MP 4 — A Recursive Descent Parser for

MiniJava
CS 421 — Spring 2011

Revision 1.0

Assigned February 7, 2011

Due February 14, 2010 11:59pm
Extension 48 hours (20% penalty)
Total Points 40 (no extra credit)

1 Change Log

1.0 Initial Release.

2 Overview

Previously, you created a lexer for MiniJava. Now it is time to write the parser that will build the Abstract Syntax Tree
of the input program. In this MP, we will write a recursive descent (top-down) parser for a subset of MiniJava. The
next MP will involve writing a bottom-up parser.

3 Collaboration

Collaboration is NOT allowed on this assignment.

4 What to submit

In this handout you will find several exercises, labeled as Exercise. Studying these exercises is for your own benefit.
They are meant to help you see important concepts and to provoke thought. You will NOT be graded for your answers
to these exercises. Therefore, you will NOT submit any answers for them (of course, you are welcome to discuss these
exercises with the course staff or your friends).

What you will submit for this MP is the implementation of a recursive descent parser for MiniJava. You will
submit your source in a file named mp4 . m1 using the handin program as usual.

5 Original Grammar

The grammar of MiniJava is given below. For this MP, we are only parsing class and method declarations, so the
grammar is a subset of the regular MiniJava grammar.

Program = (ClassDecl)+
ClassDecl ::= "class" <IDENTIFIER> ("extends" <IDENTIFIER>)? "{" VarDecl* MethodDeclx* "}"

VarDecl ::= Type <IDENTIFIER> ";"

| "static" Type <IDENTIFIER> ";"
MethodDecl ::= "public" Type <IDENTIFIER>
"(" (Type <IDENTIFIER> ("," Type <IDENTIFIER>)«)? ")m"™ "{" m}v
Type ::= Type "[" "]"
| "boolean"
| "float"
["int"
| <IDENTIFIER>
6 'Tokens

You will be given a correctly implemented lexer for your use. The lexer will tokenize the input, and output the list of
lexemes. The token type is defined as below. Note that we have omitted several unneeded tokens.

type token =
BOOLEAN | CLASS | EXTENDS | FLOAT | INT
| PUBLIC | STATIC | LPAREN | RPAREN | LBRACE | RBRACE
| LBRACK | RBRACK | SEMICOLON | COMMA | IDENTIFIER of string
| ... (x Several other tokens not needed for this MP x*)

Also note that we no longer have the EOF token; end-of-file is indicated by an empty list.

7 AST Structure

As the result of parsing, you will return an AST of the input program based on the following definition. Note that this
is similar to the abstract syntax you saw in MP2, but with method bodies removed and a var_kind field added to
var_decl toindicate Static vs. NonStatic variable declarations.

type program = Program of (class_decl list)

and class_decl = Class of id x id
* (var_decl list)
* (method_decl list)

and var_decl = Var of var_kind * exp_type * id
and var_kind = Static | NonStatic

and method_decl = Method of exp_type
* id
* ((exp_type » id) 1list)

and exp_type = ArrayType of exp_type
| BoolType
| IntType
| FloatType
| ObjectType of id

and id = string

Exercise

Compare this AST structure to the grammar given in Section [5} and observe how the non-terminals and rules in the
grammar map to the AST structures.

8 Modified Grammar

The grammar we gave you in Section [5|contains regular expression abbreviations such as + and ?, and also the Kleene
star *. We now factor out these for you to make the grammar more suitable for top-down parsing. The new grammar
is given in Figure[I] You will use this grammar to write the parser. The original grammar is only for reference.

Program ::= ClassDecl Classes
Classes ::= ClassDecl Classes
| €
ClassDecl ::= "class" <IDENTIFIER> ClassA
ClassA ::= "extends" <IDENTIFIER> "{" ClassB
| "{" ClassB
ClassB ::= "}"

| "public" MethodDecl ClassC
| VarDecl ClassB

ClassC ::= "}"
| "public" MethodDecl ClassC
VarDecl ::= "static" Type <IDENTIFIER> ";"
| Type <IDENTIFIER> ";"
MethodDecl ::= Type <IDENTIFIER> " (" MethodA
MethodA ::= n) n vv{v n}vv
| Type <IDENTIFIER> MethodB
MethodB ::= u) n "{ll ll}"
| "," Type <IDENTIFIER> MethodB
Type ::= SimpleType ArrayPart
SimpleType ::= "boolean"
| "float"
| llint"
| <IDENTIFIER>
ArrayPart ::= "[" "]" ArrayPart

| €

Figure 1: The modified grammar.

Exercise

Compare and contrast the new grammar (Figure [T) to the original one in Section [5] Make sure that you understand
they define the same language.

Exercise

Remember how the original grammar non-terminals and rules would map the AST datatype. Now try to match the
rules of the new grammar to the AST structure. Is there still a direct mapping? Why/Why not?

9 Recursive Descent Parsing

To write a recursive descent (i.e. top-down) parser, the initial requirement is that the grammar should be top-down
parsable. There are two important issues in a grammar one should pay attention to:

e [eft-recursion. Rules in the form

e The FIRST test: It must be possible to determine what production to use by looking at the next input token.

These issues make a grammar inappropriate for recursive descent parsing (recall why). Such grammars have to be
factored to become top-down parsable.

Exercise

Examine the grammar given in Figure [T} Verify that it does not have left-recursion and it passes the FIRST test.
Convince yourself that it is top-down parsable.

10 Writing the Parser

Here comes the fun part. You are now ready to write the recursive descent parser for MiniJava. Keep in mind that you
will use the factored grammar given in Figure[I] Here are the instructions:

e Download mp4grader.tar.qgz. This tarball contains all the files you need, including

The lexer

The definition of tokens and the abstract syntax (in mp4common .ml1).

A skeleton file for you to start from (mp4-skeleton.ml).

Several test cases (tests)

e As always, extract the tarball, rename mp4-skeleton.ml to mp4 .ml and start modifying the file. You will
modify only the mp4 .m1 file, and submit this file only.

e Compile your solution with make. Run the . /grader to see how well you do.
e Make sure to add several more test cases to the tests file.

e The following will allow you to run the solution parser interactively:

#load "solution.cmo";;

#load "minijavalex.cmo";;

let parse s = Solution.parse (Minijavalex.get_all_tokens s);;
val parse : string -> Mp4common.program option = <fun>

parse "class Dummy { }";;

- : Mp4common.program option =

Some (Mp4common.Program [Mp4common.Class ("Dummy", "", []1, [1)])

Filling in the skeleton file

In the skeleton file you will notice that there is a function for each non-terminal of the grammar. A function receives
a list of tokens. It then parses the part that it is supposed to recognize, and returns the abstract syntax tree of this part
together with the rest of the tokens. For instance, parse_ClassDecl, given the tokens of the input

class A { } int 1i;
should return the following result

— : Mp4dcommon.class_decl * Mpdcommon.token list =
(Mp4common.Class ("A", "", [1, [1),
[Mp4common.INT; Mp4common.IDENTIFIER "i"; Mp4common.SEMICOLON])

Note that the first item of the returned pair is the AST for “class A {}”, and the second item is the remaining tokens
for “int i;”. When given the tokens for “notAClass” as the input, a Parse_failure exception is returned.
The first function of the parser, parse_program, is implemented for you and copied below:

let rec parse_Program toks =

let (c, toks’) = parse_ClassDecl toks
in let (cs, toks’’) = parse_Classes toks’
in

(Program(c::cs), toks’’)

Note how this implementation follows the Program rule of the grammar.
Finally, there is a top-level function called parse that receives a token list and returns the AST. This is the function
we will interact with. It has also been implemented for you.

Parse_failure Exception
Note the following line at the top of the skeleton:
exception Parse_failure

This line defines an exception called Parse_failure, which is to be raised whenever your parser cannot pro-
ceed due to a bad token list. In OCaml, exceptions can be raised at any point, and cause control to be handed up to the

nearest enclosing try...with. .. block.

For this assignment, the top-level function parse (which we have already defined for you) containsatry...with. ..
block to handle the exception Parse_failure for you (so you never need to writteatry...with. .. block your-
self.)

What should the functions return?

A parse_X function, when it can parse the input, is supposed to return the AST of the parsed tokens and the rest of
the tokens (i.e. the tokens that it did not consume). For instance, the parse_Program function returns the Program
that contains the list of classes. It also returns the tokens left after the sequence of classes. So a pair of values will be
returned.

If the parsing of some rule cannot continue because the token list does not match any of the patterns it is expected
to, then raise Parse_failure. The exception will be propagated all the way back up to the top-level parse
function, which will return None.

Note that not every function corresponds to an AST structure as Program does. For example, parse_Classes,
called from parse_Program, returns a list of AST’s. For other functions, by looking at the grammar rules, you
should figure out what to return; you may need to return a single AST, a list of AST’s, or a tuple containing several
things.

Hint: Constructing the correct AST for array types is a bit trickier than other parts. You may want to pass an
extra argument to the parse_ArrayPart function (as we have in the skeleton), or implement a helper function to
post-process its output.

11 The Assignment

Write a recursive descent parser for MiniJava according to the grammar given in Figure [I| You need to implement
the parser functions for non-terminals as given in the skeleton file. The point distribution is given below (subject to
change).

Be able to parse Approx. points
classes with empty body 5
classes with fields only 10
classes with methods only 10
classes with fields and methods 10
Reject bad inputs 5

Total 40

	Change Log
	Overview
	Collaboration
	What to submit
	Original Grammar
	Tokens
	AST Structure
	Modified Grammar
	Recursive Descent Parsing
	Writing the Parser
	The Assignment

