Programming Languages and Compilers (CS 421)

Elsa L Gunter 2112 SC, UIUC

<http://courses.engr.illinois.edu/cs421>

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

Terminology: Review

- A function is in Direct Style when it returns its result back to the caller.
- **A** function is in Continuation Passing Style when it, and every function call in it, passes its result to another function.
- A Tail Call occurs when a function returns the result of another function call without any more computations (eg tail recursion)
- **n** Instead of returning the result to the caller, we pass it forward to another function giving the computation after the call.

CPS Transformation

- **Step 1: Add continuation argument to any function** definition:
	- let f arg = $e \Rightarrow$ let f arg k = e
	- Idea: Every function takes an extra parameter saying where the result goes
- Step 2: A simple expression in tail position should be passed to a continuation instead of returned:
	- **n** return $a \Rightarrow k a$
	- **Assuming a is a constant or variable.**
	- n "Simple" = "No available function calls."

CPS Transformation

- \blacksquare Step 3: Pass the current continuation to every function call in tail position
	- **n** return f arg \Rightarrow f arg k
	- **The function "isn't going to return," so we need** to tell it where to put the result.

CPS Transformation

- Step 4: Each function call not in tail position needs to be converted to take a new continuation (containing the old continuation as appropriate)
	- **n** return op (f arg) \Rightarrow f arg (fun r -> k(op r))
	- op represents a primitive operation
	- **n** return g(f arg) \Rightarrow f arg (fun r-> g r k)

Example

Before:

let rec add list lst $=$ match lst with $[$ $]$ -> 0

- $| 0 :: xs ->$ add list xs
- $| x :: xs -> (+) x$ (add list xs);;

After:

```
let rec add listk lst k =(* rule 1 *)
match lst with
| \Gamma -> k 0 (* rule 2 *)
| 0 :: xs -> add listk xs k
                     (* rule 3 *)\vert x :: xs -> add listk xs
        (fun r -> k ((+) \times r));;
                (* rule 4 *)
```


Before: let rec mem $(y, \text{lst}) =$ match lst with $\lceil \rceil$ -> false | x :: xs -> if $(x = y)$ then true else mem(y,xs);;

After:

let rec memk (y, lst) k = $(*$ rule $1 *$)

let rec mem $(y, \text{lst}) =$ match lst with

 $\lceil \ \rceil$ -> false | x :: xs -> if $(x = y)$ then true else mem(y,xs);;

After:

let rec memk (y, lst) $k =$ $(*$ rule $1 *$)

k false (* rule $2 *$)

k true (* rule $2 *$)

let rec mem $(y, \text{lst}) =$ match lst with

 $\lceil \rceil$ -> false | x :: xs -> if $(x = y)$ then true else mem(y,xs);;

After:

let rec memk (y, lst) $k =$ $(*$ rule $1 *$)

k false (* rule $2 *$)

```
k true (* rule 2 *)
 memk (y, xs) k (* rule 3 *)
```


let rec mem $(y, \text{lst}) =$ match lst with

 $\lceil \rceil$ -> false | x :: xs -> if $(x = y)$ then true

else mem(y,xs);;

After:

let rec memk (y, lst) $k =$ $(*$ rule $1 *$)

k false (* rule $2 *$)

eqk (x, y) (fun b -> b (* rule 4 *) k true (* rule $2 *$) memk (y, xs) (* rule 3 *)

let rec mem $(y, \text{lst}) =$ match lst with

 $\lceil \rceil$ -> false | x :: xs -> if $(x = y)$ then true else mem(y,xs);;

After:

let rec memk (y, lst) $k =$ $(*$ rule $1 *$)

k false (* rule $2 *$)

eqk (x, y) (fun b \rightarrow if b (* rule 4 *) then k true ($*$ rule 2 $*$) else memk (y, xs) (* rule 3 *)

let rec mem $(y, \text{lst}) =$ match lst with $\lceil \rceil$ -> false | x :: xs -> if $(x = y)$ then true else mem(y,xs);;

After:

let rec memk (y, lst) $k =$ $(*$ rule $1 *$) match lst with $|\Gamma|$ -> k false (* rule 2 *) | x :: xs -> eqk (x, y) (fun b ->if b $(*$ rule 4 $*)$ then k true ($*$ rule 2 $*$) else memk (y, xs) k (* rule 3 *)

let rec mem $(y, \text{lst}) =$ match lst with $\lceil \rceil$ -> false | x :: xs -> if $(x = y)$ then true else mem(y,xs);;

After:

let rec memk (y, lst) $k =$ $(*$ rule $1 *$) match lst with $|\Gamma| \to k$ false (* rule 2 *) | x :: xs -> eqk (x, y) (fun b ->if b $(*$ rule 4 $*)$ then k true ($*$ rule 2 $*$) else memk (y, xs) k (* rule 3 *)

Data type in Ocaml: lists

- **n** Frequently used lists in recursive program **n** Matched over two structural cases
	- \blacksquare [] the empty list
	- \bullet (x :: xs) a non-empty list
- **n** Covers all possible lists
- **u** type 'a list = $[] | (::)$ of 'a * 'a list
	- **Not quite legitimate declaration because of** special syntax

Variants - Syntax (slightly simplified)

- **u** type *name* = C_1 [of ty₁] \ldots C_n [of ty_n]
- **n** Introduce a type called *name*
- **n** (fun x -> C_i x) : ty₁ -> name
- \blacksquare C_i is called a *constructor*, if the optional type argument is omitted, it is called a *constant*
- **n** Constructors are the basis of almost all pattern matching

Enumeration Types as Variants

An enumeration type is a collection of distinct values

In C and Ocaml they have an order structure; order by order of input

Enumeration Types as Variants

type weekday = Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday;; type weekday = **Monday** | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday

Functions over Enumerations

 $#$ let day_after day = match day with Monday -> Tuesday | Tuesday -> Wednesday | Wednesday -> Thursday | Thursday -> Friday | Friday -> Saturday | Saturday -> Sunday | Sunday -> Monday;; val day after : weekday \rightarrow weekday = \lt fun $>$

Functions over Enumerations

 $#$ let rec days_later n day $=$ match n with $0 \rightarrow day$ $|$ \rightarrow if n $>$ 0 then day_after (days_later (n - 1) day) else days later $(n + 7)$ day;; val days later : int -> weekday -> weekday $=$ $<$ fun $>$

Functions over Enumerations

days later 2 Tuesday;;

- : weekday = Thursday
- # days later (-1) Wednesday;;
- : weekday = Tuesday
- # days later (-4) Monday;;
- : weekday = Thursday

Problem:

type weekday = Monday | Tuesday | **Wednesday**

| Thursday | Friday | Saturday | Sunday;; ■ Write function is_weekend : weekday -> bool let is weekend day =

Problem:

type weekday = Monday | Tuesday | **Wednesday** | Thursday | Friday | Saturday | Sunday;; ■ Write function is_weekend : weekday -> bool let is_weekend day = match day with Saturday -> true | Sunday -> true $| \rightarrow$ false

Example Enumeration Types

type bin_op = IntPlusOp | IntMinusOp | EqOp | CommaOp | ConsOp

type mon_op = HdOp | TlOp | FstOp | SndOp

Disjoint Union Types

Disjoint union of types, with some possibly occurring more than once

■ We can also add in some new singleton elements

Disjoint Union Types

type id = DriversLicense of int | SocialSecurity of int | Name of string;; type id = DriversLicense of int SocialSecurity of int | Name of string $#$ let check id id $=$ match id with DriversLicense num -> not (List.mem num [13570; 99999]) | SocialSecurity num -> num < 900000000 | Name str \rightarrow not (str = "John Doe");; val check $id : id \rightarrow bool =$ $<$ fun $>$

Problem

■ Create a type to represent the currencies for US, UK, Europe and Japan

Problem

■ Create a type to represent the currencies for US, UK, Europe and Japan

- type currency =
	- Dollar of int
	- | Pound of int
	- | Euro of int
	- | Yen of int

Example Disjoint Union Type

type const $=$ BoolConst of bool | IntConst of int | FloatConst of float | StringConst of string | NilConst | UnitConst

Example Disjoint Union Type

type const = BoolConst of bool | IntConst of int | FloatConst of float | StringConst of string | NilConst | UnitConst

 \blacksquare How to represent 7 as a const? nAnswer: IntConst 7

Polymorphism in Variants

n The type 'a option is gives us something to represent non-existence or failure

type 'a option = Some of 'a | None;; type 'a option $=$ Some of 'a | None

u Used to encode partial functions \blacksquare Often can replace the raising of an exception

Functions producing option

let rec first p list $=$ match list with $\lceil \cdot \rceil$ -> None $(x::xs)$ -> if p x then Some x else first p xs;; val first : ('a -> bool) -> 'a list -> 'a option = \langle fun> # first (fun x -> x > 3) $[1;3;4;2;5]$;; - : int option = Some 4

- # first (fun x -> x > 5) $[1;3;4;2;5]$;;
- : int option = None

Functions over option

- # let result_ok $r =$
	- match r with None -> false

 $|$ Some $-$ > true;;

- val result ok : 'a option \rightarrow bool = \le fun $>$
- # result_ok (first (fun x -> x > 3) [1;3;4;2;5]);;
- $-$: bool $=$ true
- # result_ok (first (fun x -> x > 5) $[1;3;4;2;5]$);;
- $-$: bool $=$ false

Problem

ⁿ Write a hd and tl on lists that doesn't raise an exception and works at all types of lists.

Problem

ⁿ Write a hd and tl on lists that doesn't raise an exception and works at all types of lists.

 \blacksquare let hd list $=$ match list with $\lceil \rceil$ -> None $(x::xs) \rightarrow$ Some x \blacksquare let tl list $=$ match list with $\lceil \cdot \rceil$ -> None $(x::xs) \rightarrow$ Some xs

Mapping over Variants

 $#$ let optionMap f opt $=$ match opt with None -> None \mid Some x -> Some (f x);; val optionMap : $('a -> 'b) -> 'a$ option $-> 'b$ $option =$ # optionMap $(fun x -> x - 2)$ (first (fun x -> x > 3) $[1;3;4;2;5]$);;

 $-$: int option $=$ Some 2

Folding over Variants

- # let optionFold someFun noneVal opt = match opt with None -> noneVal | Some x -> someFun x;; val optionFold : $('a -> 'b) -> 'a$ option $->$ $'b = $u$$ $#$ let optionMap f opt $=$
- optionFold (fun $x \rightarrow$ Some (f x)) None opt;;
- val optionMap : $('a -> 'b) -> 'a$ option $-> 'b$ $option =$
Recursive Types

\blacksquare The type being defined may be a component of itself

- # type int Bin Tree $=$
- Leaf of int | Node of (int Bin Tree $*$ int Bin Tree);;

type int Bin Tree = Leaf of int | Node of (int Bin Tree $*$ int Bin Tree)

Recursive Data Type Values

- # let bin tree $=$ Node(Node(Leaf 3, Leaf 6),Leaf (-7));;
- val bin tree : int Bin Tree $=$ Node (Node (Leaf 3, Leaf 6), Leaf (-7))

Recursive Functions

- # let rec first leaf value tree $=$ match tree with $(Leaf n)$ -> n | Node (left_tree, right_tree) -> first_leaf_value left_tree;; val first leaf value : int Bin Tree \rightarrow int = <fun> # let left = first_leaf_value bin_tree;;
- val left : int $= 3$

$#$ type $exp =$

- VarExp of string
- | ConstExp of const
- | MonOpAppExp of mon_op * exp
- | BinOpAppExp of bin op * exp * exp
- | IfExp of exp* exp * exp
- | AppExp of exp * exp
- | FunExp of string * exp

type bin_op = IntPlusOp | IntMinusOp | EqOp | CommaOp | ConsOp | … # type const = BoolConst of bool | IntConst of int | … # type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp | ...

 \blacksquare How to represent 6 as an exp?

type bin_op = IntPlusOp | IntMinusOp | EqOp | CommaOp | ConsOp | … # type const = BoolConst of bool | IntConst of int | …

type exp = VarExp of string | ConstExp of const | BinOpAppExp of bin_op * exp * exp | ...

 \blacksquare How to represent 6 as an exp? nAnswer: ConstExp (IntConst 6)

type bin_op = IntPlusOp | IntMinusOp | EqOp | CommaOp | ConsOp | … # type const = BoolConst of bool | IntConst of int | … # type exp = VarExp of string | ConstExp of const | BinOpAppExp of bin_op * exp * exp | ...

 \blacksquare How to represent (6, 3) as an exp?

type bin_op = IntPlusOp | IntMinusOp | EqOp | CommaOp | ConsOp | … # type const = BoolConst of bool | IntConst of int | …

type exp = VarExp of string | ConstExp of const | BinOpAppExp of bin_op * exp * exp | ...

 \blacksquare How to represent (6, 3) as an exp? ■BinOpAppExp (CommaOp, ConstExp (IntConst 6), ConstExp (IntConst 3))

type bin_op = IntPlusOp | IntMinusOp | EqOp | CommaOp | ConsOp | … # type const = BoolConst of bool | IntConst of int | … # type exp = VarExp of string | ConstExp of const | BinOpAppExp of bin_op * exp * exp | ... **How to represent** $[(6, 3)]$ **as an exp?** ■BinOpAppExp (ConsOp, BinOpAppExp (CommaOp, ConstExp (IntConst 6), ConstExp (IntConst 3)), ConstExp NilConst))));;

type int_Bin_Tree =Leaf of int

- | Node of (int_Bin_Tree * int_Bin_Tree);;
- Write sum_tree : int_Bin_Tree -> int
- **n** Adds all ints in tree
- let rec sum tree $t =$

- type int_Bin_Tree =Leaf of int
- | Node of (int_Bin_Tree * int_Bin_Tree);;
- Write sum_tree : int_Bin_Tree -> int
- \blacksquare Adds all ints in tree
- let rec sum tree $t =$
	- match t with Leaf $n \rightarrow n$
	- | Node(t1,t2) \rightarrow sum_tree t1 + sum_tree t2

Recursion over Recursive Data Types

- # type exp = VarExp of string | ConstExp of const | BinOpAppExp of bin_op * exp * exp | FunExp of string * exp | AppExp of exp * exp
- \blacksquare How to count the number of variables in an exp?

Recursion over Recursive Data Types

- # type exp = VarExp of string | ConstExp of const | BinOpAppExp of bin_op * exp * exp | FunExp of string $*$ exp | AppExp of exp $*$ exp
- \blacksquare How to count the number of variables in an exp?
- $#$ let rec varCnt exp $=$
	- match exp with VarExp x ->
		- | ConstExp c ->
		- | BinOpAppExp (b, e1, e2) ->
		- | FunExp (x,e) ->
		- | AppExp (e1, e2) ->

Recursion over Recursive Data Types

- # type exp = VarExp of string | ConstExp of const | BinOpAppExp of bin_op * exp * exp | FunExp of string * exp | AppExp of exp * exp
- \blacksquare How to count the number of variables in an exp?
- $#$ let rec varCnt exp $=$
	- match exp with VarExp $x \rightarrow 1$
		- | ConstExp c -> 0
		- | BinOpAppExp $(b, e1, e2) \rightarrow \text{varCnt } e1 + \text{varCnt } e2$
		- | FunExp $(x,e) \rightarrow 1 + v$ arCnt e
		- | AppExp $(e1, e2) \rightarrow \text{varCnt } e1 + \text{varCnt } e2$

Your turn now

Try Problem 3 on MP5

Mapping over Recursive Types

 $#$ let rec ibtreeMap f tree $=$ match tree with $(Leaf n)$ -> Leaf $(f n)$ | Node (left_tree, right_tree) -> Node (ibtreeMap f left_tree, ibtreeMap f right tree);; val ibtreeMap : (int -> int) -> int_Bin_Tree -> int Bin Tree $=$ <fun>

Mapping over Recursive Types

- # ibtreeMap $((+) 2)$ bin_tree;;
- : int Bin Tree = Node (Node (Leaf 5, Leaf 8), Leaf (-5))

Folding over Recursive Types

let rec ibtreeFoldRight leafFun nodeFun tree = match tree with Leaf n -> leafFun n | Node (left_tree, right_tree) -> nodeFun (ibtreeFoldRight leafFun nodeFun left_tree) (ibtreeFoldRight leafFun nodeFun right_tree);; val ibtreeFoldRight : (int -> 'a) -> ('a -> 'a -> 'a) -> int Bin Tree -> 'a = $<$ fun>

Folding over Recursive Types

- # let tree $sum =$
	- ibtreeFoldRight (fun $x \rightarrow x$) (+);;
- val tree_sum : int_Bin_Tree -> int = <fun>
- # tree_sum bin_tree;;
- $-$: int = 2

600 minutes

Mutually Recursive Types

$#$ type 'a tree $=$ TreeLeaf of 'a | TreeNode of 'a treeList and a tree List $=$ Last of a tree | More of ('a tree * 'a treeList);; type 'a tree $=$ TreeLeaf of 'a | TreeNode of 'a treeList and 'a treeList $=$ Last of 'a tree | More of ('a tree * 'a treeList)

let tree $=$ **TreeNode** (More (TreeLeaf 5, (More (TreeNode (More (TreeLeaf 3, Last (TreeLeaf 2))), Last (TreeLeaf 7)))));;

val tree : int tree = TreeNode (More (TreeLeaf 5, More (TreeNode (More (TreeLeaf 3, Last $(TreeLeaf 2))$, Last $(TreeLeaf 7))))$

A more conventional picture

Mutually Recursive Functions

 $#$ let rec fringe tree $=$ match tree with (TreeLeaf x) -> [x] | (TreeNode list) -> list_fringe list and list_fringe tree list = match tree_list with (Last tree) -> fringe tree | (More (tree,list)) -> (fringe tree) @ (list_fringe list);;

val fringe : 'a tree \rightarrow 'a list $=$ <fun> val list fringe : 'a treeList \rightarrow 'a list = \le fun $>$

Mutually Recursive Functions

fringe tree;;

- : int list = $[5; 3; 2; 7]$

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList and 'a treeList = Last of 'a tree | More of ('a tree $*$ 'a treeList);; Define tree size

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList and 'a treeList = Last of 'a tree | More of ('a tree $*$ 'a treeList);; Define tree size let rec tree size $t =$ match t with TreeLeaf \rightarrow | TreeNode ts ->

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList and 'a treeList = Last of 'a tree | More of ('a tree $*$ 'a treeList);; Define tree_size let rec tree size $t =$ match t with TreeLeaf \rightarrow 1 | TreeNode ts -> treeList_size ts

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList and 'a treeList = Last of 'a tree | More of ('a tree $*$ 'a treeList);; Define tree_size and treeList_size let rec tree size $t =$ match t with TreeLeaf \rightarrow 1 | TreeNode ts -> treeList_size ts and treeList size ts $=$

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList and 'a treeList = Last of 'a tree | More of ('a tree $*$ 'a treeList);; Define tree_size and treeList_size let rec tree size $t =$ match t with TreeLeaf \rightarrow 1 | TreeNode ts -> treeList_size ts and treeList size ts $=$ match ts with Last t -> | More t ts' ->

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList and 'a treeList = Last of 'a tree | More of ('a tree $*$ 'a treeList);; Define tree_size and treeList_size let rec tree size $t =$ match t with TreeLeaf \rightarrow 1 | TreeNode ts -> treeList_size ts and treeList size ts $=$ match ts with Last $t \rightarrow t$ ree size t | More t ts' -> tree_size t + treeList_size ts'

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList and 'a treeList = Last of 'a tree | More of ('a tree $*$ 'a treeList);; Define tree_size and treeList_size let rec tree size $t =$ match t with TreeLeaf \rightarrow 1 | TreeNode ts -> treeList_size ts and treeList size ts $=$ match ts with Last $t \rightarrow t$ ree size t | More t ts' -> tree_size t + treeList_size ts'
Nested Recursive Types

- # type 'a labeled tree $=$ TreeNode of ('a * 'a labeled_tree list);; type 'a labeled_tree $=$ TreeNode of ('a
	- * 'a labeled_tree list)

Nested Recursive Type Values

let ltree $=$

TreeNode(5, [TreeNode (3, []); TreeNode (2, [TreeNode (1, []); TreeNode (7, [])]); TreeNode (5, [])]);;

Nested Recursive Type Values

val ltree : int labeled tree $=$ **TreeNode** (5, [TreeNode (3, []); TreeNode (2, [TreeNode (1, []); TreeNode (7, [])]); TreeNode (5, [])])

Nested Recursive Type Values

Mutually Recursive Functions

 $#$ let rec flatten tree labtree $=$ match labtree with TreeNode (x,treelist) -> x::flatten tree list treelist and flatten tree list treelist $=$ match treelist with $\lceil \rceil \rightarrow \lceil \rceil$ | labtree::labtrees -> flatten tree labtree @ flatten_tree_list labtrees;;

Mutually Recursive Functions

- val flatten tree : 'a labeled tree \rightarrow 'a list = <fun>
- val flatten tree list : 'a labeled tree list -> 'a $list =$
- # flatten_tree ltree;;
- $-$: int list = [5; 3; 2; 1; 7; 5]
- **n** Nested recursive types lead to mutually recursive functions

Why Data Types?

■ Data types play a key role in:

- Data abstraction in the design of programs
- Type checking in the analysis of programs
- **n** Compile-time code generation in the translation and execution of programs
	- Data layout (how many words; which are data and which are pointers) dictated by type

Terminology

- \blacksquare Type: A type t defines a set of possible data values
	- **n** E.g. short in C is $\{x | 2^{15} 1 \ge x \ge -2^{15}\}\$
	- A value in this set is said to have type t
- **Type system: rules of a language** assigning types to expressions

Types as Specifications

- **n** Types describe properties
- Different type systems describe different properties, eg
	- Data is read-write versus read-only
	- **n** Operation has authority to access data
	- Data came from "right" source
	- **Dearation might or could not raise an exception**
- **n** Common type systems focus on types describing same data layout and access methods

Sound Type System

- If an expression is assigned type t , and it evaluates to a value v , then v is in the set of values defined by t
- SML, OCAML, Scheme and Ada have sound type systems
- \blacksquare Most implementations of C and C++ do not

Strongly Typed Language

• When no application of an operator to arguments can lead to a run-time type error, language is *strongly typed*

$$
Eg: 1 + 2.3;
$$

n Depends on definition of "type error"

Strongly Typed Language

 $C++$ claimed to be "strongly typed", but

- **I** Union types allow creating a value at one type and using it at another
- **n** Type coercions may cause unexpected (undesirable) effects
- **No array bounds check (in fact, no** runtime checks at all)
- SML, OCAML "strongly typed" but still must do dynamic array bounds checks, runtime type case analysis, and other checks

Static vs Dynamic Types

- *Static type*: type assigned to an expression at compile time
- *Dynamic type*: type assigned to a storage location at run time
- *Statically typed language*: static type assigned to every expression at compile time
- Dynamically typed language: type of an expression determined at run time

Type Checking

\blacksquare When is op(arg1,...,argn) allowed?

- Type checking assures that operations are applied to the right number of arguments of the right types
	- **Right type may mean same type as was** specified, or may mean that there is a predefined implicit coercion that will be applied

n Used to resolve overloaded operations

Type Checking

- **Type checking may be done statically at** compile time or *dynamically* at run time
- **Dynamically typed (aka untyped)** languages (eg LISP, Prolog) do only dynamic type checking
- **n** Statically typed languages can do most type checking statically

Dynamic Type Checking

- **n** Performed at run-time before each operation is applied
- **Types of variables and operations left** unspecified until run-time
	- **n** Same variable may be used at different types

Dynamic Type Checking

- Data object must contain type information
- **Errors aren't detected until violating** application is executed (maybe years after the code was written)

Static Type Checking

- **n** Performed after parsing, before code generation
- **Type of every variable and signature of** every operator must be known at compile time

Static Type Checking

- **n** Can eliminate need to store type information in data object if no dynamic type checking is needed
- **n** Catches many programming errors at earliest point
- **n** Can't check types that depend on dynamically computed values
	- **Eg: array bounds**

Static Type Checking

- **Typically places restrictions on** languages
	- **n** Garbage collection
	- **References instead of pointers**
	- ⁿ All variables initialized when created
	- **Nombrandy** used at one type
		- **Julian types allow for work-arounds, but** effectively introduce dynamic type checks