
10/10/24 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

10/10/24 2

Why Data Types?

n Data types play a key role in:
n Data abstraction in the design of programs
n Type checking in the analysis of programs
n Compile-time code generation in the

translation and execution of programs
n Data layout (how many words; which are data

and which are pointers) dictated by type

10/10/24 3

Terminology

n Type: A type t defines a set of possible
data values
n E.g. short in C is {x| 215 - 1 ³ x ³ -215}
n A value in this set is said to have type t

n Type system: rules for a language
n saying what types (sets of values) are

expressible
n assigning types to expressions.

10/10/24 4

Types as Specifications

n Types describe properties
n Different type systems describe different

properties, eg
n Data is read-write versus read-only
n Operation has authority to access data
n Data came from “right” source
n Operation might or could not raise an exception

n Common type systems focus on types describing
same data layout and access methods

10/10/24 6

Sound Type System

n If an expression is assigned type t, and it
evaluates to a value v, then v is in the set of
values defined by t

n SML, OCAML, Scheme and Ada have sound
type systems

n Most implementations of C and C++ do not

10/10/24 7

Strongly Typed Language

n When no application of an operator to
arguments can lead to a run-time type
error, language is strongly typed
n Eg: 1 + 2.3;;

n Depends on definition of “type error”

10/10/24 8

Strongly Typed Language

n C++ claimed to be “strongly typed”, but
n Union types allow creating a value at one

type and using it at another
n Type coercions may cause unexpected

(undesirable) effects
n No array bounds check (in fact, no

runtime checks at all)
n SML, OCAML “strongly typed” but still must

do dynamic array bounds checks, runtime
type case analysis, and other checks

10/10/24 9

Static vs Dynamic Types

• Static type: type assigned to an expression
at compile time

• Dynamic type: type assigned to a storage
location at run time

• Statically typed language: static type
assigned to every expression at compile time

• Dynamically typed language: type of an
expression determined at run time

10/10/24 10

Type Checking

n When is op(arg1,…,argn) allowed?
n Type checking assures that operations are

applied to the right number of arguments of
the right types
n Right type may mean same type as was

specified, or may mean that there is a
predefined implicit coercion that will be
applied

n Used to resolve overloaded operations

10/10/24 11

Type Checking

n Type checking may be done statically at
compile time or dynamically at run time

n Dynamically typed (aka untyped)
languages (eg LISP, Prolog) do only
dynamic type checking

n Statically typed languages can do most
type checking statically

10/10/24 12

Dynamic Type Checking

n Performed at run-time before each
operation is applied

n Types of variables and operations left
unspecified until run-time
n Same variable may be used at different

types

10/10/24 13

Dynamic Type Checking

n Data object must contain type
information

n Errors aren’t detected until violating
application is executed (maybe years
after the code was written)

10/10/24 14

Static Type Checking

n Performed after parsing, before code
generation

n Type of every variable and signature of
every operator must be known at
compile time

10/10/24 15

Static Type Checking

n Can eliminate need to store type
information in data object if no dynamic
type checking is needed

n Catches many programming errors at
earliest point

n Can’t check types that depend on
dynamically computed values
n Eg: array bounds

10/10/24 16

Static Type Checking

n Typically places restrictions on
languages
n Garbage collection
n References instead of pointers
n All variables initialized when created
n Variable only used at one type

n Union types allow for work-arounds, but
effectively introduce dynamic type checks

10/10/24 19

Type Declarations

n Type declarations: explicit assignment
of types to variables (signatures to
functions) in the code of a program
n Must be checked in a strongly typed

language
n Often not necessary for strong typing or

even static typing (depends on the type
system)

10/10/24 20

Type Inference

n Type inference: A program analysis to
assign a type to an expression from the
program context of the expression
n Fully static type inference first introduced

by Robin Milner in ML
n Haskell, OCAML, SML all use type inference

n Records are a problem for type inference

10/10/24 21

Format of Type Judgments

n A type judgement has the form
G |- exp : t

n G is a typing environment
n Supplies the types of variables (and function

names when function names are not variables)
n G is a set of the form { x :s , . . . }
n For any x at most one s such that (x : s Î G)

n exp is a program expression
n t is a type to be assigned to exp
n |- pronounced “turnstyle”, or “entails” (or
“satisfies” or, informally, “shows”)

10/10/24 22

Axioms – Constants (Monomorphic)

G |- n : int (assuming n is an integer constant)

G |- true : bool G |- false : bool

n These rules are true with any typing
environment

n G, n are meta-variables

10/10/24 23

Axioms – Variables (Monomorphic Rule)

Notation: Let G(x) = s if x : s Î G
Note: if such s exits, its unique

Variable axiom:

G |- x : s if G(x) = s

10/10/24 24

Simple Rules – Arithmetic (Mono)

Primitive Binary operators (Å Î { +, -, *, …}):
G |- e1:t1 G |- e2:t2 (Å):t1 ® t2 ® t3

G |- e1 Å e2 : t3

Special case: Relations (˜Î { < , > , =, <=, >= }):
G |- e1 : t G |- e2 : t (˜):t ® t ® bool

G |- e1 ˜ e2 :bool

For the moment, think t is int

Example: {x:int} |- x + 2 = 3 :bool

{x:int} |- x:int {x:int} |- 2:int
{x : int} |- x + 2 : bool {x:int} |- 3 :int

{x:int} |- x + 2 = 3 : bool

10/10/24 25

What do we need to show first?

Example: {x:int} |- x + 2 = 3 :bool

{x:int} |- x:int {x:int} |- 2:int
{x : int} |- x + 2 : int {x:int} |- 3 :int

{x:int} |- x + 2 = 3 : bool

10/10/24 26

Bin

What do we need for the left side?

Example: {x:int} |- x + 2 = 3 :bool

{x:int} |- x:int {x:int} |- 2:int
{x : int} |- x + 2 : int {x:int} |- 3 :int

{x:int} |- x + 2 = 3 : bool

10/10/24 27

Bin

Bin

How to finish?

Example: {x:int} |- x + 2 = 3 :bool

{x:int} |- x:int {x:int} |- 2:int
{x : int} |- x + 2 : int {x:int} |- 3 :int

{x:int} |- x + 2 = 3 : bool

10/10/24 28

Bin

Bin
Const

ConstVar

Complete Proof (type derivation)

10/10/24 30

Simple Rules - Booleans

Connectives
G |- e1 : bool G |- e2 : bool

G |- e1 && e2 : bool

G |- e1 : bool G |- e2 : bool
G |- e1 || e2 : bool

10/10/24 31

Type Variables in Rules

n If_then_else rule:
G |- e1 : bool G |- e2 : t G |- e3 : t

G |- (if e1 then e2 else e3) : t

n t is a type variable (meta-variable)
n Can take any type at all
n All instances in a rule application must get

same type
n Then branch, else branch and if_then_else

must all have same type

Example derivation: if-then-else-

n G = {x:int, int_of_float:float -> int, y:float}

G |- (fun y ->
y > 3) x G |- x+2 G|- int_of_float y

: bool : int : int

G |- if (fun y -> y > 3) x
then x + 2 .
else int_of_float y : int

10/10/24 32

10/10/24 33

Function Application

n Application rule:
G |- e1 : t1 ® t2 G |- e2 : t1

G |- (e1 e2) : t2

n If you have a function expression e1 of
type t1 ® t2 applied to an argument
e2 of type t1, the resulting expression
e1e2 has type t2

Example: Application

n G = {x:int, int_of_float:float -> int, y:float}

G |- (fun y -> y > 3)
: int -> bool G |- x : int

G |- (fun y -> y > 3) x : bool

10/10/24 35

10/10/24 36

Fun Rule

n Rules describe types, but also how the
environment G may change

n Can only do what rule allows!
n fun rule:

{x : t1 } + G |- e : t2
G |- fun x -> e : t1 ® t2

10/10/24 37

Fun Examples

{y : int } + G |- y + 3 : int
G |- fun y -> y + 3 : int ® int

{f : int ® bool} + G |- f 2 :: [true] : bool list
G |- (fun f -> (f 2) :: [true])

: (int ® bool) ® bool list

10/10/24 38

(Monomorphic) Let and Let Rec

n let rule:
G |- e1 : t1 {x : t1} + G |- e2 : t2

G |- (let x = e1 in e2) : t2

n let rec rule:
{x: t1} + G |- e1:t1 {x: t1} + G |- e2:t2

G |- (let rec x = e1 in e2) : t2

10/10/24 55

Curry - Howard Isomorphism

n Type Systems are logics; logics are type
systems

n Types are propositions; propositions are
types

n Terms are proofs; proofs are terms

n Function space arrow corresponds to
implication; application corresponds to
modus ponens

10/10/24 56

Curry - Howard Isomorphism

n Modus Ponens
A Þ B A

B

• Application
G |- e1 : a ® b G |- e2 : a

G |- (e1 e2) : b

10/10/24 58

Mea Culpa

n The above system can’t handle polymorphism as
in OCAML

n No type variables in type language (only meta-
variable in the logic)

n Would need:
n Object level type variables and some kind of

type quantification
n let and let rec rules to introduce polymorphism
n Explicit rule to eliminate (instantiate)

polymorphism

Support for Polymorphic Types

n Monomorpic Types (t):
n Basic Types: int, bool, float, string, unit, …
n Type Variables: a, b, g, d, e
n Compound Types: a ® b, int * string, bool list, …

n Polymorphic Types:
n Monomorphic types t
n Universally quantified monomorphic types
n a1, … , an . t
n Can think of t as same as . t

10/10/24 59

A
A

Example FreeVars Calculations

n Vars(‘a -> (int -> ‘b) -> ‘a) ={‘a , ‘b}
n FreeVars (All ‘b. ‘a -> (int -> ‘b) -> ‘a) =
n {‘a , ‘b} – {‘b}= {‘a}
n FreeVars {x : All ‘b. ‘a -> (int -> ‘b) -> ‘a,
n id: All ‘c. ‘c -> ‘c,
n y: All ‘c. ‘a -> ‘b -> ‘c} =
n {‘a} U {} U {‘a, ‘b} = {‘a, ‘b}

10/10/24 60

Support for Polymorphic Types

n Typing Environment G supplies polymorphic types
(which will often just be monomorphic) for
variables

n Free variables of monomorphic type just type
variables that occur in it
n Write FreeVars(t)

n Free variables of polymorphic type removes
variables that are universally quantified
n FreeVars(a1, … , an . t) = FreeVars(t) – {a1, … , an }

n FreeVars(G) = all FreeVars of types in range of G

10/10/24 61

A

Monomorphic to Polymorphic

n Given:
n type environment G
n monomorphic type t
n t shares type variables with G

n Want most polymorphic type for t that
doesn’t break sharing type variables with G

n Gen(t, G) = a1, … , an . t where
{a1, … , an} = freeVars(t) – freeVars(G)

10/10/24 62

A

Polymorphic Typing Rules

n A type judgement has the form
G |- exp : t

n G uses polymorphic types
n t still monomorphic

n Most rules stay same (except use more general
typing environments)

n Rules that change:
n Variables
n Let and Let Rec
n Allow polymorphic constants

n Worth noting functions again
10/10/24 63 10/10/24 64

Polymorphic Let and Let Rec

n let rule:
G |- e1 : t1 {x : Gen(t1,G)} + G |- e2 : t2

G |- (let x = e1 in e2) : t2

n let rec rule:
{x : t1} + G |- e1:t1 {x:Gen(t1,G)} + G |- e2:t2

G |- (let rec x = e1 in e2) : t2

Polymorphic Variables (Identifiers)

Variable axiom:

G |- x : j(t) if G(x) = a1, … , an . t

n Where j replaces all occurrences of
a1, … , an by monotypes t1, … , tn

n Note: Monomorphic rule special case:
G |- x : t if G(x) = t

n Constants treated same way
10/10/24 65

A

10/10/24 66

Fun Rule Stays the Same

n fun rule:
{x : t1} + G |- e : t2

G |- fun x -> e : t1 ® t2

n Types t1, t2 monomorphic
n Function argument must always be

used at same type in function body

