MP 2 — Abstract Syntax Trees

CS 421 — Spring 2011

Revision 1.0

Assigned Tuesday, January 25, 2011

Due Monday, January 31, 2011, 23:59

Extension 48 hours (penalty 20% of total points possible)
Total points 50 (+8 points extra credit)

1 Change Log

1.0 Initial Release.

2 Objectives and Background

After completing this MP, you should have a better understanding of
e pattern matching and recursion
e user-defined datatypes
e abstract syntax trees

HINT: This MP is significantly harder than the first two. We recommend you to start working on this assignment
early.

3 Collaboration

Collaboration is NOT allowed in this assignment.

4 Background

One of the objectives of this course is to provide you with the skills necessary to implement a language. A compiler
consists of two parts, the “front-end” and the “back-end.” The front-end translates the concrete program — the
sequence of characters — into an internal format called an abstract syntax tree (AST); it also creates a symbol table of
all the names used in the program and their types. The back-end translates the AST to machine language (consulting
the symbol table when necessary).

In OCaml, abstract syntax trees are built from user-defined data types. These types are called the abstract syntax of
the language, and the constructors are calls abstract syntax operators. In this MP you will work with abstract syntax
trees for a language based on Java. You will be given code to support your work, including the abstract syntax and the
type definition for symbol tables. You will not be asked to build ASTs, just to perform various operations on them; we
will provide methods to build them.

5 Given Code

This semester, we will build a compiler for the language MiniJava. MiniJava is a simplification of Java. In addition to
dropping many features, such as exceptions, it has one syntactic difference that you will see immediately: All methods
return values; there is no type “void”; and every method ends with a return statement. (You can find the syntax of
MiniJava in the document “MiniJava Syntax” linked from the MP2 web page.)

In this assignment, you will build functions to traverse an abstract syntax tree. The file mp2common.cmo contains
compiled code to support your construction of these functions. Its contents are described here.

5.1 Abstract syntax of MiniJava

The abstract syntax for MiniJava is given by the following mutually-recursive Ocaml types (we have interspersed
explanatory comments between the type definitions):

type program = Program of (class_decl 1list)

and class_decl = Class of id * id * (var_decl 1list) =* (method_decl 1list)

A program is a list of classes. A class has a name, superclass name (which is the empty string if the class does not
have an extends clause), fields, and methods.

A method has a return type, name, argument list, local variable list, and body; in MiniJava, the body is a statement
list and then a return statement with an expression. Variable declarations have a type and a name.

and method_decl = Method of exp_type
* id
* ((exp_type x id) 1list)
* (var_decl list)
* (statement list)
* exp

and var_decl = Var of exp_type » id

Statements make changes in environments but don’t return any value. The following should have obvious meanings,
with a couple of exceptions: The Println constructor gives us an easy way to include a print statement, instead
of the complicated way required by real Java. The switch statement can only handle integer cases; abstractly, it
contains a list of (integer, statement list) pairs (the regular cases), plus one more statement list (the default case).

and statement = Block of (statement list)
| If of exp » statement * statement
| While of exp % statement
| Println of exp
| Assignment of id * exp
| ArrayAssignment of id % exp x exp
|
|
|

Break

Continue

Switch of exp

* ((int » (statement list)) list) (x cases x)

* (statement list) (x default =)

The abstract syntax for expressions follows. The constructor NewId creates a zero-argument constructor call (there
are only zero-argument constructors in MiniJava).

and exp = Operation of exp » binary_operation * exp
| Array of exp * exp
| Length of exp
| MethodCall of exp » id * (exp list)
| Id of id
| This
| NewArray of exp_type x exp
| NewId of id
| Not of exp
| Null
| True
| False
| Integer of int
| String of string
| Float of float

and binary_operation = And | Or | LessThan
| Plus | Minus | Multiplication | Division

The abstract syntax for types and identifiers follows. ObjectType of id corresponds to a classname used as a
type.

and exp_type = ArrayType of exp_type | BoolType
| IntType | ObjectType of id | StringType | FloatType

and id = string

6 Problems

Note: In the problems below, you do not have to begin your definitions in a manner identical to the sample code.
However, you have to use the indicated name for your functions, and the functions have to have the same type. In
these problems, you may use library functions freely.

1. (25 pts) We said above that the front-end of a compiler is the part that transforms the input program into an AST,
and constructs a symbol table. Logically, construction of the AST comes first, and the symbol table is built from
the AST. In particular, once a program has been transformed to an AST, there are additional processing steps to be
done before the work of generating code — the “back-end” work — can be started. For one thing, there are various
“sanity checks” on the program, such as checking that it is type-correct, that it does not include multiple definitions
with the same name, and such. (This is sometimes called “context-sensitive syntax,” because it is checking aspects
of the program’s syntax that are not covered by the context-free grammar.) For another, the front end needs to
determine which variables are in scope at each point in the program, and it must build a table of all variables and
their types. The latter process is called “symbol table construction.” The symbol table is used by the back end for
various things; one example is that it needs to correctly generate code for an expression like “x+y”, which it can
only do if it knows the types of x and y.

In this problem you will do a simple form of symbol table construction for MiniJava ASTs.
Specifically, you are to write a function symboltable of type
val symboltable : program —-> symbol_table

which will give the variables in scope in each method defined in the program. (Note that in MiniJava there are no
initializers for fields — which means that fields are referenced only inside method bodies — and all variable decla-
rations occur at the start of the method — so there is only one scope within a method.) The type symbol_table
is given here:

type symbol_table =

(class_name x class_name x variable list * method_info list) list
and method_info = (method_name * variable list)
and variable =

Field of class_name * exp_type * string

| Argument of exp_type x string

| MethodVar of exp_type * string
and class_name = string
and method_name = string

This table has one entry for each class, giving the class’s name, its superclass, a list of the class’s fields, and
a secondary table (represented as a list) with information about the class’s methods. This secondary table has
an entry for each method in the class, giving the method’s name and a list of the variables that can appear in
that method. The variable list distinguishes between class fields, arguments, and local variables. We are NOT
considering inheritance here, so assume that the only fields visible in a method are the fields defined in the method’s
containing class.

Note that constructing the symbol table requires only a “shallow” traversal of the AST. You don’t need to look at
statements since they cannot have variable declarations (in MiniJava). You will need to write auxiliary func-
tion(s) for each type (class_decl, class_.decl list,method._decl, etc.) that has variable declarations.

a. (25 pts) Write a function symboltable that traverses the AST and builds a symbol table as described above.
In this problem, you do not need to worry about inheritance; in each class’s entry, only include information
for the fields defined in that class.

(25 pts) Next, we will ask you to make use of the symbol table by traversing the AST and printing the type of each
variable used. Note that this problem involves a deep traversal of the AST.

a. (10 pts) Write afunctionget _type : symbol_table -> class._name —-> method.name -> id
—> exp-type that looks up a variable in the symbol table and returns its type in the context of the given
method. For instance, get _type table "Classl" "Methodl" "x" gives the type that x has when
used in the body of method Method1 in class Class1, taking into account both method variables and class
fields. Recall that if a local variable in a method has the same name as the field of a class, the local variable
hides the field.

b. (8 pts extra credit) Extend get_type to handle inheritance. If a variable can’t be found in the entry for a
class Class1, get_type should check the fields of all the ancestors of Class1 until it finds the variable.
It should NOT check the method variables in the superclasses; only fields are inherited.

c¢. (15 pts) Using the functions from the previous problems, write a function print_vars : program —-> string
that builds a string containing the type of each variable used in each method in a program. This is not the
same as the variables that are in scope — that list would just be exactly what is in the symbol table — but is
rather the variables actually used; furthermore, this list includes a line for each occurrence of a variable, so
that it may have a line for the same variable multiple times.

Specifically, your program should traverse the AST and return a string with the following properties:
e For each class declaration, the result should contain “’In class c:” followed by a newline, where c is the
name of the class.

e For each method declaration, the result should contain ”In method m:” followed by a newline, where m
is the name of the method.

e For each use of a variable inside any statement in the method (including the returned expression), the
result should contain v has type t” followed by a newline, where v is the name of the variable and ¢ is
its type according to the program’s symbol table.

You should use the provided function print_type to turn a type into a string.

7 Testing

We provide a file test ing.ml with the following contents:

#load "str.cma";;
#load "mp2common.cmo"; ;
#load "minijavaparse.cmo";;
#load "minijavalex.cmo";;
#load "solution.cmo";;
#load "student.cmo";;
let parse s =
Minijavaparse.program Minijavalex.tokenize (Lexing.from_string s);;

let solution_table s =
(Solution.symboltable (parse s));;

let my_table s =
(Student.symboltable (parse s));;

let solution_get s cm v =
(Solution.get_type (Solution.symboltable (parse s)) c m Vv);;

let my_get s cm v =
(Student.get_type (Solution.symboltable (parse s)) cm Vv);;

let solution_print s =
print_string (Solution.print_vars (parse s));;

let my_print s =
print_string (Student.print_vars (parse s));;

You can then open up an OCaml environment and load the file above to check the solution’s or your output for ar-
bitrary MiniJava programs. To run the symbol table function, use solution_table (and my_table, respectively,
for your own implementation). To run the get-type function, use solution_get (and my_get for your own imple-
mentation). To run the print-vars function, use solution_print (and my_print for your own implementation).
Each of these functions takes as input a MiniJava program in string. A sample run is shown below.

Objective Caml version 3.12.0

#use "testing.ml";;
val parse : string —-> Mp2common.program = <fun>
val solution_table
string ->
(Mp2common.id % Mp2common.id * Mp2common.variable list «
(Mp2common.id * Mp2common.variable list) list)
list = <fun>
val my_table
string ->

(Mp2common.id * Mp2common.id * Mp2common.variable list =
(Mp2common.id * Mp2common.variable list) list)
list = <fun>
val solution_get
string -> Mp2common.id —-> Mp2common.id —-> string —-> Mp2common.exp_type =
<fun>
val my_get
string -> Mp2common.id —-> Mp2common.id —-> string —-> Mp2common.exp_type =
<fun>
val solution_print : string —-> unit = <fun>
val my_print : string -> unit = <fun>
solution_table "class A {public int foo(int x){int y; return x + y;}}";;
- : (Mp2common.id * Mp2common.id x Mp2common.variable list =
(Mp2common.id % Mp2common.variable list) list)
list

[("A"I ""I []/
[("foo",

[Mp2common.MethodVar (Mp2common.IntType, "y")
Mp2common.Argument (Mp2common.IntType, "x")]

solution_print "class A {public int foo (int x) {

In class A:

In method foo:

x has type int

y has type int

- : unit = ()

1]

7
)
int y; return x + y;1}1}1";;

Final Remark: Note that you can (and should!) always add more test cases to the rubric by editing the tests file.
Just follow the pattern for the existing test cases.

