
Solutions for sample problems for CS 421 Midterm 2 Name:

1. (8 pts) Fill in the blanks below, giving the names of the various parts of a compiler. (Re-
call that the cylinders represent data and the boxes represent actions (i.e. functions).)

A front-end

B back-end

C lexer

D parser

E AST

F symbol table

G optimization

H code generation

1

Solutions for sample problems for CS 421 Midterm 2 Name:

2. (12 pts) For each of the statements below, indicate which memory management approach(es) it
describes: reference counting (RC), non-copying garbage collection (NG), or copying garbage
collection (CG). If a statement applies to more than one approach, you should write all of
the approaches it describes.

Cannot handle cyclical references

RC

Uses a “free area” model to represent free memory

CG

Is best for spreading out the cost of garbage collection throughout the program

RC

At any time, only half of memory is in use

CG

Unreachable memory may not be freed immediately

NG, CG

Iterates over the entire heap at once (not just reachable memory)

NG

Does not move reachable data

RC, NG

2

Solutions for sample problems for CS 421 Midterm 2 Name:

3. (14 pts) In class, we gave the following translation schemes for translating source programs
into an intermediate representation (IR). All but the first take an AST (expression or state-
ment) to a sequence of IR instructions.

[e] : translate expression e to IR; returns pair (IR instruction list, location of value)

[S] : translate statement S to IR

[e]x : translate expression e to code that stores value of e in variable x

[S]L : translate statement S in context of a loop or switch statement, where L is the target of
a break statement

[e]Lt,Lf : translate expression e to code that branches to Lt if e is true, or Lf otherwise (the
short-circuit evaluation scheme)

The instructions in our intermediate representation were: x = n; x = y; x = y + z (for any
operation +); JUMP L; CJUMP x, L1, L2; and x = LOADIND y.

(a) Give the following translations. (You may use functions getloc() and getlabel() to get
fresh memory locations and fresh instruction labels, respectively.)

i. [e1 + e2]

let t1, t2, t3 = getloc() in
[e1]t1
[e2]t2
t3 = t1 + t2

ii. [e1 ? e2 : e3]x (for full credit, use the short-circuit scheme for e1)

[e1]L1,L2

L1: [e2]x
JUMP L3
L2: [e3]x
L3:

iii. [e1 && !e2]Lt,Lf (e2 should not be evaluated if e1 is false)

[e1]L1,Lf

L1: [e2]Lf,Lt

3

Solutions for sample problems for CS 421 Midterm 2 Name:

(b) (5 pts extra credit) Give IR code for a for loop. A for loop has the form “for(S1; e; S2) S3”,
where S1 is executed before the loop begins, the loop ends when e evaluates to false, S2

is executed at the end of each iteration of the loop, and S3 is the loop body. For full
credit, use the short-circuit scheme for e.

[S1]
JUMP L2
L1: [S3]L3

[S2]
L2: [e]L1,L3

L3:

4

Solutions for sample problems for CS 421 Midterm 2 Name:

4. (22 pts)

(a) Give the type of the following function: fun f -> fun g -> fun x -> g (f x) x

(α→ β)→ (β → α→ γ)→ α→ γ

(b) Write an OCaml function update such that update f a b is a function that returns b
when given a as input but otherwise behaves the same as f.

let update f a b = fun x -> if x = a then b else f x

(c) Write an OCaml function double that duplicates each element of a list, using fold right
instead of explicit recursion. For example, double [1; 2; 3] = [1; 1; 2; 2; 3; 3]. Remember
that fold right has type (α -> β -> β) -> α list -> β -> β.

let double lis = fold right (fun x y -> x :: x :: y) lis []

(d) Write an OCaml function sum pairs that takes a list of pairs and returns a list containing
the sum of the elements of each pair, using map instead of explicit recursion. For
example, sum pairs [(1, 2); (3, 4); (5, 6)] = [3; 7; 11].

let sum pairs = map (fun (x, y) -> x + y)

5

Solutions for sample problems for CS 421 Midterm 2 Name:

(e) (5 pts extra credit) Write an OCaml function maxf that takes a function f and a list lst
and returns a pair (max, index), where max is the largest value produced by applying f
to an element of lst, and index is the index in lst of the element x such that f x = max,
where the first element of the list has index 0. If there are multiple such elements, you
may return the index of any one of them. For example, maxf (fun x -> x + 2) [1; 2; 3]
= (5, 2). You may assume that lst is never empty. You may also assume that f takes
elements of lst and returns only positive integers. Your function should use fold right
instead of explicit recursion.

let maxf f lst = fold right (fun x (m, i) -> if f x > m then (f x, 0) else (m, i+1)) lst (0,0)

6

Solutions for sample problems for CS 421 Midterm 2 Name:

5. (15 pts) In homework 9, you defined multisets to be functions of type α -> int; in particular,
you used the definition type ’a multiset = ’a -> int. In that homework, you defined
functions add, member, union, disjointUnion, intersection, remove, filter, and fromList. De-
fine the following additional functions on multisets:

(a) fromSet: ’a set -> ’a multiset, such that fromSet s returns a multiset containing 1 copy
of each element in s. Recall that the set type is defined by type ’a set = ’a -> bool.

let fromSet s = fun x -> if s x then 1 else 0

(b) count: ’a multiset -> ’a list -> int, such that count m lst returns the total number of
occurrences of elements from lst in m. You may assume that lst contains no duplicate
elements.

let count m lst = fold right (+) (map m lst) 0

(c) subtract: ’a multiset -> ’a multiset -> ’a multiset, such that subtract a b has n copies
of the value x if a has p copies and b has q copies and n = p - q. If b has more copies
of x than a, then subtract a b should have 0 copies of x.

let subtract a b = fun x -> max (a x - b x) 0

7

Solutions for sample problems for CS 421 Midterm 2 Name:

6. (15 pts) A multiset, or a bag, is a set that can contain multiple copies of an element. Just
like sets, multisets are not ordered. In this assignment we represent multisets with functions.
A multiset function returns the number of occurrences of the given element.

type ’a multiset = ’a -> int

let emptymultiset : ’a multiset = fun x -> 0

Some examples for possible implementations of multisets:

{1,1,1,2,2} = fun n -> match n with
1 -> 3

| 2 -> 2
| _ -> 0

{4,2,4,2,3} = fun n -> if n = 4 || n = 2 then 2
else if n = 3 then 1
else 0

Implement the following multiset operations.

(a) add n s : int -> ’a multiset -> ’a multiset.

let add n s = fun x -> if x=n then s x + 1 else s x

(b) member n s : ’a -> ’a multiset -> bool.

let member n s = s n > 0;;

(c) union s1 s2 : ’a multiset -> ’a multiset -> ’a multiset.
E.g. {1, 1, 1, 2, 2, 3} ∪ {1, 1, 2, 3, 3, 4} = {1, 1, 1, 2, 2, 3, 3, 4}

let union s1 s2 = fun x -> max (s1 x) (s2 x)

(d) disjointUnion s1 s2 : ’a multiset -> ’a multiset -> ’a multiset.
E.g. {1, 1, 1, 2, 2, 3}] {1, 1, 2, 3, 3, 4} = {1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4}

let disjointUnion s1 s2 = fun x -> s1 x + s2 x

(e) intersection s1 s2 : ’a multiset -> ’a multiset -> ’a multiset.
E.g. {1, 1, 1, 2, 2, 3} ∩ {1, 1, 2, 3, 3, 4} = {1, 1, 2, 3}

let intersection s1 s2 = fun x -> min (s1 x) (s2 x)

(f) remove n s : ’a -> ’a multiset -> ’a multiset.
Remove an occurrence of n from s.

let remove n s = fun x -> if x=n then if s n > 0 then s n - 1 else 0
else s x

8

Solutions for sample problems for CS 421 Midterm 2 Name:

7. Use the simplification rules given in the notes to evaluate the following expression. As on
the homework, mark each rewrite with the name of the rule you used. Note that functions
fst and snd, which take the first and second element of a pair, respectively, are defined in δ
rules. The evaluation has 18 steps. We’ve given you hints for the first few steps, by naming
the simplification rule used. (Note: If we ask a question like this on the exam, we will give
you the simplification rules; also, the evaluation won’t be this long.)

let f = fun y -> fun z -> (z,y)
in let rec g = fun p -> if fst p = 0 then snd p else g(snd p, fst p - 1)

in g (f 0 2)

==> (let)
let rec g = fun p -> if fst p = 0 then snd p else g(snd p, fst p - 1)
in g ((fun y -> fun z -> (z,y)) 0 2)

==> (beta)
let rec g = fun p -> if fst p = 0 then snd p else g(snd p, fst p - 1)
in g ((fun z -> (z,0)) 2)

==> (beta)
let rec g = fun p -> if fst p = 0 then snd p else g(snd p, fst p - 1)
in g (2,0)

==> (letrec1)
let rec g = fun p -> if fst p = 0 then snd p else g(snd p, fst p - 1)
in (fun p -> if fst p = 0 then snd p else g(snd p, fst p - 1)) (2,0)

==> (beta)
let rec g = fun p -> if fst p = 0 then snd p else g(snd p, fst p - 1)
in if fst (2,0) = 0 then snd (2,0) else g(snd (2,0), fst (2,0) - 1))

==> (delta)
let rec g = fun p -> if fst p = 0 then snd p else g(snd p, fst p - 1)
in if 2 = 0 then snd (2,0) else g(snd (2,0), fst (2,0) - 1))

==> (delta)
let rec g = fun p -> if fst p = 0 then snd p else g(snd p, fst p - 1)
in if false then snd (2,0) else g(snd (2,0), fst (2,0) - 1))

==> (if)
let rec g = fun p -> if fst p = 0 then snd p else g(snd p, fst p - 1)
in g(snd (2,0), fst (2,0) - 1))

==> (delta)
let rec g = fun p -> if fst p = 0 then snd p else g(snd p, fst p - 1)

9

Solutions for sample problems for CS 421 Midterm 2 Name:

in g(0, fst (2,0) - 1))

==> (delta)
let rec g = fun p -> if fst p = 0 then snd p else g(snd p, fst p - 1)
in g(0, 2 - 1)

==> (delta)
let rec g = fun p -> if fst p = 0 then snd p else g(snd p, fst p - 1)
in g(0, 1)

==> (letrec1)
let rec g = fun p -> if fst p = 0 then snd p else g(snd p, fst p - 1)
in (fun p -> if fst p = 0 then snd p else g(snd p, fst p - 1)) (0,1)

==> (beta)
let rec g = fun p -> if fst p = 0 then snd p else g(snd p, fst p - 1)
in if fst (0,1) = 0 then snd (0,1) else g(snd (0,1), fst (0,1) - 1)

==> (delta)
let rec g = fun p -> if fst p = 0 then snd p else g(snd p, fst p - 1)
in if 0 = 0 then snd (0,1) else g(snd (0,1), fst (0,1) - 1)

==> (delta)
let rec g = fun p -> if fst p = 0 then snd p else g(snd p, fst p - 1)
in if true then snd (0,1) else g(snd (0,1), fst (0,1) - 1)

==> (if)
let rec g = fun p -> if fst p = 0 then snd p else g(snd p, fst p - 1)
in snd (0,1)

==> (letrec2)
snd (0,1)

==> (delta)
1

10

Solutions for sample problems for CS 421 Midterm 2 Name:

8. Consider the following Java class:

class A
{

public void f(Object o) { }
}

A v-table is a table of pointers to all non-static methods. Here is A’s v-table.

−−−−−→ A’s f(Object o)

(Note hwo we’ve identified the specific method to which the v-table points.)

(a) Draw the v-table of the following class (using the same notation to identify specific
methods):

class B extends A
{

public void f(String s) { } // overloading
}

−−−−−→ A’s f(Object o)
−−−−−→ B’s f(String s)

(b) Draw the v-table of the following class:

class C extends B
{

public void f(Object o) { } // overriding
}

−−−−−→ C’s f(Object o)
−−−−−→ B’s f(String s)

(c) For each call site, show which method is invoked at runtime.

String strval = "Hello";
Object objval = "World";

A b1 = new B();

11

Solutions for sample problems for CS 421 Midterm 2 Name:

b1.f(strval); // A’s f(Object)

B b2 = new B();
b2.f(strval); // B’s f(String)
b2.f(objval); // A’s f(Object)

A c1 = new C();
c1.f(strval); // C’s f(Object)
c1.f(objval); // C’s f(Object)

C c2 = new C();
c2.f(strval); // B’s f(String)
c2.f(objval); // C’s f(Object)

12

Solutions for sample problems for CS 421 Midterm 2 Name:

9. (14 pts) Write a function object in Java for the OCaml function apply pos, defined as follows:

apply pos f lst = map (fun x -> if x > 0 then f x else x) lst

For simplicity, we assume that lst is a list of integers. As in the OCaml code, your Java
solution should call Map.map, which is given here:

interface IntFun {
int apply (int n);

}

class Map {
static int[] map (IntFun f, int lis[]) {

int lis2[] = new int[lis.length];
for(int i = 0; i < lis.length; i++)

lis2[i] = f.apply(lis[i]);
return lis2;

}
}

class Apply_Pos {
static int[] apply_pos (final IntFun f, int lis[]) {

// complete this method
IntFun g = new IntFun(){
int apply(int n){

return n > 0 ? f.apply(n) : n;
}

};
return Map.map(g, lis);

}
}

13

Solutions for sample problems for CS 421 Midterm 2 Name:

14

