Programming Languages and Compilers (CS 421)

2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

Unification Problem

Given a set of pairs of terms ("equations")

$$\{(s_1, t_1), (s_2, t_2), ..., (s_n, t_n)\}$$

(the *unification problem*) does there exist a substitution σ (the *unification solution*) of terms for variables such that

$$\sigma(s_i) = \sigma(t_i),$$

for all i = 1, ..., n?

Uses for Unification

- Type Inference and type checking
- Pattern matching as in OCaml
 - Can use a simplified version of algorithm
- Logic Programming Prolog
- Simple parsing

10/22/24

4

Unification Algorithm

Let $S = \{(s_1 = t_1), (s_2 = t_2), ..., (s_n = t_n)\}$ be a unification problem.

 Case S = { }: Unif(S) = Identity function (i.e., no substitution)

• Case $S = \{(s, t)\} \cup S'$: Four main steps

Unification Algorithm

- Delete: if s = t (they are the same term) then Unif(S) = Unif(S')
- Decompose: if $s = f(q_1, ..., q_m)$ and $t = f(r_1, ..., r_m)$ (same f, same m!), then Unif(S) = Unif({(q_1, r_1), ..., (q_m, r_m)}) ∪ S')
- Orient: if t = x is a variable, and s is not a variable, Unif(S) = Unif ({(x = s)} ∪ S')

4

Unification Algorithm

- Eliminate: if s = x is a variable, and x does not occur in t (the occurs check), then
 - Let $\varphi = \{x \rightarrow t\}$
 - Unif(S) = Unif(φ (S')) o {x \rightarrow t}
 - Let $\psi = Unif(\phi(S'))$
 - Unif(S) = $\{x \rightarrow \psi(t)\}\ o \ \psi$
 - Note: {x → a} o {y → b} = {y → ({x → a}(b))} o {x → a} if y not in a

10/22/24

Tricks for Efficient Unification

- Don't return substitution, rather do it incrementally
- Make substitution be constant time
 - Requires implementation of terms to use mutable structures (or possibly lazy structures)
 - We won't discuss these

x,y,z variables, f,g constructors

• Unify $\{(f(x) = f(g(f(z),y))), (g(y,y) = x)\} = ?$

- x,y,z variables, f,g constructors
- S = {(f(x) = f(g(f(z),y))), (g(y,y) = x)} is nonempty

• Unify $\{(f(x) = f(g(f(z),y))), (g(y,y) = x)\} = ?$

- x,y,z variables, f,g constructors
- Pick a pair: (g(y,y) = x)

• Unify $\{(f(x) = f(g(f(z),y))), (g(y,y) = x)\} = ?$

- x,y,z variables, f,g constructors
- Pick a pair: (g(y,y)) = x
- Orient: (x = g(y,y))

Unify {(f(x) = f(g(f(z),y))), (g(y,y) = x)} = Unify {(f(x) = f(g(f(z),y))), (x = g(y,y))}
by Orient

x,y,z variables, f,g constructors

• Unify $\{(f(x) = f(g(f(z),y))), (x = g(y,y))\} = ?$

- x,y,z variables, f,g constructors
- {(f(x) = f(g(f(z),y))), (x = g(y,y))} is nonempty

• Unify $\{(f(x) = f(g(f(z),y))), (x = g(y,y))\} = ?$

10/22/24

- x,y,z variables, f,g constructors
- Pick a pair: (x = g(y,y))

■ Unify $\{(f(x) = f(g(f(z),y))), (x = g(y,y))\} = ?$

- x,y,z variables, f,g constructors
- Pick a pair: (x = g(y,y))
- Eliminate x with substitution $\{x \rightarrow g(y,y)\}$
 - Check: x not in g(y,y)
- Unify $\{(f(x) = f(g(f(z),y))), (x = g(y,y))\} = ?$

- x,y,z variables, f,g constructors
- Pick a pair: (x = g(y,y))
- Eliminate x with substitution $\{x \rightarrow g(y,y)\}$

Unify {(f(x) = f(g(f(z),y))), (x = g(y,y))} =
Unify {(f(g(y,y)) = f(g(f(z),y)))}
o {x→ g(y,y)}

x,y,z variables, f,g constructors

■ Unify
$$\{(f(g(y,y)) = f(g(f(z),y)))\}$$

o $\{x \rightarrow g(y,y)\} = ?$

- x,y,z variables, f,g constructors
- $\{(f(g(y,y)) = f(g(f(z),y)))\}\$ is non-empty

■ Unify $\{(f(g(y,y)) = f(g(f(z),y)))\}$ o $\{x \rightarrow g(y,y)\} = ?$

- x,y,z variables, f,g constructors
- Pick a pair: (f(g(y,y)) = f(g(f(z),y)))

Unify {(f(g(y,y)) = f(g(f(z),y)))}
o {x→ g(y,y)} = ?

- x,y,z variables, f,g constructors
- Pick a pair: (f(g(y,y)) = f(g(f(z),y)))
- Decompose:(f(g(y,y)) = f(g(f(z),y))) becomes {(g(y,y) = g(f(z),y))}

Unify {(f(g(y,y)) = f(g(f(z),y)))}
 o {x→ g(y,y)} =
 Unify {(g(y,y) = g(f(z),y))} o {x→ g(y,y)}

- x,y,z variables, f,g constructors
- $\{(g(y,y) = g(f(z),y))\}\$ is non-empty

■ Unify $\{(g(y,y) = g(f(z),y))\}$ o $\{x \rightarrow g(y,y)\} = ?$

- x,y,z variables, f,g constructors
- Pick a pair: (g(y,y) = g(f(z),y))

■ Unify $\{(g(y,y) = g(f(z),y))\}$ o $\{x \rightarrow g(y,y)\} = ?$

- x,y,z variables, f,g constructors
- Pick a pair: (f(g(y,y)) = f(g(f(z),y)))
- Decompose: (g(y,y)) = g(f(z),y)) becomes $\{(y = f(z)); (y = y)\}$

■ Unify $\{(g(y,y) = g(f(z),y))\}\ o \{x \rightarrow g(y,y)\} =$ Unify $\{(y = f(z)); (y = y)\}\ o \{x \rightarrow g(y,y)\}$

x,y,z variables, f,g constructors

■ Unify $\{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y,y)\} = ?$

- x,y,z variables, f,g constructors
- {(y = f(z)); (y = y)} o {x→ g(y,y) is nonempty

■ Unify $\{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y,y)\} = ?$

- x,y,z variables, f,g constructors
- Pick a pair: (y = f(z))

■ Unify $\{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y,y)\} = ?$

- x,y,z variables, f,g constructors
- Pick a pair: (y = f(z))
- Eliminate y with $\{y \rightarrow f(z)\}$

```
    Unify {(y = f(z)); (y = y)} o {x→ g(y,y)} = Unify {(f(z) = f(z))}
    o ({y → f(z)} o {x→ g(y,y)})=
    Unify {(f(z) = f(z))}
    o {y → f(z); x→ g(f(z), f(z))}
```

x,y,z variables, f,g constructors

- x,y,z variables, f,g constructors
- $\{(f(z) = f(z))\}$ is non-empty

Unify {(f(z) = f(z))}
o {y → f(z); x→ g(f(z), f(z))} = ?

- x,y,z variables, f,g constructors
- Pick a pair: (f(z) = f(z))

Unify {(f(z) = f(z))}
o {y → f(z); x→ g(f(z), f(z))} = ?

- x,y,z variables, f,g constructors
- Pick a pair: (f(z) = f(z))
- Delete
- Unify {(f(z) = f(z))}
 o {y → f(z); x→ g(f(z), f(z))} =
 Unify {} o {y → f(z); x→ g(f(z), f(z))}

x,y,z variables, f,g constructors

■ Unify {} o {y \rightarrow f(z); x \rightarrow g(f(z), f(z))} = ?

- x,y,z variables, f,g constructors
- {} is empty
- Unify {} = identity function
- Unify {} o {y \rightarrow f(z); x \rightarrow g(f(z), f(z))} = {y \rightarrow f(z); x \rightarrow g(f(z), f(z))}

■ Unify $\{(f(x) = f(g(f(z),y))), (g(y,y) = x)\} = \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\}$

$$f(x) = f(g(f(z), y))$$

$$\rightarrow f(g(f(z), f(z))) = f(g(f(z), f(z)))$$

$$g(y, y) = x$$

$$\rightarrow g(f(z),f(z)) = g(f(z), f(z))$$

4

Example of Failure: Decompose

- Unify $\{(f(x,g(y)) = f(h(y),x))\}$
- Decompose: (f(x,g(y)) = f(h(y),x))
- \blacksquare = Unify {(x = h(y)), (g(y) = x)}
- Orient: (g(y) = x)
- \blacksquare = Unify {(x = h(y)), (x = g(y))}
- Eliminate: (x = h(y))
- Unify $\{(h(y) = g(y))\}\ o \{x \to h(y)\}$
- No rule to apply! Decompose fails!

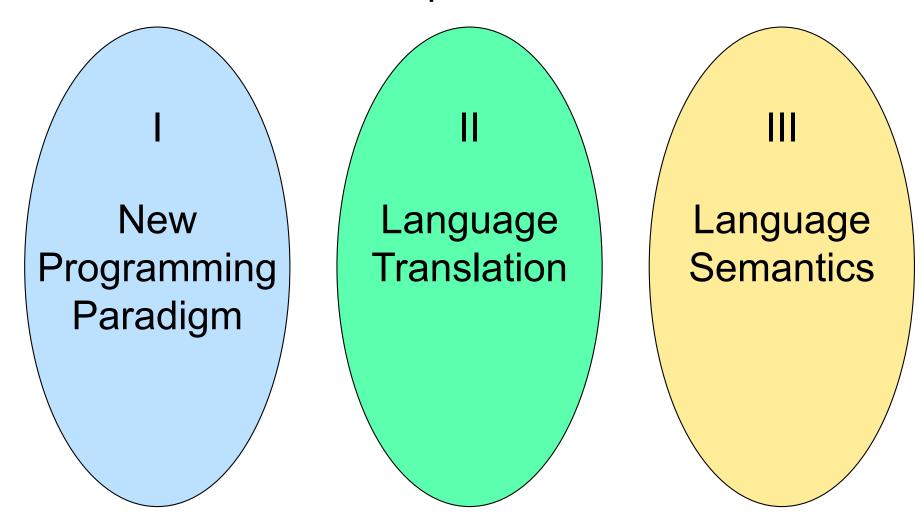
4

Example of Failure: Occurs Check

- Unify $\{(f(x,g(x)) = f(h(x),x))\}$
- Decompose: (f(x,g(x)) = f(h(x),x))
- \blacksquare = Unify {(x = h(x)), (g(x) = x)}
- Orient: (g(x) = x)
- \blacksquare = Unify {(x = h(x)), (x = g(x))}
- No rules apply.

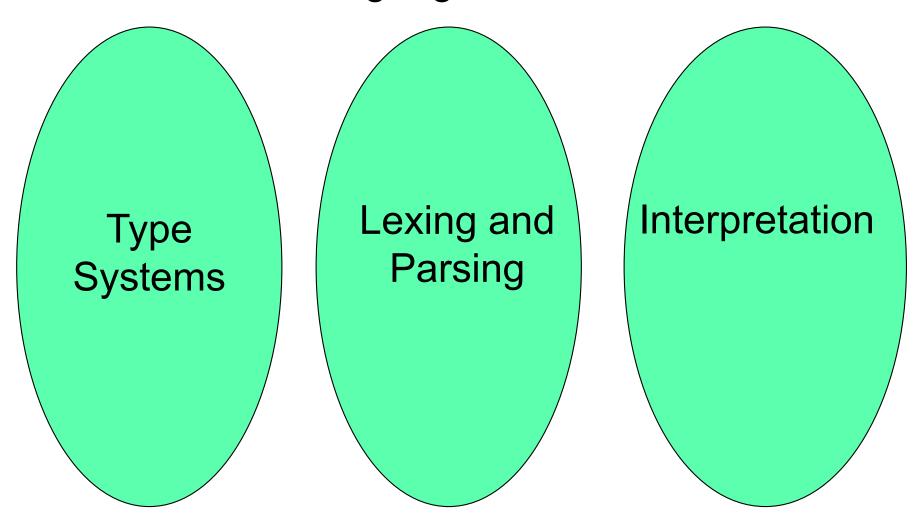
Programming Languages & Compilers

Three Main Topics of the Course



Programming Languages & Compilers

II: Language Translation



Major Phases of a Compiler

Source Program

Lex

Tokens

Parse

Abstract Syntax

Semantic

Analysis

Symbol Table

Translate

Intermediate

Representation

Optimize

Optimized IR

Instruction

Selection

Unoptimized Machine-

Specific Assembly Language

Optimize

Optimized Machine-Specific

Assembly Language

Emit code

Assembly Language

Assembler

Relocatable Object Code

Linker

Machine Code

Where We Are Going Next?

- We want to turn strings (code) into computer instructions
- Done in phases
- Turn strings into abstract syntax trees (parse)
- Translate abstract syntax trees into executable instructions (interpret or compile)

Meta-discourse

- Language Syntax and Semantics
- Syntax
 - Regular Expressions, DFSAs and NDFSAs
 - Grammars
- Semantics
 - Natural Semantics
 - Transition Semantics

Language Syntax

- Syntax is the description of which strings of symbols are meaningful expressions in a language
- It takes more than syntax to understand a language; need meaning (semantics) too
- Syntax is the entry point

Syntax of English Language

Pattern 1

Subject	Verb
David	sings
The dog	barked
Susan	yawned

Pattern 2

Subject	Verb	Direct Object
David	sings	ballads
The professor	wants	to retire
The jury	found	the defendant guilty

Elements of Syntax

- Character set previously always ASCII, now often 64 character sets
- Keywords usually reserved
- Special constants cannot be assigned to
- Identifiers can be assigned to
- Operator symbols
- Delimiters (parenthesis, braces, brackets)
- Blanks (aka white space)

Elements of Syntax

Expressions

```
if ... then begin ...; ... end else begin ...; ... end
```

Type expressions

```
typexpr<sub>1</sub> -> typexpr<sub>2</sub>
```

Declarations (in functional languages)

```
let pattern = expr
```

Statements (in imperative languages)

$$a = b + c$$

Subprograms

```
let pattern_1 = expr_1 in expr
```


Elements of Syntax

- Modules
- Interfaces
- Classes (for object-oriented languages)

Lexing and Parsing

- Converting strings to abstract syntax trees done in two phases
 - Lexing: Converting string (or streams of characters) into lists (or streams) of tokens (the "words" of the language)
 - Specification Technique: Regular Expressions
 - Parsing: Convert a list of tokens into an abstract syntax tree
 - Specification Technique: BNF Grammars

Formal Language Descriptions

 Regular expressions, regular grammars, finite state automata

Context-free grammars, BNF grammars, syntax diagrams

 Whole family more of grammars and automata – covered in automata theory

Grammars

- Grammars are formal descriptions of which strings over a given character set are in a particular language
- Language designers write grammar
- Language implementers use grammar to know what programs to accept
- Language users use grammar to know how to write legitimate programs

Regular Expressions - Review

- Start with a given character set –
 a, b, c...
- **L**(ε) = {""}
- Each character is a regular expression
 - It represents the set of one string containing just that character
 - $L(a) = \{a\}$

Regular Expressions

- If x and y are regular expressions, then xy is a regular expression
 - It represents the set of all strings made from first a string described by x then a string described by

```
If L(x) = \{a,ab\} and L(y) = \{c,d\}
then L(xy) = \{ac,ad,abc,abd\}
```

Regular Expressions

- If x and y are regular expressions, then xvy is a regular expression
 - It represents the set of strings described by either x or y

```
If L(x) = \{a,ab\} and L(y) = \{c,d\}
then L(x \lor y) = \{a,ab,c,d\}
```

Regular Expressions

- If x is a regular expression, then so is (x)
 - It represents the same thing as x
- If x is a regular expression, then so is x*
 - It represents strings made from concatenating zero or more strings from x

```
If L(x) = \{a,ab\} then L(x^*) = \{"",a,ab,aa,aab,abab,...\}
```

- 3
 - It represents {""}, set containing the empty string
- - It represents { }, the empty set

Example Regular Expressions

- **(0**\1)*1
 - The set of all strings of **0**'s and **1**'s ending in 1, **11, 01, 11,...**}
- a*b(a*)
 - The set of all strings of a's and b's with exactly one b
- **((01)** \(\sigma(10))*
 - You tell me
- Regular expressions (equivalently, regular grammars) important for lexing, breaking strings into recognized words

Right Regular Grammars

- Subclass of BNF (covered in detail sool)
- Only rules of form

```
<nonterminal>::=<terminal><nonterminal> or
```

- <nonterminal>::=<terminal> or
- <nonterminal>::=€
- Defines same class of languages as regular expressions
- Important for writing lexers (programs that convert strings of characters into strings of tokens)
- Close connection to nondeterministic finite state automata – nonterminals ≅ states; rule ≅ edge

Example

Right regular grammar:

```
<Balanced> ::= ε

<Balanced> ::= 0<OneAndMore>

<Balanced> ::= 1<ZeroAndMore>

<OneAndMore> ::= 1<Balanced>

<ZeroAndMore> ::= 0<Balanced>
```

 Generates even length strings where every initial substring of even length has same number of 0's as 1's

Implementing Regular Expressions

- Regular expressions reasonable way to generate strings in language
- Not so good for recognizing when a string is in language
- Problems with Regular Expressions
 - which option to choose,
 - how many repetitions to make
- Answer: finite state automata
- Should have seen in CS374

Example: Lexing

- Regular expressions good for describing lexemes (words) in a programming language
 - Identifier = (a v b v ... v z v A v B v ... v Z) (a v b v ... v z v A v B v ... v Z) (a v b v ... v z v A v B v ... v Z v 0 v 1 v ... v 9)*
 - Digit = $(0 \lor 1 \lor ... \lor 9)$
 - Number = 0 \((1 \lapha \ldots \cdot 9)(0 \ldots \ldots \ldots 9)* \\
 ~ (1 \loo \ldots \loo 9)(0 \loo \ldots \loo 9)*
 - Keywords: if = if, while = while,...

Lexing

Different syntactic categories of "words": tokens

Example:

- Convert sequence of characters into sequence of strings, integers, and floating point numbers.
- "asd 123 jkl 3.14" will become:
 [String "asd"; Int 123; String "jkl"; Float 3.14]

- Could write the reg exp, then translate to DFA by hand
 - A lot of work
- Better: Write program to take reg exp as input and automatically generates automata
- Lex is such a program
- ocamllex version for ocaml

How to do it

- To use regular expressions to parse our input we need:
 - Some way to identify the input string
 - call it a lexing buffer
 - Set of regular expressions,
 - Corresponding set of actions to take when they are matched.

How to do it

- The lexer will take the regular expressions and generate a state machine.
- The state machine will take our lexing buffer and apply the transitions...
- If we reach an accepting state from which we can go no further, the machine will perform the appropriate action.

Mechanics

- Put table of reg exp and corresponding actions (written in ocaml) into a file < filename>.mll
- Call

ocamllex < filename > .mll

 Produces Ocaml code for a lexical analyzer in file <filename>.ml

Sample Input

```
rule main = parse
['0'-'9']+ { print string "Int\n"}
| ['a'-'z']+ { print_string "String\n"}
{ main lexbuf }
let newlexbuf = (Lexing.from channel stdin) in
main newlexbuf
```

General Input

```
{ header }
let ident = regexp ...
rule entrypoint [arg1... argn] = parse
     regexp { action }
   | regexp { action }
and entrypoint [arg1...argn] = parse ...and
{ trailer }
```

Ocamllex Input

header and trailer contain arbitrary ocaml code put at top an bottom of <filename>.ml

let ident = regexp ... Introduces ident for use in later regular expressions

Ocamllex Input

- <filename>.ml contains one lexing function per entrypoint
 - Name of function is name given for entrypoint
 - Each entry point becomes an Ocaml function that takes n+1 arguments, the extra implicit last argument being of type Lexing.lexbuf
- arg1... argn are for use in action

Ocamllex Regular Expression

- Single quoted characters for letters:
- _: (underscore) matches any letter
- Eof: special "end_of_file" marker
- Concatenation same as usual
- "string": concatenation of sequence of characters
- \bullet e_1 / e_2 : choice what was $e_1 \lor e_2$

Ocamllex Regular Expression

- $[c_1 c_2]$: choice of any character between first and second inclusive, as determined by character codes
- [^c₁ c₂]: choice of any character NOT in set
- e*: same as before
- e+: same as e e*
- *e*?: option was *e* ∨ ε
- **■** (*e*): same as *e*

Ocamllex Regular Expression

- e_1 # e_2 : the characters in e_1 but not in e_2 ; e_1 and e_2 must describe just sets of characters
- ident: abbreviation for earlier reg exp in let ident = regexp
- e_1 as *id*: binds the result of e_1 to *id* to be used in the associated *action*

Ocamllex Manual

More details can be found at

Version for ocaml 4.07:

https://v2.ocaml.org/releases/4.07/htmlman/lexxyacc.html

Current version (ocaml 4.14)

https://v2.ocaml.org/releases/4.14/htmlman/lexyacc.html

(same, except formatting, I think)

End of Lect 18

Example: test.mll

```
{ type result = Int of int | Float of float |
  String of string }
let digit = \lceil '0' - '9' \rceil
let digits = digit +
let lower case = \lceil 'a' - 'z' \rceil
let upper_case = \lceil A'-Z' \rceil
let letter = upper case | lower case
let letters = letter +
```

Example: test.mll

```
rule main = parse
  (digits)'.'digits as f { Float (float_of_string f) }
                       { Int (int_of_string n) }
| digits as n
 letters as s
                       { String s}
| _ { main lexbuf }
{ let newlexbuf = (Lexing.from_channel stdin) in
print_newline ();
main newlexbuf }
```

Example

```
# #use "test.ml";;
...
val main : Lexing.lexbuf -> result = <fun>
val __ocaml_lex_main_rec : Lexing.lexbuf -> int -> result = <fun>
hi there 234 5.2
    : result = String "hi"
```

What happened to the rest?!?

Example

```
# let b = Lexing.from channel stdin;;
# main b;;
hi 673 there
-: result = String "hi"
# main b;;
-: result = Int 673
# main b;;
-: result = String "there"
```


- Work on MP8
 - Add a few keywords
 - Implement booleans and unit
 - Implement Ints and Floats
 - Implement identifiers

Problem

- How to get lexer to look at more than the first token at one time?
- Answer: action has to tell it to -- recursive calls
 - Not what you want to sew this together with ocamlyacc
- Side Benefit: can add "state" into lexing
- Note: already used this with the _ case

Example

```
rule main = parse
  (digits) '.' digits as f { Float
  (float_of_string f) :: main lexbuf}
                     { Int (int_of_string n) ::
| digits as n
  main lexbuf }
                     { String s :: main
letters as s
  lexbuf}
 eof
                      { [] }
                      { main lexbuf }
```


Example Results

hi there 234 5.2

- : result list = [String "hi"; String "there"; Int 234; Float 5.2]

#

Used Ctrl-d to send the end-of-file signal

Dealing with comments

First Attempt

```
let open_comment = "(*"
let close comment = "*)"
rule main = parse
  (digits) '.' digits as f { Float (float_of_string
 f) :: main lexbuf}
                    { Int (int of string n) ::
| digits as n
  main lexbuf }
 letters as s
                    { String s :: main lexbuf}
```

Dealing with comments

```
| open_comment { comment lexbuf}
| eof { [] }
| _ { main lexbuf }
and comment = parse
   close_comment { main lexbuf }
| _ { comment lexbuf }
```


Dealing with nested comments

```
rule main = parse ...
 open_comment { comment 1 lexbuf}
I eof
                { [] }
| _ { main lexbuf }
and comment depth = parse
 open comment { comment (depth+1) lexbuf
 close_comment { if depth = 1
                then main lexbuf
               else comment (depth - 1) lexbuf }
               { comment depth lexbuf }
```

Dealing with nested comments

```
rule main = parse
  (digits) '.' digits as f { Float (float_of_string f) ::
  main lexbuf}
digits as n
                   { Int (int_of_string n) :: main
  lexbuf }
 letters as s
                   { String s :: main lexbuf}
                        { (comment 1 lexbuf}
 open_comment
l eof
                  { [] }
| _ { main lexbuf }
```

Dealing with nested comments

Types of Formal Language Descriptions

- Regular expressions, regular grammars
- Context-free grammars, BNF grammars, syntax diagrams

- Finite state automata
- Pushdown automata
- Whole family more of grammars and automata – covered in automata theory

Sample Grammar

Language: Parenthesized sums of 0's and 1's

- <Sum> ::= 0
- <Sum >::= 1
- <Sum> ::= <Sum> + <Sum>
- <Sum> ::= (<Sum>)

BNF Grammars

- Start with a set of characters, a,b,c,...
 - We call these terminals
- Add a set of different characters,
 X,Y,Z,...
 - We call these nonterminals
- One special nonterminal S called start symbol

BNF Grammars

BNF rules (aka productions) have form

$$X ::= y$$

where **X** is any nonterminal and *y* is a string of terminals and nonterminals

 BNF grammar is a set of BNF rules such that every nonterminal appears on the left of some rule

Sample Grammar

- Terminals: 0 1 + ()
- Nonterminals: <Sum>
- Start symbol = <Sum>
- <Sum> ::= 0
- <Sum >::= 1
- <Sum> ::= <Sum> + <Sum>
- <Sum> ::= (<Sum>)
- Can be abbreviated as

Given rules

$$X::= yZw$$
 and $Z::= v$

we may replace **Z** by ν to say

$$X => yZw => yvw$$

- Sequence of such replacements called derivation
- Derivation called *right-most* if always replace the right-most non-terminal

Start with the start symbol:

Pick a non-terminal

- Pick a rule and substitute:
 - <Sum> ::= <Sum> + <Sum>

Pick a non-terminal:

Pick a rule and substitute:

Pick a non-terminal:

BNF Derivations

Pick a rule and substitute:

Pick a non-terminal:

Pick a rule and substitute:

Pick a non-terminal:

BNF Derivations

Pick a rule and substitute:

Pick a non-terminal:

BNF Derivations

Pick a rule and substitute

<Sum> ::= 0 <Sum> => <Sum> + <Sum > => (<Sum>) + <Sum> => (<Sum> + <Sum>) + <Sum> => (<Sum> + 1) + <Sum> => (<Sum> + 1) 0 => (0 + 1) + 0

 \bullet (0 + 1) + 0 is generated by grammar

Pick a non-terminal: