness”.

15

CS 421 Final Exam Solution Name:

Type-checking rules, where Γ is a map from variables to type schemes. τ , τ ′, τ ′′ are types. (Feel
free to tear off this page.)

(Const) Γ ` Int i : int (Var) Γ ` a : Γ(a)
(Γ(a) a type)

(Fun) Γ ` fun a:τ -> e : τ → τ ′

Γ[a:τ] ` e : τ ′
(δ) Γ ` e ⊕ e′ : τ ′′

Γ ` e : τ
Γ ` e′ : τ ′

(App) Γ ` e e′ : τ ′

Γ ` e : τ → τ ′

Γ ` e′ : τ

(True) Γ ` true : bool

(False) Γ ` false : bool

(PolyVar) Γ ` a[τ] : τ
where τ ≤ Γ(a)
(Γ(a) a type scheme)

(Let) Γ ` let a:τ = e in e′ : τ ′

Γ ` e : τ
Γ[a:GENΓ(τ)] ` e′ : τ ′

16

