MP 1 — Pattern Matching and Recursion
CS 421 — Spring 2011

Revision 1.0

Assigned January 18, 2011
Due January 24, 2011, 23:59
Extension 48 hours (20% penalty)

1 Change Log

1.0 Initial Release.

1.1 Added ”strictly” to problem 7.

2 Objectives and Background

The purpose of this MP is to help the student master pairs, lists, pattern matching (on pairs and lists), and recursion.

3 Collaboration

Collaboration is allowed in this assignment.

4 Instructions

The problems below have sample executions that suggest how to write answers. Students have to use the same function
name, but the name of the parameters that follow the function name need not be duplicated. That is, the students are
free to choose different names for the arguments to the functions from the ones given in the example execution. We will
sometimes use let rec to begin the definition of a function, indicating that we have defined our solution recursively.
This is intended as a hint, but the use of recursion is up to you. In particular, you may find that it is easier to define
an auxiliary function recursively and then define the required function just by calling the auxiliary one (so that the
required function is not itself defined recursively).

For all these problems, you are allowed to write your own auxiliary functions, either internally to the function
being defined or externally as separate functions. In this assignment, you may not use any library functions (except
@ and sgrt, both of which are pervasive).

Some functions in this assignment have polymorphic types. These functions can be tested on non-integer inputs as
well. Please be carefull about your function types.

S Problems
5.1 Pattern Matching

1. (2 pts) Write pair_to_list : ’a % 'a —-> ’'a list that takes a pair of two ’ a type elements and
returns a list of two elements in the reversed order.

Note: input can be a non-integer pair. Your function should be polymorphic.

let pair_to_list ... = ...;;

val pair_to_list : ’a x 'a -> ’'a list = <fun>
pair_to_list (5, 9);;

- : int list = [9; 5]

2. (3pts) Writedist : (float » float) =% (float » float) -> float thattakestwo points (pairs
of floats), and calculates the distance between them:

Note: you may use sgrt function from Ocaml standard library.

let dist ... = ...;;

val dist : (float » float) = (float * float) —-> float = <fun>
dist ((1.0, 4.0), (0.0, 4.0));;

- : float = 1.

3. (4 pts) Write sort_first two : ‘a list —-> ’a list that reverses the first two elements of a list if
the first element is larger than the second element, or does nothing to a one- or zero-element list.

Note: input can be a non-integer list. Your function should be polymorphic.

let sort_first_two ... = ...;;

val sort_first_two : ’'a list -> ’'a list = <fun>
sort_first_two [8; 2; 51;;

- : int list = [2; 8; 5]

sort_first_two [3; 7; 41;;

- : int list = [3; 7; 4]

5.2 Recursion

4. (5 pts) Write sum : int list -> int that returns the sum of all elements in the list, or O if the list is
empty.
let rec sum 1 = ...;;
val sum : int list -> int = <fun>
sum [0; 2; 5];;
- : int =7
5. (5 pts) Write concat_odd : string list —-> string that concatenates the elements in odd positions

of the input list, returning " " on the empty input.

let rec concat_odd 1 = ...;;

val concat_odd : string list —-> string = <fun>

concat_odd ["How "; "hey"; "are "; "things"; "you?"l]l;;
- : string = "How are you?"

6. (6 pts) Write a function dotproduct : int list -> int list -> int thatcalculates a dot-product
of two lists (sum of products of respective elements). If one list is longer than the other one, then excessive elements
are discarded. If either list is empty, dotproduct should return 0.

10.

11.

let rec dotproduct 11 12 = ...;;

val dotproduct : int list -> int list -> int = <fun>

dotproduct [1;2] [3;41;;

- : int = 11

(5 pts) Write is_sorted : ’"a list —> bool that returns true if the input list is sorted strictly ascend-

ingly, false otherwise.

Note: input can be a non-integer list. Your function should be polymorphic.

let rec is_sorted 1 = ...;;

val is_sorted : "a list -> bool = <fun>
is_sorted [1;2;3;4;5;8;9;111;;

- : bool = true

1is_sorted [2;3;4;5;7;6;8]1;;
bool = false

(5 pts) Write total dist: (float = float) list —> float that calculates the total distance from
the first point in the list to the last; if the list has fewer than two elements, then the distance is zero. You can call
the dist function you defined above.

let rec total_dist 1 = ...;;

val total_dist : (float % float) list -> float = <fun>

total_dist [(1.0,4.0); (4.0,0.0); (8.0, 3.0); (5.0, 7.0)1;;
- : float = 15.

(6 pts) Write merge : ’'a list -> ’a list —-> ’a list whose arguments are two lists sorted in
ascending order, and whose result is the merging of the two lists, also in ascending order.

Note: input can be non-integer lists. Your function should be polymorphic.

let rec merge ... = ...;;

val merge : ’'a list -> 'a list -> ’"a list = <fun>
merge [1;3;5] [4;5;6];;

- : int list = [1;3;4;5;5;6]

(6 pts) Write a function firstelts : ‘a list list -> ’a list that takes a list of lists /g, /1, ...
and returns a list containing the first elements of each of ¢y, /1, etc. If any of the contained lists is empty, then it is
skipped.

let rec firstelts lis =

val firstelts : ’'a list list -> ’'a list = <fun>
firstelts [[1;2]; [3;4;51; [1; [6;711;;

- : int list = [1; 3; 6]

(7 pts) Write a function group : ‘a list —-> ’'a list list that takes a list of elements and groups
each sequence of consecutive equal elements in a list to a separate list, producing a list of lists.

let rec group 1 =
val group : ’‘a list -> ’a list list

group

[1;1;2;3;1;4;5;5;61;;

<fun>

- : int list 1list = [[1; 11; [2]; [31; [11;

group

[1;1;2;2;1;11;;

- : int list list = [[1; 11; [2; 2]1;

