
10/10/24 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

10/10/24 3

Terminology: Review

n A function is in Direct Style when it returns its
result back to the caller.

n A function is in Continuation Passing Style when it,
and every function call in it, passes its result to
another function.

n A Tail Call occurs when a function returns the
result of another function call without any more
computations (eg tail recursion)

n Instead of returning the result to the caller, we
pass it forward to another function giving the
computation after the call.

10/10/24 4

CPS Transformation

n Step 1: Add continuation argument to any function
definition:
n let f arg = e Þ let f arg k = e
n Idea: Every function takes an extra parameter

saying where the result goes
n Step 2: A simple expression in tail position should

be passed to a continuation instead of returned:
n return a Þ k a
n Assuming a is a constant or variable.
n “Simple” = “No available function calls.”

10/10/24 5

CPS Transformation

n Step 3: Pass the current continuation to every
function call in tail position
n return f arg Þ f arg k
n The function “isn’t going to return,” so we need

to tell it where to put the result.

CPS Transformation

n Step 4: Each function call not in tail position needs
to be converted to take a new continuation
(containing the old continuation as appropriate)
n return op (f arg) Þ f arg (fun r -> k(op r))
n op represents a primitive operation

n return g(f arg) Þ f arg (fun r-> g r k)

10/10/24 6 10/10/24 7

Example

Before:
let rec add_list lst =
match lst with
[] -> 0

| 0 :: xs -> add_list xs
| x :: xs -> (+) x

(add_list xs);;

After:
let rec add_listk lst k =

(* rule 1 *)
match lst with
| [] -> k 0 (* rule 2 *)
| 0 :: xs -> add_listk xs k

(* rule 3 *)
| x :: xs -> add_listk xs

(fun r -> k ((+) x r));;
(* rule 4 *)

10/10/24 8

Example

Before:
let rec mem (y,lst) =
match lst with
[] -> false

| x :: xs ->
if (x = y)
then true
else mem(y,xs);;

After:
let rec memk (y,lst) k =

(* rule 1 *)
match lst with
| [] -> k false (* rule 2 *)
| x :: xs ->
eqk (x, y)
(fun b ->if b (* rule 4 *)

then k true (* rule 2 *)
else memk (y, xs) (* rule 3 *)

10/10/24 9

Example

Before:
let rec mem (y,lst) =
match lst with
[] -> false

| x :: xs ->
if (x = y)
then true
else mem(y,xs);;

After:
let rec memk (y,lst) k =

(* rule 1 *)
match lst with
| [] -> k false (* rule 2 *)
| x :: xs ->
eqk (x, y)
(fun b ->if b (* rule 4 *)

then k true (* rule 2 *)
else memk (y, xs) (* rule 3 *)

10/10/24 10

Example

Before:
let rec mem (y,lst) =
match lst with
[] -> false

| x :: xs ->
if (x = y)
then true
else mem(y,xs);;

After:
let rec memk (y,lst) k =

(* rule 1 *)
match lst with
| [] -> k false (* rule 2 *)
| x :: xs ->
eqk (x, y)
(fun b ->if b (* rule 4 *)

then k true (* rule 2 *)
else memk (y, xs) k (* rule 3 *)

10/10/24 11

Example

Before:
let rec mem (y,lst) =
match lst with
[] -> false

| x :: xs ->
if (x = y)
then true
else mem(y,xs);;

After:
let rec memk (y,lst) k =

(* rule 1 *)
match lst with
| [] -> k false (* rule 2 *)
| x :: xs ->
eqk (x, y)
(fun b ->if b (* rule 4 *)

then k true (* rule 2 *)
else memk (y, xs) (* rule 3 *)

10/10/24 12

Example

Before:
let rec mem (y,lst) =
match lst with
[] -> false

| x :: xs ->
if (x = y)
then true
else mem(y,xs);;

After:
let rec memk (y,lst) k =

(* rule 1 *)
match lst with
| [] -> k false (* rule 2 *)
| x :: xs ->
eqk (x, y)
(fun b ->if b (* rule 4 *)

then k true (* rule 2 *)
else memk (y, xs) (* rule 3 *)

10/10/24 13

Example

Before:
let rec mem (y,lst) =
match lst with
[] -> false

| x :: xs ->
if (x = y)
then true
else mem(y,xs);;

After:
let rec memk (y,lst) k =

(* rule 1 *)
match lst with
| [] -> k false (* rule 2 *)
| x :: xs ->
eqk (x, y)
(fun b ->if b (* rule 4 *)

then k true (* rule 2 *)
else memk (y, xs) k (* rule 3 *)

10/10/24 14

Example

Before:
let rec mem (y,lst) =
match lst with
[] -> false

| x :: xs ->
if (x = y)
then true
else mem(y,xs);;

After:
let rec memk (y,lst) k =

(* rule 1 *)
match lst with
| [] -> k false (* rule 2 *)
| x :: xs ->
eqk (x, y)
(fun b ->if b (* rule 4 *)

then k true (* rule 2 *)
else memk (y, xs) k (* rule 3 *)

Data type in Ocaml: lists

n Frequently used lists in recursive program
n Matched over two structural cases

n [] - the empty list
n (x :: xs) a non-empty list

n Covers all possible lists
n type ‘a list = [] | (::) of ‘a * ‘a list

n Not quite legitimate declaration because of
special syntax

10/10/24 23

10/10/24 24

Variants - Syntax (slightly simplified)

n type name = C1 [of ty1] | . . . | Cn [of tyn]
n Introduce a type called name
n (fun x -> Ci x) : ty1 -> name
n Ci is called a constructor; if the optional type

argument is omitted, it is called a constant
n Constructors are the basis of almost all

pattern matching

10/10/24 25

Enumeration Types as Variants

An enumeration type is a collection of distinct
values

In C and Ocaml they have an order structure;
order by order of input

10/10/24 26

Enumeration Types as Variants

type weekday = Monday | Tuesday | Wednesday
| Thursday | Friday | Saturday | Sunday;;

type weekday =
Monday

| Tuesday
| Wednesday
| Thursday
| Friday
| Saturday
| Sunday

10/10/24 27

Functions over Enumerations

let day_after day = match day with
Monday -> Tuesday

| Tuesday -> Wednesday
| Wednesday -> Thursday
| Thursday -> Friday
| Friday -> Saturday
| Saturday -> Sunday
| Sunday -> Monday;;

val day_after : weekday -> weekday = <fun>

10/10/24 28

Functions over Enumerations

let rec days_later n day =
match n with 0 -> day
| _ -> if n > 0

then day_after (days_later (n - 1) day)
else days_later (n + 7) day;;

val days_later : int -> weekday -> weekday
= <fun>

10/10/24 29

Functions over Enumerations

days_later 2 Tuesday;;
- : weekday = Thursday
days_later (-1) Wednesday;;
- : weekday = Tuesday
days_later (-4) Monday;;
- : weekday = Thursday

Problem:

type weekday = Monday | Tuesday |
Wednesday
| Thursday | Friday | Saturday | Sunday;;

n Write function is_weekend : weekday -> bool
let is_weekend day =

10/10/24 30

Problem:

type weekday = Monday | Tuesday |
Wednesday
| Thursday | Friday | Saturday | Sunday;;

n Write function is_weekend : weekday -> bool
let is_weekend day =

match day with Saturday -> true
| Sunday -> true
| _ -> false

10/10/24 31

10/10/24 32

Example Enumeration Types

type bin_op = IntPlusOp | IntMinusOp
| EqOp | CommaOp | ConsOp

type mon_op = HdOp | TlOp | FstOp
| SndOp

10/10/24 33

Disjoint Union Types

n Disjoint union of types, with some possibly
occurring more than once

n We can also add in some new singleton
elements

ty1 ty2 ty1

10/10/24 34

Disjoint Union Types

type id = DriversLicense of int
| SocialSecurity of int | Name of string;;

type id = DriversLicense of int | SocialSecurity
of int | Name of string

let check_id id = match id with
DriversLicense num ->
not (List.mem num [13570; 99999])

| SocialSecurity num -> num < 900000000
| Name str -> not (str = "John Doe");;

val check_id : id -> bool = <fun>

Problem

n Create a type to represent the currencies for
US, UK, Europe and Japan

10/10/24 35

Problem

n Create a type to represent the currencies for
US, UK, Europe and Japan

type currency =
Dollar of int

| Pound of int
| Euro of int
| Yen of int

10/10/24 36 10/10/24 37

Example Disjoint Union Type

type const =
BoolConst of bool

| IntConst of int
| FloatConst of float
| StringConst of string
| NilConst
| UnitConst

10/10/24 38

Example Disjoint Union Type

type const = BoolConst of bool
| IntConst of int | FloatConst of float
| StringConst of string | NilConst
| UnitConst

nHow to represent 7 as a const?
nAnswer: IntConst 7

10/10/24 40

Polymorphism in Variants

n The type 'a option is gives us something to
represent non-existence or failure

type 'a option = Some of 'a | None;;
type 'a option = Some of 'a | None

n Used to encode partial functions
n Often can replace the raising of an exception

10/10/24 41

Functions producing option

let rec first p list =
match list with [] -> None
| (x::xs) -> if p x then Some x else first p xs;;

val first : ('a -> bool) -> 'a list -> 'a option = <fun>
first (fun x -> x > 3) [1;3;4;2;5];;
- : int option = Some 4
first (fun x -> x > 5) [1;3;4;2;5];;
- : int option = None

10/10/24 42

Functions over option

let result_ok r =
match r with None -> false
| Some _ -> true;;

val result_ok : 'a option -> bool = <fun>
result_ok (first (fun x -> x > 3) [1;3;4;2;5]);;
- : bool = true
result_ok (first (fun x -> x > 5) [1;3;4;2;5]);;
- : bool = false

Problem

n Write a hd and tl on lists that doesn’t raise
an exception and works at all types of lists.

10/10/24 43

Problem

n Write a hd and tl on lists that doesn’t raise
an exception and works at all types of lists.

n let hd list =
match list with [] -> None
| (x::xs) -> Some x

n let tl list =
match list with [] -> None
| (x::xs) -> Some xs

10/10/24 44

10/10/24 45

Mapping over Variants

let optionMap f opt =
match opt with None -> None
| Some x -> Some (f x);;

val optionMap : ('a -> 'b) -> 'a option -> 'b
option = <fun>

optionMap
(fun x -> x - 2)
(first (fun x -> x > 3) [1;3;4;2;5]);;

- : int option = Some 2

10/10/24 46

Folding over Variants

let optionFold someFun noneVal opt =
match opt with None -> noneVal
| Some x -> someFun x;;

val optionFold : ('a -> 'b) -> 'b -> 'a option ->
'b = <fun>

let optionMap f opt =
optionFold (fun x -> Some (f x)) None opt;;

val optionMap : ('a -> 'b) -> 'a option -> 'b
option = <fun>

10/10/24 47

Recursive Types

n The type being defined may be a component
of itself

ty ty’ ty

10/10/24 48

Recursive Data Types

type int_Bin_Tree =
Leaf of int | Node of (int_Bin_Tree *
int_Bin_Tree);;

type int_Bin_Tree = Leaf of int | Node of
(int_Bin_Tree * int_Bin_Tree)

10/10/24 49

Recursive Data Type Values

let bin_tree =
Node(Node(Leaf 3, Leaf 6),Leaf (-7));;

val bin_tree : int_Bin_Tree = Node (Node
(Leaf 3, Leaf 6), Leaf (-7))

10/10/24 50

Recursive Data Type Values

bin_tree = Node

Node Leaf (-7)

Leaf 3 Leaf 6

10/10/24 51

Recursive Functions

let rec first_leaf_value tree =
match tree with (Leaf n) -> n
| Node (left_tree, right_tree) ->
first_leaf_value left_tree;;

val first_leaf_value : int_Bin_Tree -> int =
<fun>

let left = first_leaf_value bin_tree;;
val left : int = 3

10/10/24 53

Recursive Data Types

type exp =
VarExp of string

| ConstExp of const
| MonOpAppExp of mon_op * exp
| BinOpAppExp of bin_op * exp * exp
| IfExp of exp* exp * exp
| AppExp of exp * exp
| FunExp of string * exp

10/10/24 54

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp
| EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int |
…
type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp | …

nHow to represent 6 as an exp?

10/10/24 55

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp
| EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int |
…
type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp | …

nHow to represent 6 as an exp?
nAnswer: ConstExp (IntConst 6)

10/10/24 56

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp
| EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int |
…
type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp | …

nHow to represent (6, 3) as an exp?

10/10/24 57

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp
| EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int |
…
type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp | …

nHow to represent (6, 3) as an exp?
nBinOpAppExp (CommaOp, ConstExp (IntConst 6),

ConstExp (IntConst 3))

10/10/24 58

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp
| EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int |
…
type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp | …
nHow to represent [(6, 3)] as an exp?
nBinOpAppExp (ConsOp, BinOpAppExp (CommaOp,
ConstExp (IntConst 6), ConstExp (IntConst 3)),
ConstExp NilConst))));;

Problem

type int_Bin_Tree =Leaf of int
| Node of (int_Bin_Tree * int_Bin_Tree);;
n Write sum_tree : int_Bin_Tree -> int
n Adds all ints in tree
let rec sum_tree t =

10/10/24 60

Problem

type int_Bin_Tree =Leaf of int
| Node of (int_Bin_Tree * int_Bin_Tree);;
n Write sum_tree : int_Bin_Tree -> int
n Adds all ints in tree
let rec sum_tree t =

match t with Leaf n -> n
| Node(t1,t2) -> sum_tree t1 + sum_tree t2

10/10/24 61 10/10/24 62

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
| BinOpAppExp of bin_op * exp * exp
| FunExp of string * exp | AppExp of exp * exp

n How to count the number of variables in an exp?

10/10/24 63

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
| BinOpAppExp of bin_op * exp * exp
| FunExp of string * exp | AppExp of exp * exp

n How to count the number of variables in an exp?
let rec varCnt exp =

match exp with VarExp x ->
| ConstExp c ->
| BinOpAppExp (b, e1, e2) ->
| FunExp (x,e) ->
| AppExp (e1, e2) ->

10/10/24 64

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
| BinOpAppExp of bin_op * exp * exp
| FunExp of string * exp | AppExp of exp * exp

n How to count the number of variables in an exp?
let rec varCnt exp =

match exp with VarExp x -> 1
| ConstExp c -> 0
| BinOpAppExp (b, e1, e2) -> varCnt e1 + varCnt e2
| FunExp (x,e) -> 1 + varCnt e
| AppExp (e1, e2) -> varCnt e1 + varCnt e2

Your turn now

Try Problem 3 on MP5

10/10/24 65 10/10/24 66

Mapping over Recursive Types

let rec ibtreeMap f tree =
match tree with (Leaf n) -> Leaf (f n)
| Node (left_tree, right_tree) ->
Node (ibtreeMap f left_tree,

ibtreeMap f right_tree);;
val ibtreeMap : (int -> int) -> int_Bin_Tree ->

int_Bin_Tree = <fun>

10/10/24 67

Mapping over Recursive Types

ibtreeMap ((+) 2) bin_tree;;

- : int_Bin_Tree = Node (Node (Leaf 5, Leaf
8), Leaf (-5))

10/10/24 68

Folding over Recursive Types

let rec ibtreeFoldRight leafFun nodeFun tree =
match tree with Leaf n -> leafFun n
| Node (left_tree, right_tree) ->
nodeFun
(ibtreeFoldRight leafFun nodeFun left_tree)
(ibtreeFoldRight leafFun nodeFun right_tree);;

val ibtreeFoldRight : (int -> 'a) -> ('a -> 'a -> 'a) ->
int_Bin_Tree -> 'a = <fun>

10/10/24 69

Folding over Recursive Types

let tree_sum =
ibtreeFoldRight (fun x -> x) (+);;

val tree_sum : int_Bin_Tree -> int = <fun>
tree_sum bin_tree;;
- : int = 2

10/10/24 70

600 minutes

10/10/24 71

Mutually Recursive Types

type 'a tree = TreeLeaf of 'a
| TreeNode of 'a treeList

and 'a treeList = Last of 'a tree
| More of ('a tree * 'a treeList);;

type 'a tree = TreeLeaf of 'a | TreeNode of 'a
treeList

and 'a treeList = Last of 'a tree | More of ('a
tree * 'a treeList)

10/10/24 72

Mutually Recursive Types - Values

let tree =
TreeNode
(More (TreeLeaf 5,

(More (TreeNode
(More (TreeLeaf 3,

Last (TreeLeaf 2))),
Last (TreeLeaf 7)))));;

10/10/24 73

Mutually Recursive Types - Values

val tree : int tree =
TreeNode
(More

(TreeLeaf 5,
More
(TreeNode (More (TreeLeaf 3, Last

(TreeLeaf 2))), Last (TreeLeaf 7))))

10/10/24 74

Mutually Recursive Types - Values

TreeNode

More More Last

TreeLeaf TreeNode TreeLeaf

5 More Last 7

TreeLeaf TreeLeaf

3 2

10/10/24 75

Mutually Recursive Types - Values

A more conventional picture

5 7

3 2

10/10/24 76

Mutually Recursive Functions

let rec fringe tree =
match tree with (TreeLeaf x) -> [x]

| (TreeNode list) -> list_fringe list
and list_fringe tree_list =

match tree_list with (Last tree) -> fringe tree
| (More (tree,list)) ->
(fringe tree) @ (list_fringe list);;

val fringe : 'a tree -> 'a list = <fun>
val list_fringe : 'a treeList -> 'a list = <fun>

10/10/24 77

Mutually Recursive Functions

fringe tree;;
- : int list = [5; 3; 2; 7]

10/10/24 78

Problem
type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size

10/10/24 79

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size
let rec tree_size t =

match t with TreeLeaf _ ->
| TreeNode ts ->

10/10/24 80

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size
let rec tree_size t =

match t with TreeLeaf _ -> 1
| TreeNode ts -> treeList_size ts

10/10/24 81

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size
let rec tree_size t =

match t with TreeLeaf _ -> 1
| TreeNode ts -> treeList_size ts

and treeList_size ts =

10/10/24 82

Problem
type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size
let rec tree_size t =

match t with TreeLeaf _ -> 1
| TreeNode ts -> treeList_size ts

and treeList_size ts =
match ts with Last t ->
| More t ts’ ->

10/10/24 83

Problem
type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size
let rec tree_size t =

match t with TreeLeaf _ -> 1
| TreeNode ts -> treeList_size ts

and treeList_size ts =
match ts with Last t -> tree_size t
| More t ts’ -> tree_size t + treeList_size ts’

10/10/24 84

Problem
type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size
let rec tree_size t =

match t with TreeLeaf _ -> 1
| TreeNode ts -> treeList_size ts

and treeList_size ts =
match ts with Last t -> tree_size t
| More t ts’ -> tree_size t + treeList_size ts’

10/10/24 85

Nested Recursive Types

type 'a labeled_tree =
TreeNode of ('a * 'a labeled_tree
list);;

type 'a labeled_tree = TreeNode of ('a
* 'a labeled_tree list)

10/10/24 86

Nested Recursive Type Values

let ltree =
TreeNode(5,

[TreeNode (3, []);
TreeNode (2, [TreeNode (1, []);

TreeNode (7, [])]);
TreeNode (5, [])]);;

10/10/24 87

Nested Recursive Type Values

val ltree : int labeled_tree =
TreeNode
(5,
[TreeNode (3, []); TreeNode (2,

[TreeNode (1, []); TreeNode (7, [])]);
TreeNode (5, [])])

10/10/24 88

Nested Recursive Type Values

Ltree = TreeNode(5)

:: :: :: []

TreeNode(3) TreeNode(2) TreeNode(5)

[] :: :: [] []

TreeNode(1) TreeNode(7)

[] []

10/10/24 89

Nested Recursive Type Values

5

3 2 5

1 7

10/10/24 90

Mutually Recursive Functions

let rec flatten_tree labtree =
match labtree with TreeNode (x,treelist)

-> x::flatten_tree_list treelist
and flatten_tree_list treelist =
match treelist with [] -> []
| labtree::labtrees

-> flatten_tree labtree
@ flatten_tree_list labtrees;;

10/10/24 91

Mutually Recursive Functions

val flatten_tree : 'a labeled_tree -> 'a list =
<fun>

val flatten_tree_list : 'a labeled_tree list -> 'a
list = <fun>

flatten_tree ltree;;
- : int list = [5; 3; 2; 1; 7; 5]
n Nested recursive types lead to mutually

recursive functions

10/10/24 107

Why Data Types?

n Data types play a key role in:
n Data abstraction in the design of programs
n Type checking in the analysis of programs
n Compile-time code generation in the

translation and execution of programs
n Data layout (how many words; which are data

and which are pointers) dictated by type

10/10/24 108

Terminology

n Type: A type t defines a set of possible
data values
n E.g. short in C is {x| 215 - 1 ³ x ³ -215}
n A value in this set is said to have type t

n Type system: rules of a language
assigning types to expressions

10/10/24 109

Types as Specifications

n Types describe properties
n Different type systems describe different

properties, eg
n Data is read-write versus read-only
n Operation has authority to access data
n Data came from “right” source
n Operation might or could not raise an exception

n Common type systems focus on types describing
same data layout and access methods

10/10/24 111

Sound Type System

n If an expression is assigned type t, and it
evaluates to a value v, then v is in the set of
values defined by t

n SML, OCAML, Scheme and Ada have sound
type systems

n Most implementations of C and C++ do not

10/10/24 112

Strongly Typed Language

n When no application of an operator to
arguments can lead to a run-time type
error, language is strongly typed
n Eg: 1 + 2.3;;

n Depends on definition of “type error”

10/10/24 113

Strongly Typed Language

n C++ claimed to be “strongly typed”, but
n Union types allow creating a value at one

type and using it at another
n Type coercions may cause unexpected

(undesirable) effects
n No array bounds check (in fact, no

runtime checks at all)
n SML, OCAML “strongly typed” but still must

do dynamic array bounds checks, runtime
type case analysis, and other checks

10/10/24 114

Static vs Dynamic Types

• Static type: type assigned to an expression
at compile time

• Dynamic type: type assigned to a storage
location at run time

• Statically typed language: static type
assigned to every expression at compile time

• Dynamically typed language: type of an
expression determined at run time

10/10/24 115

Type Checking

n When is op(arg1,…,argn) allowed?
n Type checking assures that operations are

applied to the right number of arguments of
the right types
n Right type may mean same type as was

specified, or may mean that there is a
predefined implicit coercion that will be
applied

n Used to resolve overloaded operations

10/10/24 116

Type Checking

n Type checking may be done statically at
compile time or dynamically at run time

n Dynamically typed (aka untyped)
languages (eg LISP, Prolog) do only
dynamic type checking

n Statically typed languages can do most
type checking statically

10/10/24 117

Dynamic Type Checking

n Performed at run-time before each
operation is applied

n Types of variables and operations left
unspecified until run-time
n Same variable may be used at different

types

10/10/24 118

Dynamic Type Checking

n Data object must contain type
information

n Errors aren’t detected until violating
application is executed (maybe years
after the code was written)

10/10/24 119

Static Type Checking

n Performed after parsing, before code
generation

n Type of every variable and signature of
every operator must be known at
compile time

10/10/24 120

Static Type Checking

n Can eliminate need to store type
information in data object if no dynamic
type checking is needed

n Catches many programming errors at
earliest point

n Can’t check types that depend on
dynamically computed values
n Eg: array bounds

10/10/24 121

Static Type Checking

n Typically places restrictions on
languages
n Garbage collection
n References instead of pointers
n All variables initialized when created
n Variable only used at one type

n Union types allow for work-arounds, but
effectively introduce dynamic type checks

