
9/9/25 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
https://courses.engr.illinois.edu/cs421/fa2025

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.engr.illinois.edu/cs421/fa2025

9/9/25 2

Functions with more than one argument

let add_three x y z = x + y + z;;
val add_three : int -> int -> int -> int = <fun>
let t = add_three 6 3 2;;
val t : int = 11
let add_three =
 fun x -> (fun y -> (fun z -> x + y + z));;
val add_three : int -> int -> int -> int = <fun>

Again, first syntactic sugar for second

9/9/25 3

Functions with more than one argument

let add_three x y z = x + y + z;;
val add_three : int -> int -> int -> int = <fun>
n What is the value of add_three?
n Let radd_three be the environment before the

declaration
n Remember:
let add_three =
 fun x -> (fun y -> (fun z -> x + y + z));;
Value: <x ->fun y -> (fun z -> x + y + z), radd_three >

9/9/25 4

Partial application of functions

let add_three x y z = x + y + z;;

let h = add_three 5 4;;
val h : int -> int = <fun>
h 3;;
- : int = 12
h 7;;
- : int = 16

9/9/25 5

Partial application of functions

let add_three x y z = x + y + z;;

let h = add_three 5 4;;
val h : int -> int = <fun>
h 3;;
- : int = 12
h 7;;
- : int = 16
- Partial application also called sectioning

Example worked in class

n let add_three x y z = x + y + z;;
Bound add_three to
<x -> (fun y -> (fun z -> (x + y + z))), {…}>

(<x -> (fun y -> (fun z -> (x + y + z))), rho>
5) Goes to
<y -> (fun z -> (x + y + z)), {x -> 5} + rho>

9/9/25 6

Example continued

So need
(<y -> (fun z -> (x + y + z)), {x -> 5} + rho>
, 4)
n Goes to
<z -> (x + y + z),{y -> 4} + {x -> 5} + rho>
Let h = add_three 5 4
 h is bound to
<z -> (x + y + z),{y -> 4} + {x -> 5} + rho>

9/9/25 7

Example finished

n Let h w = add_three 5 4 w
n Let h = fun w -> add_three 5 4 w
n IN rho_h = {add_three -> <x ->fun y ->

(fun z -> x + y + z), radd_three >, ….}
n <w -> add_three 5 4 w,
n {add_three -> <x ->fun y -> (fun z -> x + y

+ z), radd_three >, ….}>

9/9/25 8

9/9/25 9

Functions as arguments

let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> ('a -> ‘a) = <fun>
let g = thrice plus_two;;
val g : int -> int = <fun>
g 4;;
- : int = 10
thrice (fun s -> "Hi! " ^ s) "Good-bye!";;
- : string = "Hi! Hi! Hi! Good-bye!"

Tuples as Values

// r7 = {c ® 4, test ® 3.7,
 a ® 1, b ® 5}
let s = (5,"hi",3.2);;
val s : int * string * float = (5, "hi", 3.2)

// r8 = {s ® (5, "hi", 3.2),
 c ® 4, test ® 3.7,
 a ® 1, b ® 5}

9/9/25 10

s è (5, ”hi”, 3.2)

test è 3.7a è 1 b è 5

c è 4

b è 5
test è 3.7

a è 1

c è 4

Pattern Matching with Tuples

/ r8 = {s ® (5, "hi", 3.2),
 c ® 4, test ® 3.7,
 a ® 1, b ® 5}
let (a,b,c) = s;; (* (a,b,c) is a pattern *)
val a : int = 5
val b : string = "hi"
val c : float = 3.2
let x = 2, 9.3;; (* tuples don't require parens in

Ocaml *)
val x : int * float = (2, 9.3)
9/9/25 11

s è (5, ”hi”, 3.2)
test è 3.7a è 5 b è “hi”
c è 3.2

x è (2, 9.3)

s è (5, ”hi”, 3.2)

test è 3.7a è 5 b è “hi”

c è 3.2

s è (5, ”hi”, 3.2)

test è 3.7a è 1 b è 5

c è 4

Nested Tuples

(*Tuples can be nested *)
let d = ((1,4,62),("bye",15),73.95);;
val d : (int * int * int) * (string * int) * float =
 ((1, 4, 62), ("bye", 15), 73.95)
(*Patterns can be nested *)
let (p,(st,_),_) = d;; (* _ matches all, binds nothing

*)
val p : int * int * int = (1, 4, 62)
val st : string = "bye"

9/9/25 12

Functions on tuples

let plus_pair (n,m) = n + m;;
val plus_pair : int * int -> int = <fun>
plus_pair (3,4);;
- : int = 7
let double x = (x,x);;
val double : 'a -> 'a * 'a = <fun>
double 3;;
- : int * int = (3, 3)
double "hi";;
- : string * string = ("hi", "hi")
9/9/25 13

9/9/25 14

Curried vs Uncurried

n Recall
val add_three : int -> int -> int -> int = <fun>
n How does it differ from
let add_triple (u,v,w) = u + v + w;;
val add_triple : int * int * int -> int = <fun>

n add_three is curried;
n add_triple is uncurried

9/9/25 15

Curried vs Uncurried

add_triple (6,3,2);;
- : int = 11
add_triple 5 4;;
Characters 0-10:
 add_triple 5 4;;
 ^^^^^^^^^^
This function is applied to too many arguments,
maybe you forgot a `;'
fun x -> add_triple (5,4,x);;
: int -> int = <fun>

9/9/25 16

•Each clause: pattern on
left, expression on right

•Each x, y has scope of
only its clause

•Use first matching clause

Match Expressions

let triple_to_pair triple =
 match triple
 with (0, x, y) -> (x, y)
 | (x, 0, y) -> (x, y)
 | (x, y, _) -> (x, y);;
val triple_to_pair : int * int * int -> int * int =

<fun>

9/9/25 17

Save the Environment!

n A closure is a pair of an environment and an
association of a pattern (e.g. (v1,…,vn)
giving the input variables) with an
expression (the function body), written:

< (v1,…,vn) ® exp, r >
n Where r is the environment in effect when

the function is defined (for a simple
function)

9/9/25 18

Closure for plus_pair

n Assume rplus_pair was the environment just
before plus_pair defined

n Closure for fun (n,m) -> n + m:

<(n,m) ® n + m, rplus_pair>
n Environment just after plus_pair defined:

 {plus_pair ® <(n,m) ® n + m, rplus_pair >}

+ rplus_pair

Evaluating declarations

n Evaluation uses an environment r
n To evaluate a (simple) declaration let x = e

n Evaluate expression e in r to value v
n Update r with x ® v: {x ® v} + r

9/9/25 19

Evaluating declarations

n Evaluation uses an environment r
n To evaluate a (simple) declaration let x = e

n Evaluate expression e in r to value v
n Update r with x v: {x ® v} + r

n Update: r1+ r2 has all the bindings in r1 and
all those in r2 that are not rebound in r1

{x ® 2, y ® 3, a ® “hi”} + {y ® 100, b ® 6}
= {x ® 2, y ® 3, a ® “hi”, b ® 6}
9/9/25 20

Evaluating expressions in OCaml

n Evaluation uses an environment r
n A constant evaluates to itself, including

primitive operators like + and =

9/9/25 21

Evaluating expressions in OCaml

n Evaluation uses an environment r
n A constant evaluates to itself, including

primitive operators like + and =
n To evaluate a variable, look it up in r: r(v)

9/9/25 22

Evaluating expressions in OCaml

n Evaluation uses an environment r
n A constant evaluates to itself, including

primitive operators like + and =
n To evaluate a variable, look it up in r: r(v)
n To evaluate a tuple (e1,…,en),

n Evaluate each ei to vi, right to left for Ocaml
n Then make value (v1,…,vn)

9/9/25 23

Evaluating expressions in OCaml

n To evaluate uses of +, - , etc, eval args,
then do operation

9/9/25 24

Evaluating expressions in OCaml

n To evaluate uses of +, - , etc, eval args,
then do operation

n Function expression evaluates to its closure

9/9/25 25

Evaluating expressions in OCaml

n To evaluate uses of +, - , etc, eval args,
then do operation

n Function expression evaluates to its closure
n To evaluate a local dec: let x = e1 in e2

n Eval e1 to v, then eval e2 using {x ® v} + r

9/9/25 26

Evaluating expressions in OCaml

n To evaluate uses of +, - , etc, eval args
(right to left for Ocaml), then do operation

n Function expression evaluates to its closure
n To evaluate a local dec: let x = e1 in e2

n Eval e1 to v, then eval e2 using {x ® v} + r
n To evaluate a conditional expression:

if b then e1 else e2
n Evaluate b to a value v
n If v is True, evaluate e1
n If v is False, evaluate e2

9/9/25 27

9/9/25 28

Evaluation of Application with Closures

n Given application expression f e

n In Ocaml, evaluate e to value v
n In environment r, evaluate left term to closure,

c = <(x1,…,xn) ® b, r’>
n (x1,…,xn) variables in (first) argument
n v must have form (v1,…,vn)

n Update the environment r’ to
 r’’ = {x1 ® v1,…, xn ®vn}+ r’
n Evaluate body b in environment r’’

9/9/25 72

Recursive Functions

let rec factorial n =
 if n = 0 then 1 else n * factorial (n - 1);;
 val factorial : int -> int = <fun>
factorial 5;;
- : int = 120
(* rec is needed for recursive function

declarations *)

9/9/25 73

Recursion Example

Compute n2 recursively using:
n2 = (2 * n - 1) + (n - 1)2

let rec nthsq n = (* rec for recursion *)
 match n (* pattern matching for cases *)
 with 0 -> 0 (* base case *)
 | n -> (2 * n -1) (* recursive case *)
 + nthsq (n -1);; (* recursive call *)
val nthsq : int -> int = <fun>
nthsq 3;;
- : int = 9

Structure of recursion similar to inductive proof

9/9/25 74

Recursion and Induction

let rec nthsq n = match n with 0 -> 0
 | n -> (2 * n - 1) + nthsq (n - 1) ;;

n Base case is the last case; it stops the computation
n Recursive call must be to arguments that are

somehow smaller - must progress to base case
n if or match must contain base case
n Failure of these may cause failure of termination

9/9/25 75

Lists

n List can take one of two forms:
n Empty list, written []
n Non-empty list, written x :: xs

n x is head element, xs is tail list, :: called
“cons”

n Syntactic sugar: [x] == x :: []
n [x1; x2; …; xn] == x1 :: x2 :: … :: xn :: []

9/9/25 76

Lists

let fib5 = [8;5;3;2;1;1];;
val fib5 : int list = [8; 5; 3; 2; 1; 1]
let fib6 = 13 :: fib5;;
val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]
(8::5::3::2::1::1::[]) = fib5;;
- : bool = true
fib5 @ fib6;;
- : int list = [8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1;

1]

9/9/25 77

Lists are Homogeneous

let bad_list = [1; 3.2; 7];;
Characters 19-22:
 let bad_list = [1; 3.2; 7];;
 ^^^
This expression has type float but is here

used with type int

9/9/25 78

Question

n Which one of these lists is invalid?

1. [2; 3; 4; 6]
2. [2,3; 4,5; 6,7]
3. [(2.3,4); (3.2,5); (6,7.2)]
4. [[“hi”; “there”]; [“wahcha”]; []; [“doin”]]

9/9/25 79

Answer

n Which one of these lists is invalid?

1. [2; 3; 4; 6]
2. [2,3; 4,5; 6,7]
3. [(2.3,4); (3.2,5); (6,7.2)]
4. [[“hi”; “there”]; [“wahcha”]; []; [“doin”]]

§ 3 is invalid because of last pair

9/9/25 80

Functions Over Lists

let rec double_up list =
 match list
 with [] -> [] (* pattern before ->,
 expression after *)
 | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>
let fib5_2 = double_up fib5;;
val fib5_2 : int list = [8; 8; 5; 5; 3; 3; 2; 2; 1;

1; 1; 1]

9/9/25 81

Functions Over Lists

let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"]
let rec poor_rev list =
 match list
 with [] -> []
 | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>
poor_rev silly;;
- : string list = ["there"; "there"; "hi"; "hi"]

9/9/25 83

Structural Recursion

n Functions on recursive datatypes (eg lists)
tend to be recursive

n Recursion over recursive datatypes generally
by structural recursion
n Recursive calls made to components of structure

of the same recursive type
n Base cases of recursive types stop the recursion

of the function

Question: Length of list

n Problem: write code for the length of the list
n How to start?

let rec length list =

9/9/25 84

Question: Length of list

n Problem: write code for the length of the list
n How to start?

let rec length list =
 match list with

9/9/25 85

Question: Length of list

n Problem: write code for the length of the list
n What patterns should we match against?

let rec length list =
 match list with

9/9/25 86

Question: Length of list

n Problem: write code for the length of the list
n What patterns should we match against?

let rec length list =
 match list with [] ->
 | (a :: bs) ->

9/9/25 87

Question: Length of list

n Problem: write code for the length of the list
n What result do we give when list is empty?

let rec length list =
 match list with [] -> 0
 | (a :: bs) ->

9/9/25 88

Question: Length of list

n Problem: write code for the length of the list
n What result do we give when list is not empty?

let rec length list =
 match list with [] -> 0
 | (a :: bs) ->

9/9/25 89

Question: Length of list

n Problem: write code for the length of the list
n What result do we give when list is not empty?

let rec length list =
 match list with [] -> 0
 | (a :: bs) -> 1 + length bs

9/9/25 90

9/9/25 91

Structural Recursion : List Example

let rec length list = match list
 with [] -> 0 (* Nil case *)
 | a :: bs -> 1 + length bs;; (* Cons case *)
val length : 'a list -> int = <fun>
length [5; 4; 3; 2];;
- : int = 4
n Nil case [] is base case
n Cons case recurses on component list bs

Same Length

n How can we efficiently answer if two lists
have the same length?

9/9/25 92

Same Length

n How can we efficiently answer if two lists
have the same length?

let rec same_length list1 list2 =
 match list1 with [] ->
 (match list2 with [] -> true
 | (y::ys) -> false)
 | (x::xs) ->
 (match list2 with [] -> false
 | (y::ys) -> same_length xs ys)
9/9/25 93

Your turn: doubleList : int list -> int list

n Write a function that takes a list of int and
returns a list of the same length, where each
element has been multiplied by 2

let rec doubleList list =

9/9/25 95

Your turn: doubleList : int list -> int list

n Write a function that takes a list of int and
returns a list of the same length, where each
element has been multiplied by 2

let rec doubleList list =
 match list
 with [] ->[]
 | x :: xs -> (2 * x) :: doubleList xs

9/9/25 96

Your turn: doubleList : int list -> int list

n Write a function that takes a list of int and
returns a list of the same length, where each
element has been multiplied by 2

let rec doubleList list =
 match list
 with [] ->[]
 | x :: xs -> (2 * x) :: doubleList xs

9/9/25 97

9/9/25 98

Higher-Order Functions Over Lists

let rec map f list =
 match list
 with [] -> []
 | (h::t) -> (f h) :: (map f t);;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
map plus_two fib5;;
- : int list = [10; 7; 5; 4; 3; 3]
map (fun x -> x - 1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; 0]

9/9/25 99

Higher-Order Functions Over Lists

let rec map f list =
 match list
 with [] -> []
 | (h::t) -> (f h) :: (map f t);;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
map plus_two fib5;;
- : int list = [10; 7; 5; 4; 3; 3]
map (fun x -> x - 1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; 0]

9/9/25 100

Mapping Recursion

n Can use the higher-order recursive map
function instead of direct recursion

let doubleList list =
 List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
doubleList [2;3;4];;
- : int list = [4; 6; 8]
Same function, but no rec

9/9/25 101

Mapping Recursion

n Can use the higher-order recursive map
function instead of direct recursion

let doubleList list =
 List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
doubleList [2;3;4];;
- : int list = [4; 6; 8]
n Same function, but no explicit recursion

9/9/25 102

Folding Recursion

n Another common form “folds” an operation
over the elements of the structure

let rec multList list = match list
 with [] -> 1
 | x::xs -> x * multList xs;;
val multList : int list -> int = <fun>
multList [2;4;6];;
- : int = 48
n Computes (2 * (4 * (6 * 1)))

9/9/25 103

Folding Recursion : Length Example

let rec length list = match list
 with [] -> 0 (* Nil case *)
 | a :: bs -> 1 + length bs;; (* Cons case *)
val length : 'a list -> int = <fun>
length [5; 4; 3; 2];;
- : int = 4
n Nil case [] is base case, 0 is the base value
n Cons case recurses on component list bs
n What do multList and length have in common?

