Programming Languages and Compilers (CS 421)

Elsa L Gunter 2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

10/2/25 1

Mutually Recursive Types - Values

)/2/25

Mutually Recursive Types - Values

```
val tree : int tree =
TreeNode
(More
  (TreeLeaf 5,
    More
    (TreeNode (More (TreeLeaf 3, Last
    (TreeLeaf 2))), Last (TreeLeaf 7))))
```



```
# let rec fringe tree =
match tree with (TreeLeaf x) -> [x]
| (TreeNode list) -> list_fringe list
and list_fringe tree_list =
match tree_list with (Last tree) -> fringe tree
| (More (tree,list)) ->
(fringe tree) @ (list_fringe list);;

val fringe : 'a tree -> 'a list = <fun>
val list_fringe : 'a treeList -> 'a list = <fun>
```

```
Mutually Recursive Functions
# fringe tree;;
- : int list = [5; 3; 2; 7]
```

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;
Define tree_size

10/2/25

```
# type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size
let rec tree_size t =
    match t with TreeLeaf _ ->
    | TreeNode ts ->

10/2/25

10
```

```
# type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size

let rec tree_size t =

match t with TreeLeaf _ -> 1

| TreeNode ts -> treeList_size ts
```

```
# type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size
let rec tree_size t =
    match t with TreeLeaf _ -> 1
    | TreeNode ts -> treeList_size ts
and treeList_size ts =
```

```
# type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size
let rec tree_size t =
    match t with TreeLeaf _ -> 1
    | TreeNode ts -> treeList_size ts
and treeList_size ts =
    match ts with Last t ->
    | More t ts' ->
```

```
# type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size

let rec tree_size t =

match t with TreeLeaf _ -> 1

| TreeNode ts -> treeList_size ts

and treeList_size ts =

match ts with Last t -> tree_size t

| More t ts' -> tree_size t + treeList_size ts'
```

```
# type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size

let rec tree_size t =

match t with TreeLeaf _ -> 1

| TreeNode ts -> treeList_size ts

and treeList_size ts =

match ts with Last t -> tree_size t

| More t ts' -> tree_size t + treeList_size ts'
```

```
# type 'a labeled_tree =
TreeNode of ('a * 'a labeled_tree list);;
type 'a labeled_tree = TreeNode of ('a * 'a labeled_tree list)

* 'a labeled_tree list)
```

```
# let Itree =
TreeNode(5,
[TreeNode (3, []);
TreeNode (2, [TreeNode (1, []);
TreeNode (7, [])]);
TreeNode (5, [])]);;
```

```
Nested Recursive Type Values

val Itree : int labeled_tree =
TreeNode
(5,
   [TreeNode (3, []); TreeNode (2,
   [TreeNode (1, []); TreeNode (7, [])]);
   TreeNode (5, [])])
```


Mutually Recursive Functions

let rec flatten_tree labtree =
 match labtree with TreeNode (x,treelist)
 -> x::flatten_tree_list treelist
 and flatten_tree_list treelist =
 match treelist with [] -> []
 | labtree::labtrees
 -> flatten_tree labtree
 @ flatten_tree_list labtrees;;

/2/25

Mutually Recursive Functions

val flatten_tree : 'a labeled_tree -> 'a list =
 <fun>

val flatten_tree_list : 'a labeled_tree list -> 'a
list = <fun>

flatten_tree ltree;;

-: int list = [5; 3; 2; 1; 7; 5]

Nested recursive types lead to mutually recursive functions

10/2/25 22

Why Data Types?

- Data types play a key role in:
 - Data abstraction in the design of programs
 - *Type checking* in the analysis of programs
 - Compile-time code generation in the translation and execution of programs
 - Data layout (how many words; which are data and which are pointers) dictated by type

Terminology

- Type: A type t defines a set of possible data values
 - E.g. short in C is $\{x \mid 2^{15} 1 \ge x \ge -2^{15}\}$
 - A value in this set is said to have type t
- Type system: rules for a language
 - saying what types (sets of values) are expressible

24

assigning types to expressions.

10/2/25 23 10/2/25

21

Types as Specifications

- Types describe properties
- Different type systems describe different properties, eq
 - Data is read-write versus read-only
 - Operation has authority to access data
 - Data came from "right" source
 - Operation might or could not raise an exception
- Common type systems focus on types describing same data layout and access methods

10/2/25 25

Sound Type System

- If an expression is assigned type t, and it evaluates to a value v, then v is in the set of values defined by t
- SML, OCAML, Scheme and Ada have sound type systems
- Most implementations of C and C++ do not

10/2/25 27

Strongly Typed Language

- When no application of an operator to arguments can lead to a run-time type error, language is strongly typed
 - Eg: 1 + 2.3;;
- Depends on definition of "type error"

10/2/25 28

Strongly Typed Language

- C++ claimed to be "strongly typed", but
 - Union types allow creating a value at one type and using it at another
 - Type coercions may cause unexpected (undesirable) effects
 - No array bounds check (in fact, no runtime checks at all)
- SML, OCAML "strongly typed" but still must do dynamic array bounds checks, runtime type case analysis, and other checks

10/2/25 29

Static vs Dynamic Types

- Static type: type assigned to an expression at compile time
- Dynamic type: type assigned to a storage location at run time
- Statically typed language: static type assigned to every expression at compile time
- Dynamically typed language: type of an expression determined at run time

Type Checking

- When is op(arg1,...,argn) allowed?
- Type checking assures that operations are applied to the right number of arguments of the right types
 - Right type may mean same type as was specified, or may mean that there is a predefined implicit coercion that will be applied
- Used to resolve overloaded operations

10/2/25 30

10/2/25

31

Type Checking

- Type checking may be done statically at compile time or dynamically at run time
- Dynamically typed (aka untyped) languages (eg LISP, Prolog) do only dynamic type checking
- Statically typed languages can do most type checking statically

2/25

Dynamic Type Checking

- Performed at run-time before each operation is applied
- Types of variables and operations left unspecified until run-time
 - Same variable may be used at different types

/2/25 33

Dynamic Type Checking

- Data object must contain type information
- Errors aren't detected until violating application is executed (maybe years after the code was written)

10/2/25

32

Static Type Checking

- Performed after parsing, before code generation
- Type of every variable and signature of every operator must be known at compile time

10/2/25 35

10/2/25

Static Type Checking

- Can eliminate need to store type information in data object if no dynamic type checking is needed
- Catches many programming errors at earliest point
- Can't check types that depend on dynamically computed values
 - Eg: array bounds

36

Static Type Checking

- Typically places restrictions on languages
 - Garbage collection
 - References instead of pointers
 - All variables initialized when created
 - Variable only used at one type
 - Union types allow for work-arounds, but effectively introduce dynamic type checks

Type Declarations

- Type declarations: explicit assignment of types to variables (signatures to functions) in the code of a program
 - Must be checked in a strongly typed language
 - Often not necessary for strong typing or even static typing (depends on the type system)

10/2/25 40

Type Inference

- Type inference: A program analysis to assign a type to an expression from the program context of the expression
 - Fully static type inference first introduced by Robin Milner in ML
 - Haskell, OCAML, SML all use type inference
 - Records are a problem for type inference

10/2/25 41

Format of Type Judgments

A type judgement has the form

$$\Gamma$$
 |- exp : τ

- Γ is a typing environment
 - Supplies the types of variables (and function names when function names are not variables)
 - Γ is a set of the form $\{x:\sigma,\ldots\}$
 - For any x at most one σ such that $(x : \sigma \in \Gamma)$
- exp is a program expression
- τ is a type to be assigned to exp
- |- pronounced "turnstyle", or "entails" (or "satisfies" or, informally, "shows")

/2/25

Axioms – Constants (Monomorphic)

 $\Gamma \mid -n$: int (assuming *n* is an integer constant)

$$\Gamma$$
 |- true : bool

 Γ |- false : bool

- These rules are true with any typing environment
- Γ, *n* are meta-variables

10/2/25 43

Axioms – Variables (Monomorphic Rule)

Notation: Let $\Gamma(x) = \sigma$ if $x : \sigma \in \Gamma$ Note: if such σ exits, its unique

Variable axiom:

$$\overline{\Gamma \mid -x : \sigma} \quad \text{if } \Gamma(x) = \sigma$$

≣ Γ

Simple Rules – Arithmetic (Mono)

Primitive Binary operators (⊕ ∈ { +, -, *, ...}):

$$\frac{\Gamma \mid -e_1:\tau_1 \qquad \Gamma \mid -e_2:\tau_2 \quad (\oplus):\tau_1 \rightarrow \tau_2 \rightarrow \tau_3}{\Gamma \mid -e_1 \oplus e_2:\tau_3}$$

Special case: Relations (~∈ { < , > , =, <=, >= }):

$$\frac{\Gamma \mid -e_1 : \tau \quad \Gamma \mid -e_2 : \tau \quad (\sim) : \tau \to \tau \to \text{bool}}{\Gamma \mid -e_1 \quad \sim \quad e_2 : \text{bool}}$$

For the moment, think τ is int

45

10/2/25 44

10/2/25

Example: $\{x:int\} | -x + 2 = 3 :bool$

What do we need to show first?

$$\{x:int\} \mid -x + 2 = 3 : bool$$

10/2/25

Example: $\{x:int\} | -x + 2 = 3 : bool$

What do we need for the left side?

$$\frac{\{x: int\} \mid -x+2: int \qquad \{x: int\} \mid -3: int \\ \{x: int\} \mid -x+2=3: bool}{}$$

10/2/25 47

Example: $\{x:int\} | -x + 2 = 3 : bool$

How to finish?

10/2/25 48

46

Example: $\{x:int\} | -x + 2 = 3 :bool$

Complete Proof (type derivation)

$$\frac{\frac{\text{Var}}{\{x:\text{int}\}\mid -x:\text{int}} \frac{\text{Const}}{\{x:\text{int}\}\mid -2:\text{int}} \frac{\text{Const}}{\{x:\text{int}\}\mid -x+2:\text{int}} \frac{\text{Const}}{\{x:\text{int}\}\mid -3:\text{int}} \frac{\{x:\text{int}\}\mid -3:\text{int}\}}{\{x:\text{int}\}\mid -x+2=3:\text{bool}}$$

10/2/25 4

Simple Rules - Booleans

Connectives

$$\frac{\Gamma \mid -e_1 : \mathsf{bool} \quad \Gamma \mid -e_2 : \mathsf{bool}}{\Gamma \mid -e_1 \&\& e_2 : \mathsf{bool}}$$

$$\frac{\Gamma \mid -e_1 : \mathsf{bool} \quad \Gamma \mid -e_2 : \mathsf{bool}}{\Gamma \mid -e_1 \mid \mid e_2 : \mathsf{bool}}$$

10/2/25

4

51

Type Variables in Rules

If_then_else rule:

$$\frac{\Gamma \mid -e_1 : \mathsf{bool} \quad \Gamma \mid -e_2 : \tau \quad \Gamma \mid -e_3 : \tau}{\Gamma \mid - (\mathsf{if} \ e_1 \ \mathsf{then} \ e_2 \ \mathsf{else} \ e_3) : \tau}$$

- τ is a type variable (meta-variable)
- Can take any type at all
- All instances in a rule application must get same type
- Then branch, else branch and if_then_else must all have same type

Example derivation: if-then-else-

Γ = {x:int, int_of_float:float -> int, y:float}

$$\Gamma$$
 |- (fun y -> y > 3) x Γ |- x+2 Γ |- int_of_float y : bool : int : int

$$\Gamma$$
 |- if (fun y -> y > 3) x
then x + 2
else int_of_float y : int

10/2/25

Function Application

Application rule:

$$\frac{\Gamma \mid -e_1 : \tau_1 \to \tau_2 \quad \Gamma \mid -e_2 : \tau_1}{\Gamma \mid -(e_1 e_2) : \tau_2}$$

If you have a function expression e_1 of type $\tau_1 \rightarrow \tau_2$ applied to an argument e_2 of type τ_1 , the resulting expression e_1e_2 has type τ_2

10/2/25 54

Example: Application

Γ = {x:int, int_of_float:float -> int, y:float}

$$\Gamma$$
 |- (fun y -> y > 3)
: int -> bool

 $\Gamma \mid -x : int$

$$\Gamma$$
 |- (fun y -> y > 3) x : bool

10/2/25

53

56

58

Fun Rule

- Rules describe types, but also how the environment \(\Gamma\) may change
- Can only do what rule allows!
- fun rule:

$$\frac{\{x \colon \tau_1\} + \Gamma \mid -e \colon \tau_2}{\Gamma \mid -\text{ fun } x - > e \colon \tau_1 \to \tau_2}$$

10/2/25 57

Fun Examples

$$\frac{\{y : int \} + \Gamma \mid -y + 3 : int}{\Gamma \mid -fun \ y -> y + 3 : int \rightarrow int}$$

$$\begin{array}{c} \{ f: \mathsf{int} \to \mathsf{bool} \} + \Gamma \mid \mathsf{-f} \ 2 :: [\mathsf{true}] : \mathsf{bool} \ \mathsf{list} \\ \Gamma \mid \mathsf{-} \ (\mathsf{fun} \ \mathsf{f} \, \mathsf{->} \ (\mathsf{f} \ 2) :: [\mathsf{true}]) \\ \hspace{0.5cm} : (\mathsf{int} \to \mathsf{bool}) \to \mathsf{bool} \ \mathsf{list} \\ \end{array}$$

10/2/25

4

(Monomorphic) Let and Let Rec

let rule:

$$\frac{\Gamma \mid -e_1 : \tau_1 \quad \{x : \tau_1\} + \Gamma \mid -e_2 : \tau_2}{\Gamma \mid -(\text{let } x = e_1 \text{ in } e_2) : \tau_2}$$

let rec rule:

$$\frac{\{x: \tau_1\} + \Gamma \mid -e_1: \tau_1 \{x: \tau_1\} + \Gamma \mid -e_2: \tau_2}{\Gamma \mid -(\text{let rec } x = e_1 \text{ in } e_2): \tau_2}$$

59

10/2/25

Review: In Class Activity

ACT 4

10/2/25

Curry - Howard Isomorphism

- Type Systems are logics; logics are type systems
- Types are propositions; propositions are types
- Terms are proofs; proofs are terms
- Function space arrow corresponds to implication; application corresponds to modus ponens

10/2/25 77

Curry - Howard Isomorphism

Modus Ponens

$$\begin{array}{c|c} A \Rightarrow B & A \\ \hline B & \end{array}$$

Application

$$\frac{\Gamma \mid -e_1 : \alpha \to \beta \quad \Gamma \mid -e_2 : \alpha}{\Gamma \mid -(e_1 \mid e_2) : \beta}$$

10/2/25

78

81

4

76

Mea Culpa

- The above system can't handle polymorphism as in OCAML
- No type variables in type language (only metavariable in the logic)
- Would need:
 - Object level type variables and some kind of type quantification
 - let and let rec rules to introduce polymorphism
 - Explicit rule to eliminate (instantiate) polymorphism

10/2/25

Support for Polymorphic Types

- Monomorpic Types (τ):
 - Basic Types: int, bool, float, string, unit, ...
 - Type Variables: α , β , γ , δ , ϵ
 - Compound Types: $\alpha \rightarrow \beta$, int * string, bool list, ...
- Polymorphic Types:
 - Monomorphic types τ
 - Universally quantified monomorphic types
 - $\forall \alpha_1, \ldots, \alpha_n . \tau$
 - Can think of τ as same as $\forall . \tau$

Example FreeVars Calculations

- Vars('a -> (int -> 'b) -> 'a) ={'a , 'b}
- FreeVars (All 'b. 'a -> (int -> 'b) -> 'a) =
- {'a , 'b} {'b}= {'a}
- FreeVars {x : All 'b. 'a -> (int -> 'b) -> 'a,
- id: All 'c. 'c -> 'c,
- y: All 'c. 'a -> 'b -> 'c} =
- {'a} U {} U {'a, 'b} = {'a, 'b}

10/2/25

10/2/25

82

Support for Polymorphic Types

- Typing Environment Γ supplies polymorphic types (which will often just be monomorphic) for variables
- Free variables of monomorphic type just type variables that occur in it
 - Write FreeVars(τ)
- Free variables of polymorphic type removes variables that are universally quantified
 - FreeVars($\forall \alpha_1, \dots, \alpha_n \cdot \tau$) = FreeVars(τ) { $\alpha_1, \dots, \alpha_n$ }
- FreeVars(Γ) = all FreeVars of types in range of Γ

10/2/25

Monomorphic to Polymorphic

- Given:
 - type environment Γ
 - monomorphic type τ
 - \bullet τ shares type variables with Γ
- Want most polymorphic type for τ that doesn't break sharing type variables with Γ
- Gen(τ , Γ) = $\forall \alpha_1, ..., \alpha_n . \tau$ where $\{\alpha_1, ..., \alpha_n\}$ = freeVars(τ) freeVars(Γ)

/2/25 84

Polymorphic Typing Rules

- A *type judgement* has the form
 - Γ |- exp : τ
 - Γ uses polymorphic types
 - τ still monomorphic
- Most rules stay same (except use more general typing environments)
- Rules that change:
 - Variables
 - Let and Let Rec
 - Allow polymorphic constants
- Worth noting functions again

85

87

Polymorphic Let and Let Rec

let rule:

$$\frac{\Gamma \mid -e_1 : \tau_1 \quad \{x : \operatorname{Gen}(\tau_1, \Gamma)\} + \Gamma \mid -e_2 : \tau_2}{\Gamma \mid -(\operatorname{let} x = e_1 \operatorname{in} e_2) : \tau_2}$$

let rec rule:

$$\frac{\{x : \tau_1\} + \Gamma \mid -e_1 : \tau_1 \{x : \mathsf{Gen}(\tau_1, \Gamma)\} + \Gamma \mid -e_2 : \tau_2}{\Gamma \mid -(\mathsf{let rec } x = e_1 \mathsf{ in } e_2) : \tau_2}$$

10/2/25 86

Polymorphic Variables (Identifiers)

Variable axiom:

$$\overline{\Gamma \mid -X : \varphi(\tau)}$$
 if $\Gamma(X) = \forall \alpha_1, \dots, \alpha_n \cdot \tau$

- Where φ replaces all occurrences of $\alpha_1, \ldots, \alpha_n$ by monotypes τ_1, \ldots, τ_n
- Note: Monomorphic rule special case:

$$\overline{\Gamma \mid - x : \tau}$$
 if $\Gamma(x) = \tau$

Constants treated same way

10/2/25

Fun Rule Stays the Same

fun rule:

$$\frac{\{x \colon \tau_1\} + \Gamma \mid -e \colon \tau_2}{\Gamma \mid -\text{ fun } x -> e \colon \tau_1 \to \tau_2}$$

- Types τ_1 , τ_2 monomorphic
- Function argument must always be used at same type in function body