Programming Languages and
Compilers (CS 421)

I Elsa L Gunter
2112 SC, UlUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

10/2/25

‘ Mutually Recursive Types

type 'a tree = TreelLeaf of 'a
| TreeNode of 'a treelList
and 'a treeList = Last of 'a tree
| More of (‘a tree * 'a treeList);;

type 'a tree = TreelLeaf of 'a | TreeNode of 'a
treeList

and 'a treelList = Last of 'a tree | More of (‘a
tree * 'a treelList)

10/2/25

‘ Mutually Recursive Types - Values

let tree =
TreeNode
(More (TreelLeaf 5,
(More (TreeNode
(More (TreelLeaf 3,
Last (TreeLeaf 2))),
Last (TreeLeaf 7)))));;

10/2/25

‘ Mutually Recursive Types - Values

val tree : int tree =
TreeNode
(More
(TreeLeaf 5,
More

(TreeNode (More (TreeLeaf 3, Last
(TreeLeaf 2))), Last (TreelLeaf 7))))

10/2/25 4

‘ Mutually Recursive Types - Values

TreeNode
More More Last
Treeleaf TreeNode Treeleaf
5I MLre Last 7I
Treeleaf TreelLeaf

|
3

10/2/25

’ Mutually Recursive Types - Values

A more conventional picture

N
VAN

10/2/25 6

‘ Mutually Recursive Functions

let rec fringe tree =
match tree with (TreeLeaf x) -> [X]
| (TreeNode list) -> list_fringe list
and list_fringe tree_list =
match tree_list with (Last tree) -> fringe tree
| (More (tree,list)) ->
(fringe tree) @ (list_fringe list);;

val fringe : 'a tree -> 'a list = <fun>
val list_fringe : 'a treeList -> 'a list = <fun>

10/2/25 7

‘ Mutually Recursive Functions

fringe tree;;
- rintlist = [5; 3; 2; 7]

10/2/25 8

Problem

type 'a tree = TreelLeaf of ‘a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of (‘a tree * 'a treeList);;

Define tree_size

10/2/25 9

Problem

type 'a tree = TreelLeaf of ‘a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of (‘a tree * 'a treelList);;

Define tree_size

let rec tree_size t =
match t with TreeLeaf _ ->
| TreeNode ts ->

10/2/25 10

Problem

type 'a tree = TreelLeaf of ‘a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of (‘a tree * 'a treeList);;

Define tree_size
let rec tree_size t =
match t with TreelLeaf _ -> 1
| TreeNode ts -> treelList_size ts

10/2/25 11

Problem

type 'a tree = TreelLeaf of ‘a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of (‘a tree * 'a treeList);;

Define tree_size and treelList_size
let rec tree_size t =

match t with TreelLeaf _ -> 1

| TreeNode ts -> treelList_size ts
and treelList_size ts =

10/2/25 12

Problem

type 'a tree = TreelLeaf of ‘a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of (‘a tree * 'a treeList);;

Define tree_size and treelList_size
let rec tree_size t =

match t with TreeLeaf _ -> 1

| TreeNode ts -> treelList_size ts
and treelist_size ts =

match ts with Last t ->

| More t ts’ ->

10/2/25 13

Problem

type 'a tree = TreelLeaf of ‘a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of (‘a tree * 'a treeList);;

Define tree_size and treelList_size
let rec tree_size t =
match t with TreeLeaf _ -> 1
| TreeNode ts -> treelList_size ts
and treelList_size ts =
match ts with Last t -> tree_size t
| More t ts’ -> tree_size t + treelList_size ts’

10/2/25 14

Problem

type 'a tree = TreelLeaf of ‘a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of (‘a tree * 'a treeList);;

Define tree_size and treelList_size
let rec tree_size t =
match t with TreeLeaf _ -> 1
| TreeNode ts -> treelList_size ts
and treelList_size ts =
match ts with Last t -> tree size t
| More t ts’ -> tree_size t + treeList_size ts’

10/2/25 15

‘ Nested Recursive Types

type 'a labeled_tree =

TreeNode of (‘a * 'a labeled_tree
list);;

type 'a labeled_tree = TreeNode of ('a
* 'a labeled_tree list)

10/2/25 16

‘ Nested Recursive Type Values

let Itree =
TreeNode(5,
[TreeNode (3, [1);
TreeNode (2, [TreeNode (1, [1);
TreeNode (7, [D]);
TreeNode (5, [DD);;

10/2/25 17

’ Nested Recursive Type Values

val ltree : int labeled_tree =
TreeNode
(51
[TreeNode (3, []); TreeNode (2,
[TreeNode (1, []); TreeNode (7, [DD;

TreeNode (5, [D])

10/2/25 18

‘ Nested Recursive Type Values

Ltree = TreeNode(5)
L] /

[]
TreeNodIe(3) Treell\lode(Z) TreeNode(5)
[et [
TreeNode(1) TreeNode(7)
[I] [I]

10/2/25 19

‘ Nested Recursive Type Values

/N
A

10/2/25 20

‘ Mutually Recursive Functions

let rec flatten_tree labtree =
match labtree with TreeNode (x,treelist)
-> x::flatten_tree_list treelist
and flatten_tree_list treelist =
match treelist with [] -> []
| labtree::labtrees
-> flatten_tree labtree
@ flatten_tree_list labtrees;;

10/2/25 21

‘ Mutually Recursive Functions

val flatten_tree : 'a labeled_tree -> 'a list =
<fun>

val flatten_tree_list : 'a labeled_tree list -> 'a
list = <fun>

flatten_tree ltree;;
-:intlist=[5; 3; 2; 1, 7; 5]

= Nested recursive types lead to mutually
recursive functions

10/2/25 22

‘ Why Data Types?

= Data types play a key role in:
» Data abstraction in the design of programs
= 7Type checking in the analysis of programs

= Compile-time code generation in the
translation and execution of programs

=« Data layout (how many words; which are data
and which are pointers) dictated by type

10/2/25 23

’ Terminology

= Type: A type fdefines a set of possible
data values

= E.g. short in Cis {x]| 21> -1 >x > -215}
= A value in this set is said to have type ¢

= Type system: rules for a language

= saying what types (sets of values) are
expressible

= assigning types to expressions.

10/2/25 24

;‘ Types as Specifications

= Types describe properties
= Different type systems describe different
properties, eg
= Data is read-write versus read-only
= Operation has authority to access data
= Data came from “right” source
= Operation might or could not raise an exception

= Common type systems focus on types describing
same data layout and access methods

10/2/25 25

‘ Sound Type System

= If an expression is assigned type ¢, and it
evaluates to a value v, then vis in the set of
values defined by ¢

= SML, OCAML, Scheme and Ada have sound
type systems

= Most implementations of C and C++ do not

10/2/25 27

‘ Strongly Typed Language

= When no application of an operator to
arguments can lead to a run-time type
error, language is strongly typed
«Eg: 1+ 2.3;;

= Depends on definition of “type error”

10/2/25 28

‘ Strongly Typed Language

= C++ claimed to be “strongly typed”, but
= Union types allow creating a value at one
type and using it at another
= Type coercions may cause unexpected
(undesirable) effects
= No array bounds check (in fact, no
runtime checks at all)

= SML, OCAML “strongly typed” but still must
do dynamic array bounds checks, runtime
type case analysis, and other checks

10/2/25 29

‘ Static vs Dynamic Types

. Static type: type assigned to an expression
at compile time

- Dynamic type: type assigned to a storage
location at run time

. Statically typed language: static type
assigned to every expression at compile time

- Dynamically typed language: type of an
expression determined at run time

10/2/25 30

’ Type Checking

= When is op(argi,...,argn) allowed?
= 7ype checking assures that operations are
applied to the right number of arguments of
the right types
= Right type may mean same type as was
specified, or may mean that there is a
predefined implicit coercion that will be
applied
= Used to resolve overloaded operations

10/2/25 31

‘ Type Checking

= Type checking may be done statically at
compile time or dynamically at run time

= Dynamically typed (aka untyped)
languages (eg LISP, Prolog) do only
dynamic type checking

= Statically typed languages can do most
type checking statically

10/2/25 32

‘ Dynamic Type Checking

= Performed at run-time before each
operation is applied
= Types of variables and operations left
unspecified until run-time
= Same variable may be used at different
types

10/2/25 33

‘ Dynamic Type Checking

= Data object must contain type
information

= Errors aren’ t detected until violating
application is executed (maybe years
after the code was written)

10/2/25 34

‘ Static Type Checking

= Performed after parsing, before code
generation

= Type of every variable and signature of
every operator must be known at
compile time

10/2/25 35

‘ Static Type Checking

= Can eliminate need to store type
information in data object if no dynamic
type checking is needed

= Catches many programming errors at
earliest point

= Can’ t check types that depend on
dynamically computed values
= Eg: array bounds

10/2/25 36

’ Static Type Checking

= Typically places restrictions on
languages
= Garbage collection
= References instead of pointers
= All variables initialized when created

= Variable only used at one type

= Union types allow for work-arounds, but
effectively introduce dynamic type checks

10/2/25 37

‘ Type Declarations

» Type declarations: explicit assignment
of types to variables (signatures to
functions) in the code of a program
= Must be checked in a strongly typed
language

= Often not necessary for strong typing or
even static typing (depends on the type
system)

10/2/25 40

‘ Type Inference

» 7ype inference: A program analysis to
assign a type to an expression from the
program context of the expression

= Fully static type inference first introduced
by Robin Milner in ML

= Haskell, OCAML, SML all use type inference
= Records are a problem for type inference

10/2/25 41

Format of Type Judgments

= A lype judgement has the form
I'|-exp:~z
= [is a typing environment

= Supplies the types of variables (and function
names when function names are not variables)

= isasetoftheform{ x:c,...}

= For any xat most one o such that (x: ¢ € I)
= exXp iS a program expression
= 1 iS a type to be assigned to exp

= |- pronounced “turnstyle”, or “entails” (or
“satisfies” or, informally, “shows”)

10/2/25 42

‘ Axioms — Constants (Monomorphic)

I' |- n:int (assuming nis an integer constant)

I' |- true : bool I' |- false : bool

= These rules are true with any typing

environment
= [, n are meta-variables

10/2/25 43

‘ Axioms — Variables (Monomorphic Rule)

Notation: LetI'(x) = o ifxX:c e
Note: if such o exits, its unique

Variable axiom:

'-x:o0 ifT'(X)=o0o

10/2/25 44

’ Simple Rules — Arithmetic (Mono)

Primitive Binary operators (& € { +, -, *, ..}):
rl-eityy Tl-&i1, (@)1 —>1 1
r-e®e:

Special case: Relations (~c¢<,>, =, <=, >=3):
r-g:x r'-:t (~):t—1t— bool
I'l-e ~ & :bool

For the moment, think z is int

10/2/25 45

;‘ Example: {x:int} |-x + 2 = 3 :bool

What do we need to show first?

{x:int} |-x + 2 = 3 : bool

10/2/25

46

;‘ Example: {x:int} |-x + 2 = 3 :bool

What do we need for the left side?

{x:int} |-x+ 2:int {x:int} |- 3 :int,
{x:int} |-x + 2 = 3 : bool "

10/2/25 47

:-‘ Example: {x:int} |- x + 2 = 3 :bool

How to finish?

{x:int} |- x:int {x:int} |- 2:intB,

{x:int} |-x+ 2 :int " {x:int} |- 3 :inBt_
n

{x:int} |-x + 2 = 3 : bool

10/2/25

48

:-‘ Example: {x:int} |-x + 2 = 3 :bool

Complete Proof (type derivation)

Var Const
{x:int} |- x:int {x:int} |- 2:int o Const
|
{x:int} |-x+ 2 :int {x:int} |- 3 :inBt_
n

{x:int} |-x + 2 = 3 : bool

10/2/25 49

‘ Simple Rules - Booleans

Connectives
I'|-¢ :bool T |-e& :bool

I'|-¢e && &, : bool

I'|-¢ :bool T |-e :bool

I'|-¢el| & :bool

10/2/25

51

’ Type Variables in Rules

= If _then_else rule:
|- :bool T'|-e;:t T'|-e3:x
I'|-(if ethene, elsees): t

= T iS a type variable (meta-variable)
= Can take any type at all

= All instances in a rule application must get
same type

= Then branch, else branch and if_then_else
must all have same type

10/2/25 52

‘ Example derivation: if-then-else-

» [= {x:int, int_of_float:float -> int, y:float}

r|-(funy->
y>3)x T |-x+2 T|-int_of floaty
: bool :int :int

Ir|-if(funy->y>3)x
then x + 2
else int_of_floaty : int

10/2/25 53

‘ Function Application

= Application rule:
F |' 6'1 . Tl —> TZ F |' ez . Tl
r'l-(e &)

= If you have a function expression e, of
type t; — 1, applied to an argument
e, of type t,, the resulting expression
€6 has type 1,

10/2/25 54

‘ Example: Application

= I = {x:int, int_of_float:float -> int, y:float}

I|-(funy->y>3)

: int -> bool I|-x:int

I |- (funy->y > 3)x: bool

10/2/25 56

‘ Fun Rule

= Rules describe types, but also how the
environment I may change

= Can only do what rule allows!
= fun rule;
xinu}r+T|-€e:1y
r|-funx->ée:t -1

10/2/25 57

‘ Fun Examples

{y:int}+T|-y+3:int
r|-funy->y+3:int—int

{f :int > bool} + I" |- f 2 :: [true] : bool list
[|- (funf-> (f 2):: [true])
: (int - bool) — bool list

10/2/25 58

’ (Monomorphic) Let and Let Rec

= let rule:
rl-e;:tvyy xit+r|l-6:1
I|-(letx=¢ing):

= let rec rule:
{X: Tl} + F |' e_z:’fl {X: Tl} + F |' 6’2:172

10/2/25 59

‘ Review: In Class Activity

ACT 4

10/2/25 76

‘ Curry - Howard Isomorphism

= Type Systems are logics; logics are type
systems

= Types are propositions; propositions are
types
= Terms are proofs; proofs are terms

= Function space arrow corresponds to
implication; application corresponds to
modus ponens

10/2/25 77

‘ Curry - Howard Isomorphism

= Modus Ponens

A=B A
B
. Application
r-g:a—->p I'-6:«a
Cl-(ee):p

10/2/25 78

‘ Mea Culpa

= The above system can’t handle polymorphism as
in OCAML

= No type variables in type language (only meta-
variable in the logic)

= Would need:

= Object level type variables and some kind of
type quantification

= let and let rec rules to introduce polymorphism

= Explicit rule to eliminate (instantiate)
polymorphism

10/2/25 80

‘ Support for Polymorphic Types

= Monomorpic Types (1):
= Basic Types: int, bool, float, string, unit, ...
= Type Variables: o, B, v, 9, ¢

= Compound Types: a. — B, int * string, bool list, ...

= Polymorphic Types:
= Monomorphic types t
= Universally quantified monomorphic types
= YOy ., 00T
= Can think of t as same as v. t

10/2/25 81

’ Example FreeVars Calculations

= Vars(‘a -> (int -> 'b) -> ‘a) ={"a, 'b}

= FreeVars (All'b. ‘a -> (int -> 'b) -> 'a) =
= {a,'db}-{b}={a}

= FreeVars {x : All'b. 'a -> (int ->'b) -> '3,
= id: All'c. 'c-> ',

= y:All'c.'a->'b->'c} =

= {a}U{}U{a b} = {a, b}

10/2/25 82

;‘ Support for Polymorphic Types

= Typing Environment T supplies polymorphic types
(which will often just be monomorphic) for
variables

= Free variables of monomorphic type just type
variables that occur in it
= Write FreeVars(r)

= Free variables of polymorphic type removes
variables that are universally quantified
= FreeVars(Voy, ..., a, . ©) = FreeVars(z) — {o, ... , oy }

= FreeVars(I') = all FreeVars of types in range of I'

10/2/25 83

‘ Monomorphic to Polymorphic

= Given:
= type environment I
= monomorphic type t
= T Shares type variables with T"

= Want most polymorphic type for t that
doesn’ t break sharing type variables with "

= Gen(t, ') =Vay, ..., a, . T Where
{ay, ..., any = freeVars(t) — freeVars(I')

10/2/25 84

‘ Polymorphic Typing Rules

= A fype judgement has the form
I'|-exp:t

= I uses polymorphic types
= 7 still monomorphic

= Most rules stay same (except use more general
typing environments)

= Rules that change:
= Variables
= Let and Let Rec
= Allow polymorphic constants

= Worth noting functions again

10/2/25 85

‘ Polymorphic Let and Let Rec

= let rule:
rl-e 7t {(x:Gen(zx,")}+T|-6 :1
|-(letx=¢ing):

= let rec rule:
{x:t}+T |- ety {xGen(t,IN)}+ T |- &1y
[|-(letrecx=¢ineg): 1,

10/2/25 86

‘ Polymorphic Variables (Identifiers)

Variable axiom:

T[-x:0(t) Iif0(X)=voy, .., 0.1
= Where ¢ replaces all occurrences of
o4, ..., &y by monotypes 1y, ..., 1,
= Note: Monomorphic rule special case:
Tl-x:t ifr(x)=r
= Constants treated same way

10/2/25 87

’ Fun Rule Stays the Same

= fun rule:
it} +Tr|-€e:1
Cl-funx->eée:t -1

= Types t,, 1, monomorphic

= Function argument must always be
used at same type in function body

10/2/25 88

