# HW 12 – Proof Systems

CS 421 – Spring 2009 Revision 1.1

**Assigned** Thursday, April 16, 2009 **Due** Wednesday, April 22, in class **Extension** 48 hours (20% penalty) **Total points** 50

## 1 Change Log

- **1.1** Hints and proof tree layouts added.
- 1.0 Initial Release.

#### 2 Overview

After completing this MP, you should have a better understanding of proof systems for OCaml typing and operational semantics.

### 3 Collaboration

Collaboration is NOT allowed on this assignment.

#### 4 Instructions

Submit in hard-copy at the beginning of class.

### 5 Problems (50 pts)

For problems 1-4, use the proof tree layouts given at the end.

1. (10 pts) Using the typing rules for T<sub>OCaml</sub>, give the derivation tree for the judgment

$$\emptyset \vdash \mathtt{let} \; \mathtt{rec} \; \mathtt{x} = \mathtt{fun} \; \mathtt{y} \to \mathtt{x}(\mathtt{y}) + \mathtt{1} \; \mathtt{in} \; \mathtt{x}(\mathtt{1}) : \mathtt{int}$$

2. (10 pts) Using the typing rules for T<sub>OCaml</sub>, give the derivation tree for the judgment

$$\emptyset \vdash \mathtt{let} \ \mathtt{f} = \mathtt{fun} \ \mathtt{x} \to \mathtt{x} \ \mathtt{in} \ (\mathtt{f} \ \mathtt{f})\mathtt{1} : \mathtt{int}$$

3. (10 pts) Using the evaluation rules for OS<sub>clo</sub>, give the derivation tree for the judgment

$$\emptyset$$
, (fun f  $\rightarrow$  f (f 2))(fun y  $\rightarrow$  y + 1)  $\Downarrow$  4

4. (10 pts) Using the evaluation rules for OS<sub>state</sub>, give the derivation tree for the judgment

$$\emptyset, \emptyset \vdash (\text{fun } x \rightarrow x := !x + 1)(\text{ref } 0) \Downarrow (), \{\ell \mapsto 1\}$$

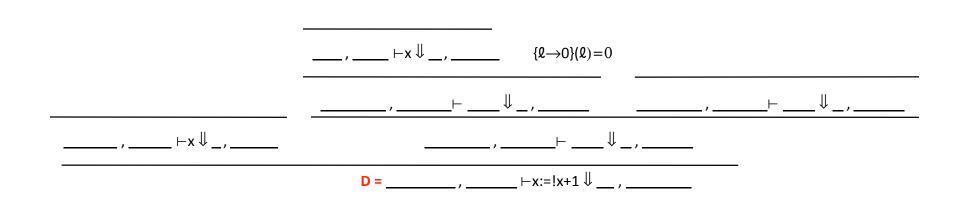
5. (10 pts) Recall that OS<sub>subst</sub> and OS<sub>clo</sub> are evaluation models for the same language where the former uses substitution and the latter uses closures. OS<sub>state</sub> extends OS<sub>clo</sub> with state to handle references, dereferencing and assignment. Let OS<sub>ss</sub> be the set of evaluation rules for the same language that still has state, but uses substitution instead of closures. Give the definition of the Application rule in OS<sub>ss</sub>. (Technically, this requires that locations are considered as expressions in order for a substitution to be well-defined. You can assume that this extension has been made.)

Below are the definitions of the  $(\delta)$  and (Abstr) rules for your reference.

$$(\delta) \qquad \frac{\sigma \vdash e_1 \Downarrow v_1, \sigma_1 \qquad \sigma_1 \vdash e_2 \Downarrow v_2, \sigma_2 \qquad v = v_1 \oplus v_2}{\sigma \vdash e_1 \oplus e_2 \Downarrow v, \sigma_2}$$

(Abstr) 
$$\sigma \vdash (\operatorname{fun} \mathbf{x} \to e) \Downarrow (\operatorname{fun} \mathbf{x} \to e), \sigma$$

Fill in the blanks in the (App) rule below.


| $\frac{\{x:\alpha\rightarrow \text{int, }y:\alpha\}\vdash x:\alpha\rightarrow \text{int}}{\{x:\alpha\rightarrow \text{int, }y:\alpha\}\vdash x(y):\text{int}}$ |             | $\overline{\{x:\alpha\rightarrow int,y:\alpha\}}\vdash y:\alpha$       |              |                      |     |       |         |           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------|--------------|----------------------|-----|-------|---------|-----------|
|                                                                                                                                                                |             | $\{x:\alpha \rightarrow \text{int, } y:\alpha\} \vdash 1: \text{ int}$ |              |                      |     |       |         |           |
|                                                                                                                                                                | {           | }} ⊢x(y)+1:                                                            | -            |                      | {   | }}⊢x: | {       | }}⊢1: int |
|                                                                                                                                                                | {           | } <del> </del>                                                         | _:           | <del>-</del><br>-    | {   |       | }⊢x(1): | -         |
|                                                                                                                                                                |             | Ø⊢let rec                                                              | x = fun y →> | x(y)+1 in x(1) : int | t   |       |         |           |
|                                                                                                                                                                |             |                                                                        |              |                      |     |       |         |           |
|                                                                                                                                                                |             |                                                                        |              |                      |     |       |         |           |
|                                                                                                                                                                |             |                                                                        |              |                      |     |       |         |           |
| 2)                                                                                                                                                             |             |                                                                        |              |                      |     |       |         |           |
| -,                                                                                                                                                             |             |                                                                        |              |                      |     |       |         |           |
|                                                                                                                                                                |             |                                                                        |              |                      |     |       | _       |           |
|                                                                                                                                                                |             | _{}                                                                    | <u>⊢_</u> :  |                      | {}  | }\:   |         |           |
|                                                                                                                                                                | ⊢x:         |                                                                        |              | {                    | }}⊢ | :     | {       | }}⊢1: int |
|                                                                                                                                                                | ⊢fun x →x : |                                                                        |              | {}                   |     | }}⊢:  |         |           |

 $\emptyset$  Het f = fun x  $\rightarrow$ x in (f f)1 : int

 $\emptyset$ ,(fun f  $\rightarrow$  f(f 2))(fun y  $\rightarrow$  y+1)  $\downarrow$  4

To reduce notational clutter, use  $\eta$  as an abbreviation for the environment  $\{f: \langle fun\ y \rightarrow y+1 \rangle, \varnothing \}$ .

4)



 $\varnothing$ , $\varnothing$  $\vdash$ (fun x  $\rightarrow$  x:=!x+1)(ref 0)  $\Downarrow$  (),{ $\ell$  $\rightarrow$ 1}