Programming Languages and Compilers (CS 421)

2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

- Data types play a key role in:
 - Data abstraction in the design of programs
 - Type checking in the analysis of programs
 - Compile-time code generation in the translation and execution of programs
 - Data layout (how many words; which are data and which are pointers) dictated by type

Terminology

- Type: A type t defines a set of possible data values
 - E.g. short in C is $\{x \mid 2^{15} 1 \ge x \ge -2^{15}\}$
 - A value in this set is said to have type t
- Type system: rules for a language
 - saying what types (sets of values) are expressible
 - assigning types to expressions.

Types as Specifications

- Types describe properties
- Different type systems describe different properties, eg
 - Data is read-write versus read-only
 - Operation has authority to access data
 - Data came from "right" source
 - Operation might or could not raise an exception
- Common type systems focus on types describing same data layout and access methods

Sound Type System

If an expression is assigned type t, and it evaluates to a value v, then v is in the set of values defined by t

- SML, OCAML, Scheme and Ada have sound type systems
- Most implementations of C and C++ do not

Strongly Typed Language

- When no application of an operator to arguments can lead to a run-time type error, language is strongly typed
 - Eg: 1 + 2.3;;
- Depends on definition of "type error"

Strongly Typed Language

- C++ claimed to be "strongly typed", but
 - Union types allow creating a value at one type and using it at another
 - Type coercions may cause unexpected (undesirable) effects
 - No array bounds check (in fact, no runtime checks at all)
- SML, OCAML "strongly typed" but still must do dynamic array bounds checks, runtime type case analysis, and other checks

Static vs Dynamic Types

- Static type: type assigned to an expression at compile time
- Dynamic type: type assigned to a storage location at run time
- Statically typed language: static type assigned to every expression at compile time
- Dynamically typed language: type of an expression determined at run time

Type Checking

- When is op(arg1,...,argn) allowed?
- Type checking assures that operations are applied to the right number of arguments of the right types
 - Right type may mean same type as was specified, or may mean that there is a predefined implicit coercion that will be applied
- Used to resolve overloaded operations

Type Checking

- Type checking may be done statically at compile time or dynamically at run time
- Dynamically typed (aka untyped) languages (eg LISP, Prolog) do only dynamic type checking
- Statically typed languages can do most type checking statically

Dynamic Type Checking

- Performed at run-time before each operation is applied
- Types of variables and operations left unspecified until run-time
 - Same variable may be used at different types

Dynamic Type Checking

- Data object must contain type information
- Errors aren't detected until violating application is executed (maybe years after the code was written)

Static Type Checking

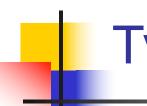
- Performed after parsing, before code generation
- Type of every variable and signature of every operator must be known at compile time

Static Type Checking

- Can eliminate need to store type information in data object if no dynamic type checking is needed
- Catches many programming errors at earliest point
- Can't check types that depend on dynamically computed values
 - Eg: array bounds

Static Type Checking

- Typically places restrictions on languages
 - Garbage collection
 - References instead of pointers
 - All variables initialized when created
 - Variable only used at one type
 - Union types allow for work-arounds, but effectively introduce dynamic type checks



Type Declarations

- Type declarations: explicit assignment of types to variables (signatures to functions) in the code of a program
 - Must be checked in a strongly typed language
 - Often not necessary for strong typing or even static typing (depends on the type system)

- Type inference: A program analysis to assign a type to an expression from the program context of the expression
 - Fully static type inference first introduced by Robin Milner in ML
 - Haskell, OCAML, SML all use type inference
 - Records are a problem for type inference

Format of Type Judgments

A type judgement has the form

$$\Gamma$$
 |- exp : τ

- I is a typing environment
 - Supplies the types of variables (and function names when function names are not variables)
 - Γ is a set of the form $\{x:\sigma,\ldots\}$
 - For any x at most one σ such that $(x : \sigma \in \Gamma)$
- exp is a program expression
- \mathbf{r} is a type to be assigned to exp
- pronounced "turnstyle", or "entails" (or "satisfies" or, informally, "shows")



Axioms – Constants (Monomorphic)

 $\Gamma \mid -n : int$ (assuming n is an integer constant)

 Γ |- true : bool

 Γ |- false : bool

- These rules are true with any typing environment
- \blacksquare Γ , n are meta-variables

Axioms – Variables (Monomorphic Rule)

Notation: Let $\Gamma(x) = \sigma$ if $x : \sigma \in \Gamma$

Note: if such of exits, its unique

Variable axiom:

$$\Gamma \mid -x : \sigma$$
 if $\Gamma(x) = \sigma$

Simple Rules – Arithmetic (Mono)

Primitive Binary operators ($\oplus \in \{+, -, *, ...\}$):

Special case: Relations (~∈ { < , > , =, <=, >= }):

$$\Gamma \mid -e_1 : \tau \quad \Gamma \mid -e_2 : \tau \quad (\sim) : \tau \rightarrow \tau \rightarrow \text{bool}$$

$$\Gamma \mid -e_1 \quad \sim \quad e_2 : \text{bool}$$

For the moment, think τ is int

Example: $\{x:int\} | -x + 2 = 3 : bool$

What do we need to show first?

$$\{x:int\} \mid -x + 2 = 3 : bool$$

-

Example: $\{x:int\} | -x + 2 = 3 : bool$

What do we need for the left side?

```
{x : int} | -x + 2 : int 
 {x:int} | -3 : int 
 {x:int} | -x + 2 = 3 : bool}
```

Example: $\{x:int\} | -x + 2 = 3 : bool$

How to finish?

```
\{x:int\} \mid -x:int \{x:int\} \mid -2:int\} \mid -x+2:int \} = \{x:int\} \mid -x+2:int \} = \{x:int\} \mid -x+2=3:bool
```

Example: $\{x:int\} | -x + 2 = 3 : bool$

Complete Proof (type derivation)

Simple Rules - Booleans

Connectives

$$\Gamma \mid -e_1 : bool$$
 $\Gamma \mid -e_2 : bool$ $\Gamma \mid -e_1 & e_2 : bool$

$$\Gamma \mid -e_1 : bool$$
 $\Gamma \mid -e_2 : bool$ $\Gamma \mid -e_1 \mid e_2 : bool$

-

Type Variables in Rules

If_then_else rule:

```
\Gamma \mid -e_1 : bool \quad \Gamma \mid -e_2 : \tau \quad \Gamma \mid -e_3 : \tau
\Gamma \mid -(if e_1 then e_2 else e_3) : \tau
```

- \mathbf{r} is a type variable (meta-variable)
- Can take any type at all
- All instances in a rule application must get same type
- Then branch, else branch and if_then_else must all have same type

Example derivation: if-then-else-

■ $\Gamma = \{x:int, int_of_float:float -> int, y:float\}$

```
\Gamma |- (fun y -> y > 3) x \Gamma |- x+2 \Gamma|- int_of_float y : bool : int : int
```

```
\Gamma |- if (fun y -> y > 3) x
then x + 2
else int_of_float y : int
```

Function Application

Application rule:

$$\frac{\Gamma \mid -e_1 : \tau_1 \rightarrow \tau_2 \quad \Gamma \mid -e_2 : \tau_1}{\Gamma \mid -(e_1 e_2) : \tau_2}$$

If you have a function expression e_1 of type $\tau_1 \rightarrow \tau_2$ applied to an argument e_2 of type τ_1 , the resulting expression $e_1 e_2$ has type τ_2

Example: Application

■ Γ = {x:int, int_of_float:float -> int, y:float}

$$\Gamma$$
 |- (fun y -> y > 3)
: int -> bool Γ |- x : int

 Γ |- (fun y -> y > 3) x : bool

Fun Rule

- Rules describe types, but also how the environment \(\Gamma\) may change
- Can only do what rule allows!
- fun rule:

$$\{x \colon \tau_1\} + \Gamma \mid -e \colon \tau_2$$

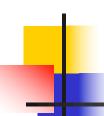
$$\Gamma \mid -\text{fun } x -> e \colon \tau_1 \to \tau_2$$

Fun Examples

```
\{y : int \} + \Gamma \mid -y + 3 : int \}

\Gamma \mid -fun y -> y + 3 : int \rightarrow int \}
```

```
\{f: int \rightarrow bool\} + \Gamma \mid -f \mid 2 :: [true] : bool list
 \Gamma \mid -(fun f -> (f \mid 2) :: [true])
 : (int \rightarrow bool) \rightarrow bool list
```



(Monomorphic) Let and Let Rec

let rule:

$$\Gamma \mid -e_1 : \tau_1 \quad \{x : \tau_1\} + \Gamma \mid -e_2 : \tau_2$$

$$\Gamma \mid -(\text{let } x = e_1 \text{ in } e_2) : \tau_2$$

let rec rule:

$$\{x: \tau_1\} + \Gamma \mid -e_1:\tau_1 \{x: \tau_1\} + \Gamma \mid -e_2:\tau_2$$

 $\Gamma \mid -(\text{let rec } x = e_1 \text{ in } e_2):\tau_2$

Curry - Howard Isomorphism

- Type Systems are logics; logics are type systems
- Types are propositions; propositions are types
- Terms are proofs; proofs are terms

 Function space arrow corresponds to implication; application corresponds to modus ponens

Curry - Howard Isomorphism

Modus Ponens

$$\frac{\mathsf{A} \Rightarrow \mathsf{B} \quad \mathsf{A}}{\mathsf{B}}$$

Application

$$\Gamma \mid -e_1 : \alpha \to \beta \quad \Gamma \mid -e_2 : \alpha$$

$$\Gamma \mid -(e_1 e_2) : \beta$$

Mea Culpa

- The above system can't handle polymorphism as in OCAML
- No type variables in type language (only metavariable in the logic)
- Would need:
 - Object level type variables and some kind of type quantification
 - let and let rec rules to introduce polymorphism
 - Explicit rule to eliminate (instantiate) polymorphism

Support for Polymorphic Types

- Monomorpic Types (τ) :
 - Basic Types: int, bool, float, string, unit, ...
 - Type Variables: α , β , γ , δ , ε
 - Compound Types: $\alpha \rightarrow \beta$, int * string, bool list, ...
- Polymorphic Types:
 - Monomorphic types τ
 - Universally quantified monomorphic types
 - $\forall \alpha_1, \ldots, \alpha_n$. τ
 - Can think of τ as same as $\forall \cdot \tau$

Example FreeVars Calculations

- Vars('a -> (int -> 'b) -> 'a) ={'a , 'b}
- FreeVars (All 'b. 'a -> (int -> 'b) -> 'a) =
- {'a, 'b} {'b}= {'a}
- FreeVars {x : All 'b. <u>'a</u> -> (int -> 'b) -> <u>'a</u>,
- id: All 'c. 'c -> 'c,
- y: All 'c. 'a -> 'b -> 'c} =
- {'a} U {} U {'a, 'b} = {'a, 'b}

Support for Polymorphic Types

- Typing Environment \(\Gamma\) supplies polymorphic types (which will often just be monomorphic) for variables
- Free variables of monomorphic type just type variables that occur in it
 - Write FreeVars(τ)
- Free variables of polymorphic type removes variables that are universally quantified
 - FreeVars($\forall \alpha_1, \dots, \alpha_n \cdot \tau$) = FreeVars(τ) { $\alpha_1, \dots, \alpha_n$ }
- FreeVars(Γ) = all FreeVars of types in range of Γ

Monomorphic to Polymorphic

- Given:
 - type environment
 - monomorphic type τ
 - τ shares type variables with Γ
- Want most polymorphic type for τ that doesn't break sharing type variables with Γ
- Gen $(\tau, \Gamma) = \forall \alpha_1, ..., \alpha_n \cdot \tau$ where $\{\alpha_1, ..., \alpha_n\} = \text{freeVars}(\tau) \text{freeVars}(\Gamma)$

Polymorphic Typing Rules

A type judgement has the form

$$\Gamma$$
 - exp : τ

- I uses polymorphic types
- τ still monomorphic
- Most rules stay same (except use more general typing environments)
- Rules that change:
 - Variables
 - Let and Let Rec
 - Allow polymorphic constants
- Worth noting functions again

Polymorphic Let and Let Rec

let rule:

$$\Gamma \mid -e_1 : \tau_1 \{x : Gen(\tau_1, \Gamma)\} + \Gamma \mid -e_2 : \tau_2 \}$$

$$\Gamma \mid -(let x = e_1 in e_2) : \tau_2$$

let rec rule:

$$\{x: \tau_1\} + \Gamma \mid -e_1:\tau_1 \{x: Gen(\tau_1, \Gamma)\} + \Gamma \mid -e_2:\tau_2 \Gamma_1$$

 $\Gamma \mid -(let rec x = e_1 in e_2):\tau_2$

Polymorphic Variables (Identifiers)

Variable axiom:

$$\Gamma \mid -x : \varphi(\tau)$$
 if $\Gamma(x) = \forall \alpha_1, ..., \alpha_n . \tau$

- Where φ replaces all occurrences of $\alpha_1, \ldots, \alpha_n$ by monotypes τ_1, \ldots, τ_n
- Note: Monomorphic rule special case:

$$\Gamma \mid -x : \tau$$
 if $\Gamma(x) = \tau$

Constants treated same way

Fun Rule Stays the Same

fun rule:

$$\{x \colon \tau_1\} + \Gamma \mid -e \colon \tau_2$$

$$\Gamma \mid -\text{ fun } x -> e \colon \tau_1 \to \tau_2$$

- Types τ_1 , τ_2 monomorphic
- Function argument must always be used at same type in function body