Programming Languages and Compilers (CS 421)

Elsa L Gunter 2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

10/15/24

Two Problems

- Type checking
 - Question: Does exp. e have type τ in env Γ?
 - Answer: Yes / No
 - Method: Type derivation
- Typability
 - Question Does exp. e have some type in env. Γ? If so, what is it?
 - Answer: Type τ / error
 Method: Type inference

10/15/24 2

Type Inference - Outline

- Begin by assigning a type variable as the type of the whole expression
- Decompose the expression into component expressions
- Use typing rules to generate constraints on components and whole
- Recursively find substitution that solves typing judgment of first subcomponent
- Apply substitution to next subcomponent and find substitution solving it; compose with first, etc.
- Apply comp of all substitution to orig. type var. to get answer

10/15/24

Type Inference Algorithm

Let infer $(\Gamma, e, \tau) = \sigma$

- Γ is a typing environment (giving polymorphic types to expression variables)
- e is an expression
- τ is a type (with type variables),
- σ is a substitution of types for type variables
- Idea: σ is substitution solving the constraints on type variables necessary for $\Gamma \mid -e : \tau$
- Should have $\sigma(\Gamma)$ |- e: $\sigma(\tau)$ valid

10/15/24 22

Type Inference Algorithm

infer $(\Gamma, exp, \tau) =$

- Case exp of
 - Var ν --> return Unify $\{\tau = \text{freshInstance}(\Gamma(\nu))\}$
 - Replace all quantified type vars by fresh ones
 - Const c→ return Unify{τ = freshInstance φ}
 where Γ | c: φ by the constant rules
 - fun *x* -> *e* -->
 - Let α , β be fresh variables
 - Let σ = infer ({x: α } + Γ , e, β)
 - Return Unify($\{\sigma(\tau) \equiv \sigma(\alpha \rightarrow \beta)\}$) o σ

10/15/24 23

Example of inference with Var Rule

Instance {'a -> 'w} ('w a fresh variable)

 ${x: All 'a. ('a * 'b) list, y:All. 'b}|- x: (int * string) list}$

freshInstance(All 'a. ('a * 'b) list) = ('w * 'b) list Unify $\{((int*string)list = ('w * 'b) list)\} = \{'w -> int, 'b -> string\}$

After substitution:

Instance ('a -> int)

{x:All 'a. ('a * string) list, y:All. string}|- x:(int * string) list

10/15/24 24

Type Inference Algorithm (cont)

- Case *exp* of
 - App $(e_1 e_2)$ -->
 - Let α be a fresh variable
 - Let $\sigma_1 = \inf(\Gamma, e_1, \alpha \to \tau)$
 - Let σ_2 = infer($\sigma_1(\Gamma)$, e_2 , $\sigma_1(\alpha)$)
 - Return ₅₂ 0 ₅₁

10/15/24

25

27

29

Type Inference Algorithm (cont)

- Case exp of
 - If e_1 then e_2 else e_3 -->
 - Let $\sigma_1 = \inf(\Gamma, e_1, bool)$
 - Let σ_2 = infer($\sigma_1(\Gamma)$, e_2 , $\sigma_1(\tau)$)
 - Let $\sigma_3 = \inf(\sigma_2 \circ \sigma_1(\Gamma), e_3, \sigma_2 \circ \sigma_1(\tau))$
 - Return $\sigma_3 \circ \sigma_2 \circ \sigma_1$

10/15/24 26

Type Inference Algorithm (cont)

- Case *exp* of
 - let $x = e_1$ in e_2 -->
 - Let α be a fresh variable
 - Let $\sigma_1 = \inf(\Gamma, e_1, \alpha)$
 - Let σ_2 =

infer($\{x: GEN(\sigma_1(\Gamma), \sigma_1(\alpha))\} + \sigma_1(\Gamma), e_2, \sigma_1(\tau)$)

■ Return σ_2 o σ_1

10/15/24

Type Inference Algorithm (cont)

- Case *exp* of
 - let rec $x = e_1$ in e_2 -->
 - Let α be a fresh variable
 - Let σ_1 = infer({x: α } + Γ , e_1 , α)
 - Let σ_2 = infer({x:GEN($\sigma_1(\Gamma)$, $\sigma_1(\alpha)$)} + $\sigma_1(\Gamma)$ }, e_2 , $\sigma_1(\tau)$)

28

30

■ Return $\sigma_2 \circ \sigma_1$

10/15/24

Type Inference Algorithm (cont)

- To infer a type, introduce type_of
- Let α be a fresh variable
- type of $(\Gamma, e) =$
 - Let σ = infer (Γ, e, α)
 - Return $\sigma(\alpha)$
- Need an algorithm for Unif

10/15/24

• 1

Background for Unification

- Terms made from constructors and variables (for the simple first order case)
- Constructors may be applied to arguments (other terms) to make new terms
- Variables and constructors with no arguments are base cases
- Constructors applied to different number of arguments (arity) considered different
- Substitution of terms for variables

10/15/24

Simple Implementation Background

```
type term = Variable of string
              | Const of (string * term list)
let x = Variable "'a";; let tm = Const ("2",[]);;
let rec subst var name residue term =
  match term with Variable name ->
       if var name = name then residue else term
     | Const (c, tys) ->
       Const (c, List.map (subst var_name residue)
                          tys);;
```

10/15/24

Unification Problem

Given a set of pairs of terms ("equations") $\{(s_1, t_1), (s_2, t_2), ..., (s_n, t_n)\}$

(the unification problem) does there exist a substitution σ (the *unification solution*) of terms for variables such that

$$\sigma(s_i) = \sigma(t_i),$$

for all i = 1, ..., n?

10/15/24 32

Uses for Unification

- Type Inference and type checking
- Pattern matching as in OCaml
 - Can use a simplified version of algorithm
- Logic Programming Prolog
- Simple parsing

10/15/24

35

31

Unification Algorithm

- Let $S = \{(s_1 = t_1), (s_2 = t_2), ..., (s_n = t_n)\}$ be a unification problem.
- Case S = { }: Unif(S) = Identity function (i.e., no substitution)
- Case $S = \{(s, t)\} \cup S'$: Four main steps

10/15/24 34

Unification Algorithm

- Delete: if s = t (they are the same term) then Unif(S) = Unif(S')
- Decompose: if $s = f(q_1, ..., q_m)$ and $t = f(r_1, ..., r_m)$ (same f, same m!), then Unif(S) = Unif($\{(q_1, r_1), ..., (q_m, r_m)\} \cup S'$)
- Orient: if t = x is a variable, and s is not a variable, Unif(S) = Unif ($\{(x = s)\} \cup S'$)

10/15/24

Unification Algorithm

- Eliminate: if s = x is a variable, and x does not occur in t (the occurs check), then
 - Let $\varphi = \{x \rightarrow t\}$
 - Unif(S) = Unif(φ (S')) o {x \rightarrow t}
 - Let $\psi = \text{Unif}(\phi(S'))$
 - Unif(S) = $\{x \rightarrow \psi(t)\}\ o \ \psi$
 - Note: $\{x \rightarrow a\}$ o $\{y \rightarrow b\}$ = $\{y \rightarrow (\{x \rightarrow a\}(b))\}\ o \{x \rightarrow a\}\ if\ y\ not$

10/15/24

Tricks for Efficient Unification

- Don't return substitution, rather do it incrementally
- Make substitution be constant time
 - Requires implementation of terms to use mutable structures (or possibly lazy structures)
 - We won't discuss these

10/15/24

Example

- x,y,z variables, f,g constructors
- Unify $\{(f(x) = f(g(f(z),y))), (g(y,y) = x)\} = ?$

10/15/24 38

Example

- x,y,z variables, f,g constructors
- S = {(f(x) = f(g(f(z),y))), (g(y,y) = x)} is nonempty
- Unify $\{(f(x) = f(g(f(z),y))), (g(y,y) = x)\} = ?$

10/15/24

37

41

Example

- x,y,z variables, f,g constructors
- Pick a pair: (g(y,y) = x)
- Unify $\{(f(x) = f(g(f(z),y))), (g(y,y) = x)\} = ?$

10/15/24 40

Example

- x,y,z variables, f,g constructors
- Pick a pair: (g(y,y)) = x
- Orient: (x = g(y,y))
- Unify {(f(x) = f(g(f(z),y))), (g(y,y) = x)} = Unify {(f(x) = f(g(f(z),y))), (x = g(y,y))} by Orient

10/15/24

Example

- x,y,z variables, f,g constructors
- Unify $\{(f(x) = f(g(f(z),y))), (x = g(y,y))\} = ?$

42

10/15/24

Example

- x,y,z variables, f,g constructors
- {(f(x) = f(g(f(z),y))), (x = g(y,y))} is nonempty
- Unify $\{(f(x) = f(g(f(z),y))), (x = g(y,y))\} = ?$

10/15/24

Example

- x,y,z variables, f,g constructors
- Pick a pair: (x = g(y,y))
- Unify $\{(f(x) = f(g(f(z),y))), (x = g(y,y))\} = ?$

10/15/24 44

Example

- x,y,z variables, f,g constructors
- Pick a pair: (x = g(y,y))
- Eliminate x with substitution $\{x \rightarrow g(y,y)\}$
 - Check: x not in g(y,y)
- Unify $\{(f(x) = f(g(f(z),y))), (x = g(y,y))\} = ?$

10/15/24

43

Example

- x,y,z variables, f,g constructors
- Pick a pair: (x = g(y,y))
- Eliminate x with substitution $\{x \rightarrow g(y,y)\}$
- Unify $\{(f(x) = f(g(f(z),y))), (x = g(y,y))\} =$ Unify $\{(f(g(y,y)) = f(g(f(z),y)))\}$ o $\{x \rightarrow g(y,y)\}$

10/15/24 46

Example

- x,y,z variables, f,g constructors
- Unify $\{(f(g(y,y)) = f(g(f(z),y)))\}$ o $\{x \rightarrow g(y,y)\} = ?$

10/15/24

47

Example

- x,y,z variables, f,g constructors
- $\{(f(g(y,y)) = f(g(f(z),y)))\}\$ is non-empty
- Unify $\{(f(g(y,y)) = f(g(f(z),y)))\}$ o $\{x \rightarrow g(y,y)\} = ?$

10/15/24

48

Example

- x,y,z variables, f,g constructors
- Pick a pair: (f(g(y,y)) = f(g(f(z),y)))
- Unify $\{(f(g(y,y)) = f(g(f(z),y)))\}$ o $\{x \rightarrow g(y,y)\} = ?$

10/15/24

Example

- x,y,z variables, f,g constructors
- Pick a pair: (f(g(y,y)) = f(g(f(z),y)))
- Decompose:(f(g(y,y)) = f(g(f(z),y))) becomes {(g(y,y) = g(f(z),y))}
- Unify $\{(f(g(y,y)) = f(g(f(z),y)))\}$ o $\{x \rightarrow g(y,y)\} =$ Unify $\{(g(y,y) = g(f(z),y))\}$ o $\{x \rightarrow g(y,y)\}$

10/15/24 50

Example

- x,y,z variables, f,g constructors
- $\{(g(y,y) = g(f(z),y))\}\$ is non-empty
- Unify $\{(g(y,y) = g(f(z),y))\}$ o $\{x \rightarrow g(y,y)\} = ?$

10/15/24

Example

- x,y,z variables, f,g constructors
- Pick a pair: (g(y,y) = g(f(z),y))
- Unify $\{(g(y,y) = g(f(z),y))\}$ o $\{x \rightarrow g(y,y)\} = ?$

10/15/24 5.

Example

- x,y,z variables, f,g constructors
- Pick a pair: (f(g(y,y)) = f(g(f(z),y)))
- Decompose: (g(y,y)) = g(f(z),y)) becomes $\{(y = f(z)); (y = y)\}$
- Unify $\{(g(y,y) = g(f(z),y))\}\ o \{x \rightarrow g(y,y)\} =$ Unify $\{(y = f(z)); (y = y)\}\ o \{x \rightarrow g(y,y)\}$

10/15/24

53

Example

- x,y,z variables, f,g constructors
- Unify $\{(y = f(z)); (y = y)\}\ o \{x \rightarrow g(y,y)\} = ?$

10/15/24 54

Example

- x,y,z variables, f,g constructors
- {(y = f(z)); (y = y)} o {x→ g(y,y) is nonempty
- Unify $\{(y = f(z)); (y = y)\}\ o \{x \rightarrow g(y,y)\} = ?$

10/15/24

Example

- x,y,z variables, f,g constructors
- Pick a pair: (y = f(z))
- Unify $\{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y,y)\} = ?$

10/15/24 56

Example

- x,y,z variables, f,g constructors
- Pick a pair: (y = f(z))
- Eliminate y with $\{y \rightarrow f(z)\}$
- Unify {(y = f(z)); (y = y)} o {x→ g(y,y)} =
 Unify {(f(z) = f(z))}
 o ({y → f(z)} o {x→ g(y,y)})=
 Unify {(f(z) = f(z))}
 o {y → f(z); x→ g(f(z), f(z))}

10/15/24

55

59

Example

- x,y,z variables, f,g constructors
- Unify $\{(f(z) = f(z))\}$ o $\{y \to f(z); x \to g(f(z), f(z))\} = ?$

10/15/24 58

Example

- x,y,z variables, f,g constructors
- $\{(f(z) = f(z))\}$ is non-empty
- Unify $\{(f(z) = f(z))\}$ o $\{y \to f(z); x \to g(f(z), f(z))\} = ?$

10/15/24

Example

- x,y,z variables, f,g constructors
- Pick a pair: (f(z) = f(z))
- Unify $\{(f(z) = f(z))\}$ o $\{y \to f(z); x \to g(f(z), f(z))\} = ?$

10/15/24

60

- x,y,z variables, f,g constructors
- Pick a pair: (f(z) = f(z))
- Delete
- Unify $\{(f(z) = f(z))\}$ o $\{y \to f(z); x \to g(f(z), f(z))\} =$ Unify $\{\}$ o $\{y \to f(z); x \to g(f(z), f(z))\}$

10/15/24 61

- x,y,z variables, f,g constructors
- Unify {} o { $y \rightarrow f(z)$; $x \rightarrow g(f(z), f(z))$ } = ?

10/15/24 62

Example

- x,y,z variables, f,g constructors
- {} is empty
- Unify {} = identity function
- Unify {} o {y \rightarrow f(z); x \rightarrow g(f(z), f(z))} = {y \rightarrow f(z); x \rightarrow g(f(z), f(z))}

10/15/24

Example

■ Unify $\{(f(x) = f(g(f(z),y))), (g(y,y) = x)\} = \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\}$

$$f(x) = f(g(f(z), y))$$

$$\rightarrow f(g(f(z), f(z))) = f(g(f(z), f(z)))$$

$$g(y, y) = x$$

$$\rightarrow g(f(z),f(z)) = g(f(z), f(z))$$

10/15/24 64

Example of Failure: Decompose

- Unify $\{(f(x,g(y)) = f(h(y),x))\}$
- Decompose: (f(x,g(y)) = f(h(y),x))
- \blacksquare = Unify {(x = h(y)), (g(y) = x)}
- Orient: (g(y) = x)
- \blacksquare = Unify {(x = h(y)), (x = g(y))}
- Eliminate: (x = h(y))
- Unify $\{(h(y) = g(y))\}\ o \{x \to h(y)\}$
- No rule to apply! Decompose fails!

10/15/24 65

Example of Failure: Occurs Check

- Unify $\{(f(x,g(x)) = f(h(x),x))\}$
- Decompose: (f(x,g(x)) = f(h(x),x))
- \blacksquare = Unify {(x = h(x)), (g(x) = x)}
- Orient: (g(x) = x)
- \blacksquare = Unify {(x = h(x)), (x = g(x))}
- No rules apply.

10/15/24 66