Programming Languages and
Compilers (CS 421)

' Elsa L Gunter
2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

10/15/24 1

‘ Two Problems

= Type checking

= Question: Does exp. e have type T in env I'?
= Answer: Yes / No
= Method: Type derivation
= Typability
= Question Does exp. e have some type in env. I'?
If so, what is it?
= Answer: Type T / error
= Method: Type inference

10/15/24 2

Type Inference - Outline

= Begin by assigning a type variable as the type of
the whole expression

= Decompose the expression into component
expressions

= Use typing rules to generate constraints on
components and whole

= Recursively find substitution that solves typing
judgment of first subcomponent

= Apply substitution to next subcomponent and find
substitution solving it; compose with first, etc.

= Apply comp of all substitution to orig. type var. to
get answer

10/15/24 3

‘ Type Inference Algorithm

Letinfer (T, e 1) = o

= Iis a typing environment (giving polymorphic
types to expression variables)

= €is an expression

= 71 is a type (with type variables),

= o is a substitution of types for type variables

= Idea: o is substitution solving the constraints on
type variables necessary for T |- e:x

= Should have o(I') |- €: o(r) valid

10/15/24 22

‘ Type Inference Algorithm

infer (T, exp, 1) =
= Case exp of

= Var v--> return Unify{t = freshInstance(T'(v))}
= Replace all quantified type vars by fresh ones

= Const ¢--> return Unify{t = freshInstance ¢ }
where I |- ¢: ¢ by the constant rules

« fun x-> e -->
= Let o, B be fresh variables
sleto =infer {x: a} + T, & B)
= Return Unify({c(x) = (oo = B)}) o o

10/15/24 23

‘ Example of inference with Var Rule

Instance {'a ->'w} (‘w a fresh variable)

{x: All ‘a. (‘a *'b) list, y:All. 'b}|- x : (int * string) list

freshInstance(All ‘a. (‘a * 'b) list) = (‘'w * *b) list
Unify {((int*string)list = ('w * 'b) list)} ={'w -> int, ‘b -> string}

After substitution:
Instance {a -> int}

{x:All‘a. (‘a * string) list, y:All. string}|- x:(int * string) list

10/15/24 24

‘ Type Inference Algorithm (cont)

= Case exp of
=App (¢ &) -->
=« Let o be a fresh variable
«Let 6, = infer(T, g, a — 1)
«Let o, = infer(c/(), &, c,(a))
=Return ¢, 0 o

10/15/24 25

‘ Type Inference Algorithm (cont)

= Case exp of
« If g then g, else g -->
«Let o, = infer(T", g, bool)
«Let o, = infer(c,(T), &, o,(7))
= Let o5 = infer(o,00,(I), 6,6,00,(1))
=Return c3006,0 04

10/15/24 26

‘ Type Inference Algorithm (cont)

= Case exp of
alet x= ¢ in g -->
=« Let a be a fresh variable
«Let o, = infer(T, g, o)
slet o, =
infer({x:GEN(c4(T"), o1(a))} + o4(I),
&, 01(‘5))

=Return 6,0 o

10/15/24 27

‘ Type Inference Algorithm (cont)

= Case exp of
sletrec x= ¢ in g -->
=Let o be a fresh variable
slet o = infer({x: a} + T, €, o)
«Let 6, = infer({x:GEN(c4(I"),c,(a))}
+6,(I)}, &, 04(1))
=Return ¢, 0 oy

10/15/24 28

‘ Type Inference Algorithm (cont)

= To infer a type, introduce type_of
= Let o be a fresh variable

= type_of (T, €) =
« Let o = infer (T, € a)
= Return o (a)

= Need an algorithm for Unif

10/15/24 29

‘ Background for Unification

= Terms made from constructors and variables (for
the simple first order case)

= Constructors may be applied to arguments (other
terms) to make new terms

= Variables and constructors with no arguments are
base cases

= Constructors applied to different number of
arguments (arity) considered different

= Substitution of terms for variables

10/15/24 30

‘ Simple Implementation Background

type term = Variable of string
| Const of (string * term list)
let x = Variable “a"”;; let tm = Const (“2",[1);;

let rec subst var_name residue term =
match term with Variable name ->
if var_name = name then residue else term
| Const (c, tys) ->
Const (¢, List.map (subst var_name residue)
tys);;

10/15/24 31

‘ Unification Problem

Given a set of pairs of terms (“equations”)
{(Sll tl)l (SZI tz)l e (Snl tn)}

(the wnification problem) does there exist

a substitution o (the wnification solution)

of terms for variables such that

o(sj) = o(t),
foralli=1, .., n?

10/15/24 32

‘ Uses for Unification

= Type Inference and type checking

= Pattern matching as in OCaml|

= Can use a simplified version of algorithm
= Logic Programming - Prolog
= Simple parsing

10/15/24 33

‘ Unification Algorithm

[] Let S = {(Sl= tl)l (52= tz), ey (Sn= tn)} be
a unification problem.

» Case S = { }: Unif(S) = Identity function
(i.e., no substitution)

= Case S = {(s, t)} U S’ : Four main steps

10/15/24 34

‘ Unification Algorithm

» Delete: if s = t (they are the same term)
then Unif(S) = Unif(S")

= Decompose: if s = f(qy, ..., q,,) and
t =f(ry, ..., r,) (same f, same m!), then
Unif(S) = Unif({(qy, ry), -, @y T) > U S7)

= Orient: if t = x is a variable, and s is not a
variable, Unif(S) = Unif ({(x =s)} u S’)

10/15/24 35

‘ Unification Algorithm

= Eliminate: if s = x is a variable, and
x does not occur in t (the occurs
check), then
= Let Q= {X - t}
= Unif(S) = Unif(e(S")) 0 {x —> t}
= Let yw = Unif(¢p(S"))
« Unif(S) = {x > y(t)} oy
«Note: {x > a}o{y > b} =

_{y — ({x = a}b))} o{x — a}ifynot
in a

10/15/24 36

‘ Tricks for Efficient Unification

= Don’ t return substitution, rather do it
incrementally
= Make substitution be constant time

= Requires implementation of terms to use
mutable structures (or possibly lazy
structures)

= We won’ t discuss these

10/15/24 37

‘ Example

= X,Y,z variables, f,g constructors

= Unify {(f(x) = f(g(f(2),y))), (a(y,y) =x)} =7

10/15/24 38

‘ Example

= X,Y,z variables, f,g constructors

= S = {(f(x) = f(g(f(2),y))), (9(y,y) = X)} is
nonempty

= Unify {(f(x) = f(9(f(2),y))), (9(y,y) =x)} =7

10/15/24 39

‘ Example

= X,Y,z variables, f,g constructors
= Pick a pair: (g(y,y) = x)

= Unify {(f(x) = f(9(f(2),y))), (9(y,y) = x)} =?

10/15/24 40

‘ Example

= X,Y,z variables, f,g constructors

= Pick a pair: (g(y,y)) = x)
= Orient: (x = g(y,y))

= Unify {(f(x) = f(9(f(2),y))), (9(y,y) = X)} =

Unify {(f(x) = f(9(f(2),y))), (x = a(y,y))}
by Orient

10/15/24 41

‘ Example

= X,Y,z variables, f,g constructors

= Unify {(f(x) = f(a(f(2),y))), (x = g(y,y))} =?

10/15/24 42

‘ Example

= X,Y,z variables, f,g constructors
= {(f(x) = f(g(f(2),y))), (x = g(y,y))} is non-
empty

= Unify {(f(x) = f(g(f(2),y))), (x = g(y,y))} =7

10/15/24 43

‘ Example

= X,Y,z variables, f,g constructors
= Pick a pair: (x = g(y,y))

= Unify {(f(x) = f(g(f(2),y))), (x = gly,y))} =7

10/15/24 44

‘ Example

= X,Y,z variables, f,g constructors

= Pick a pair: (x = g(y,y))
= Eliminate x with substitution {x— g(y,y)}
= Check: x not in g(y,y)

= Unify {(f(x) = f(9(f(2),y))), (x = g(y,y))} =7

10/15/24 45

‘ Example

= X,Y,z variables, f,g constructors

= Pick a pair: (x = g(y,y))
= Eliminate x with substitution {x— g(y,y)}

= Unify {(f(x) = f(a(f(2),y))), (x = a(y,y))} =
Unify {(f(a(y,y)) = f(9(f(2),y)))}
o {x—g(y,y)}

10/15/24 46

‘ Example

= X,Y,z variables, f,g constructors

= Unify {(f(a(y,y)) = f(a(f(2),y)))}
o{x—>ga(yy)}="7

10/15/24 47

‘ Example

= X,Y,z variables, f,g constructors
= {(f(a(y,y)) = f(9(f(2),y)))} is non-empty

= Unify {(f(g(y,y)) = f(a(f(2),y)))}
o{x—>gayy)}="7?

10/15/24 48

‘ Example

= X,Y,z variables, f,g constructors
= Pick a pair: (f(g(y,y)) = f(9(f(2),y)))

= Unify {(f(g(y,y)) = f(a(f(2),y)))}
o{x—>g(yy)}="7

10/15/24 49

‘ Example

= X,Y,z variables, f,g constructors

= Pick a pair: (f(g(y,y)) = f(9(f(2),y)))

= Decompose:(f(g(y,y)) = f(9(f(2),y)))
becomes {(g(y,y) = 9(f(2),y))}

= Unify {(f(a(y,y)) = f(g(f(2),y)))}
o {x=>4g(y,y)} =
Unify {(g(y,y) = 9(f(2),y))} o {x— g(y,y)}

10/15/24 50

‘ Example

= X,Y,z variables, f,g constructors
= {(9(y,y) = 9(f(2),y))} is non-empty

= Unify {(g(y,y) = 9(f(2),y))}
o{x—>ga(yy)}="7?

10/15/24 51

‘ Example

= X,Y,z variables, f,g constructors
= Pick a pair: (g(y,y) = 9(f(2),y))

= Unify {(g(y,y) = 9(f(2),y))}
o{x—>glyy)}=7?

10/15/24 52

‘ Example

= X,Y,z variables, f,g constructors

= Pick a pair: (f(g(y,y)) = f(a(f(2),y)))
= Decompose: (g(y,y)) = g(f(z),y)) becomes
{ly =1(2)); (y =y)}

= Unify {(g(y,y) = 9(f(2),y))} o {x—>g(y,y)} =
Unify {(y = f(2)); (y = y)} o {x— a(y,y)}

10/15/24 53

‘ Example

= X,Y,z variables, f,g constructors

» Unify {(y = f(2)); (y = y)} o {x=>ga(y,y)} =7

10/15/24 54

‘ Example

= X,Y,z variables, f,g constructors

w {(y = f(2)); (y = y)} o {x— g(y,y) is non-
empty

» Unify {(y = f(2)); (y =y)} o {x—>ga(y,y)} =7

10/15/24 55

‘ Example

= X,Y,z variables, f,g constructors
= Pick a pair: (y = f(2))

» Unify {(y = f(2)); (y =y)} o {x—=>ga(y,y)} =7

10/15/24 56

‘ Example

= X,Y,z variables, f,g constructors
= Pick a pair: (y = f(2))
» Eliminate y with {y — f(2)}

= Unify {(y = f(2)); (y = y)} o {x> g(y,y)} =
Unify {(f(2) = f(2))}
o ({y — f(2)} o {x— g(y,y)})=
Unify {(f(z) = f(2))}
o{y — f(2); x— 9(f(2), f(2))}

10/15/24 57

‘ Example

= X,Y,z variables, f,g constructors

= Unify {(f(z) = f(2))}
o1y - f(2); x> g(f(2), f(2))} = ?

10/15/24 58

‘ Example

= X,Y,z variables, f,g constructors
s {(f(z) = f(2))} is non-empty

= Unify {(f(2) = f(2))}
o {y = f(2); x> g(f(2), f(2))} = ?

10/15/24 59

‘ Example

= X,Y,z variables, f,g constructors
= Pick a pair: (f(z) = f(2))

= Unify {(f(z) = f(2))}
o1y - f(2); x> g(f(2), f(2))} = ?

10/15/24 60

‘ Example

= X,Y,z variables, f,g constructors
= Pick a pair: (f(z) = f(2))
= Delete
= Unify {(f(z) = f(2))}
o {y — f(2); x> g(f(2), f(2))} =
Unify {3} o {y — f(2); x> 9(f(2), f(2))}

10/15/24

61

‘ Example

= X,Y,z variables, f,g constructors

= Unify {} o {y — f(2); x—> 9(f(2), f(2))} = ?

10/15/24 62

‘ Example

= X,Y,z variables, f,g constructors

= {} is empty

= Unify {} = identity function

= Unify {} o {y - f(2); x> 9(f(2), f(2))} =
{y - f(2); x> 9(f(2), f(2))}

10/15/24

63

‘ Example

= Unify {(f(x) = f(g(f(2),y))), (a(y,y) = x)} =
{y - f(2); ¥

f() =f(g(f(2), v))
- f() = f(9(f(2), 1(2)))

gty , y)=
- 9(f(2),f(2)) =

10/15/24 64

‘ Example of Failure: Decompose

= Unify{(f(x,g(y)) = f(h(y),x))}

= Decompose: (f(x,g(y)) = f(h(y),x))
= = Unify {(x = h(y)), (9(y) = x)}

= Orient: (g(y) = x)

= = Unify {(x = h(y)), (x = g(y))}
= Eliminate: (x = h(y))

= Unify {(h(y) = g(y))} o {x - h(y)}
= No rule to apply! Decompose fails!

10/15/24

65

‘ Example of Failure: Occurs Check

= Unify{(f(x,9(x)) = f(h(x),x))}

= Decompose: (f(x,g9(x)) = f(h(x),x))
= = Unify {(x = h(x)), (9(x) = x)}

= Orient: (g(x) = x)

= = Unify {(x = h(x)), (x = g(x))}

= No rules apply.

10/15/24 66

