
9/17/24 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

9/17/24 2

Iterating over lists

let rec fold_left f a list =
match list
with [] -> a
| (x :: xs) -> fold_left f (f a x) xs;;

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a =
<fun>

fold_left
(fun () -> print_string)
()
["hi"; "there"];;

hithere- : unit = ()

Your turn: length, fold_left

let length list =

9/17/24 3

Tail Recursion - length

n How can we write length with tail recursion?
let length list =

let rec length_aux list acc_length =
match list
with [] -> acc_length
| (x::xs) ->
length_aux xs (1 + acc_length)

in length_aux list 0

9/17/24 4

Your turn: length, fold_left

let length list =
fold_left (fun acc -> fun x -> 1 + acc) 0 list

9/17/24 5 9/17/24 10

Folding

let rec fold_left f a list = match list
with [] -> a | (x :: xs) -> fold_left f (f a x) xs;;

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a =
<fun>

fold_left f a [x1; x2;…;xn] = f(…(f (f a x1) x2)…)xn

let rec fold_right f list b = match list
with [] -> b | (x :: xs) -> f x (fold_right f xs b);;

val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b =
<fun>

fold_right f [x1; x2;…;xn] b = f x1(f x2 (…(f xn b)…))

9/17/24 11

Folding

n Can replace recursion by fold_right in any
forward primitive recursive definition
n Primitive recursive means it only recurses on

immediate subcomponents of recursive data
structure

n Can replace recursion by fold_left in any tail
primitive recursive definition

9/17/24 12

Mapping Recursion

let rec map f list =
match list
with [] -> []
| (h::t) -> (f h) :: (map f t);;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
map plus_two fib5;;
- : int list = [10; 7; 5; 4; 3; 3]
map (fun x -> x - 1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; 0]

9/17/24 13

Map is forward recursive

let rec map f list =
match list
with [] -> []
| (h::t) -> (f h) :: (map f t);;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
let map f list =

List.fold_right (fun h -> fun r -> (f h) :: r)
list [];;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

9/17/24 14

Mapping Recursion

n Can use the higher-order recursive map
function instead of explicit recursion

let doubleList list =
List.map (fun x -> 2 * x) list;;

val doubleList : int list -> int list = <fun>
doubleList [2;3;4];;
- : int list = [4; 6; 8]
Same function, but no rec

9/17/24 15

Mapping Recursion

n Can use the higher-order recursive map
function instead of explicit recursion

let doubleList list =
List.map (fun x -> 2 * x) list;;

val doubleList : int list -> int list = <fun>
doubleList [2;3;4];;
- : int list = [4; 6; 8]
n Same function, but no explicit recursion

9/17/24 17

Continuations

n A programming technique for all forms
of “non-local” control flow:
n non-local jumps
n exceptions
n general conversion of non-tail calls to tail

calls
n Essentially, it’s a higher-order function

version of GOTO

9/17/24 18

Continuations

n Idea: Use functions to represent the control
flow of a program

n Method: Each procedure takes a function as
an extra argument to which to pass its
result; outer procedure “returns” no result

n Function receiving the result called a
continuation

n Continuation acts as “accumulator” for work
still to be done

9/17/24 19

Continuation Passing Style

n Writing procedures such that all
procedure calls take a continuation to
which to give (pass) the result, and
return no result, is called continuation
passing style (CPS)

9/17/24 20

Continuation Passing Style

n A compilation technique to implement non-
local control flow, especially useful in
interpreters.

n A formalization of non-local control flow in
denotational semantics

n Possible intermediate state in compiling
functional code

Why CPS?

n Makes order of evaluation explicitly clear
n Allocates variables (to become registers) for each

step of computation
n Essentially converts functional programs into

imperative ones
n Major step for compiling to assembly or byte

code
n Tail recursion easily identified
n Strict forward recursion converted to tail recursion

n At the expense of building large closures in heap

9/17/24 21

Other Uses for Continuations

n CPS designed to preserve order of
evaluation

n Continuations used to express order of
evaluation

n Can be used to change order of evaluation
n Implements:

n Exceptions and exception handling
n Co-routines
n (pseudo, aka green) threads

9/17/24 22 9/17/24 23

Example

n Simple reporting continuation:
let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

n Simple function using a continuation:
let addk (a, b) k = k (a + b);;
val addk : int * int -> (int -> ’a) -> ’a = <fun>
addk (22, 20) report;;
42
- : unit = ()

Simple Functions Taking Continuations

n Given a primitive operation, can convert it to
pass its result forward to a continuation

n Examples:
let subk (x, y) k = k(x - y);;
val subk : int * int -> (int -> 'a) -> 'a = <fun>
let eqk (x, y) k = k(x = y);;
val eqk : 'a * 'a -> (bool -> 'b) -> 'b = <fun>
let timesk (x, y) k = k(x * y);;
val timesk : int * int -> (int -> 'a) -> 'a = <fun>

9/17/24 24

Nesting Continuations

let add_triple (x, y, z) = (x + y) + z;;
val add_triple : int * int * int -> int = <fun>
let add_triple (x,y,z)=let p = x + y in p + z;;
val add_triple : int * int * int -> int = <fun>
let add_triple_k (x, y, z) k =

addk (x, y) (fun p -> addk (p, z) k);;
val add_triple_k: int * int * int -> (int -> 'a) ->

'a = <fun>

9/17/24 25

add_three: a different order

n # let add_triple (x, y, z) = x + (y + z);;
n How do we write add_triple_k to use a

different order?

n let add_triple_k (x, y, z) k =

9/17/24 26

add_three: a different order

n # let add_triple (x, y, z) = x + (y + z);;
n How do we write add_triple_k to use a

different order?

n let add_triple_k (x, y, z) k =
addk (y,z) (fun r -> addk(x,r) k)

9/17/24 27

9/17/24 29

Recursive Functions

n Recall:
let rec factorial n =

if n = 0 then 1 else n * factorial (n - 1);;
val factorial : int -> int = <fun>

factorial 5;;
- : int = 120

9/17/24 30

Terms

n A function is in Direct Style when it returns its
result back to the caller.

n A function is in Continuation Passing Style when it,
and every function call in it, passes its result to
another function.

n Instead of returning the result to the caller, we
pass it forward to another function giving the
computation after the call.

9/17/24 31

Recursive Functions

let rec factorial n =
let b = (n = 0) in (* First computation *)
if b then 1 (* Returned value *)
else let s = n – 1 in (* Second computation *)

let r = factorial s in (* Third computation *)
n * r (* Returned value *) ;;

val factorial : int -> int = <fun>
factorial 5;;
- : int = 120

9/17/24 32

Recursive Functions

let rec factorialk n k =
eqk (n, 0)
(fun b -> (* First computation *)
if b then k 1 (* Passed value *)
else subk (n, 1) (* Second computation *)
(fun s -> factorialk s (* Third computation *)
(fun r -> timesk (n, r) k))) (* Passed value *)

val factorialk : int -> (int -> ‘a) -> ‘a = <fun>
factorialk 5 report;;
120
- : unit = ()

9/17/24 33

Recursive Functions

n To make recursive call, must build
intermediate continuation to
n take recursive value: r
n build it to final result: n * r
n And pass it to final continuation:
n times (n, r) k = k (n * r)

9/17/24 34

425 minutes

Example: CPS for length

let rec length list = match list with [] -> 0
| (a :: bs) -> 1 + length bs

What is the let-expanded version of this?

9/17/24 35

Example: CPS for length

let rec length list = match list with [] -> 0
| (a :: bs) -> 1 + length bs

What is the let-expanded version of this?
Let rec length list = match list with [] -> 0
| (a :: bs) -> let n = length bs in 1 + n

Let lengthk list k = match list with [] -> k 0
| (a :: bs) -> lengthk bs (fun n -> addk (1,n)
k)
9/17/24 36

Example: CPS for length

let rec length list = match list with [] -> 0
| (a :: bs) -> 1 + length bs

What is the let-expanded version of this?
let rec length list = match list with [] -> 0

| (a :: bs) -> let r1 = length bs in 1 + r1

9/17/24 37

Example: CPS for length

#let rec length list = match list with [] -> 0
| (a :: bs) -> let r1 = length bs in 1 + r1

What is the CSP version of this?

9/17/24 38

Example: CPS for length

#let rec length list = match list with [] -> 0
| (a :: bs) -> let r1 = length bs in 1 + r1

What is the CSP version of this?
#let rec lengthk list k = match list with [] -> k 0

| x :: xs -> lengthk xs (fun r -> addk (1,r) k);;
val lengthk : 'a list -> (int -> 'b) -> 'b = <fun>
lengthk [2;4;6;8] report;;
4
- : unit = ()
9/17/24 39 9/17/24 40

450 minutes

9/17/24 41

CPS for sum

let rec sum list = match list with [] -> 0
| x :: xs -> x + sum xs ;;

val sum : int list -> int = <fun>

n Let sum_all list =
n let rec sum_aux (lst, a) =
n match lst with [] -> a
n | (x::xs) -> sum_aux (xs, (x + a))
n in sum_aux (list, 0)
Let sum_allk list k = let rec sum_auk (lst,a) k1=
match lst with [] -> k1 a
| (x::xs) -> addk(x, a) (fun r -> sum_auk (xs,r) k1)

n in sum_aux(list,0) k

9/19/24 42

9/19/24 43 9/19/24 44

9/19/24 45 9/17/24 46

CPS for sum

let rec sum list = match list with [] -> 0
| x :: xs -> x + sum xs ;;

val sum : int list -> int = <fun>
let rec sum list = match list with [] -> 0

| x :: xs -> let r1 = sum xs in x + r1;;

9/17/24 47

CPS for sum

let rec sum list = match list with [] -> 0
| x :: xs -> x + sum xs ;;

val sum : int list -> int = <fun>
let rec sum list = match list with [] -> 0

| x :: xs -> let r1 = sum xs in x + r1;;
val sum : int list -> int = <fun>
let rec sumk list k = match list with [] -> k 0

| x :: xs -> sumk xs (fun r1 -> addk x r1 k);;

9/17/24 48

CPS for sum

let rec sum list = match list with [] -> 0
| x :: xs -> x + sum xs ;;

val sum : int list -> int = <fun>
let rec sum list = match list with [] -> 0

| x :: xs -> let r1 = sum xs in x + r1;;
val sum : int list -> int = <fun>
let rec sumk list k = match list with [] -> k 0

| x :: xs -> sumk xs (fun r1 -> addk (x, r1) k);;
val sumk : int list -> (int -> 'a) -> 'a = <fun>
sumk [2;4;6;8] report;;
20
- : unit = ()

CPS for Higher Order Functions

n In CPS, every procedure / function takes a
continuation to receive its result

n Procedures passed as arguments take
continuations

n Procedures returned as results take
continuations

n CPS version of higher-order functions must
expect input procedures to take
continuations

9/17/24 49

Example: all

#let rec all (p, l) = match l with [] -> true
| (x :: xs) -> let b = p x in

if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
n What is the CPS version of this?

9/17/24 50

Example: all

#let rec all (p, l) = match l with [] -> true
| (x :: xs) -> let b = p x in

if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
n What is the CPS version of this?
#let rec allk (pk, l) k =

9/17/24 51

Example: all

#let rec all (p, l) = match l with [] -> true
| (x :: xs) -> let b = p x in

if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
n What is the CPS version of this?
#let rec allk (pk, l) k = match l with [] -> true

9/17/24 52

Example: all

#let rec all (p, l) = match l with [] -> true
| (x :: xs) -> let b = p x in

if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
n What is the CPS version of this?
#let rec allk (pk, l) k = match l with [] -> k true

9/17/24 53

Example: all

#let rec all (p, l) = match l with [] -> true
| (x :: xs) -> let b = p x in

if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
n What is the CPS version of this?
#let rec allk (pk, l) k = match l with [] -> k true
| (x :: xs) -> pk x

(fun b -> if b then allk pk xs k else k
false)
val allk : ('a -> (bool -> 'b) -> 'b) -> 'a list ->
(bool -> 'b) -> 'b = <fun>

9/17/24 54

Example: all

#let rec all (p, l) = match l with [] -> true
| (x :: xs) -> let b = p x in

if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
n What is the CPS version of this?
#let rec allk (pk, l) k = match l with [] -> k true
| (x :: xs) -> pk x

(fun b -> if b then allk pk xs k else k
false)
val allk : ('a -> (bool -> 'b) -> 'b) -> 'a list ->
(bool -> 'b) -> 'b = <fun>

9/17/24 55

Example: all

#let rec all (p, l) = match l with [] -> true
| (x :: xs) -> let b = p x in

if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
n What is the CPS version of this?
#let rec allk (pk, l) k = match l with [] -> k true
| (x :: xs) -> pk x

(fun b -> if b then allk pk xs k else k
false)
val allk : ('a -> (bool -> 'b) -> 'b) -> 'a list ->
(bool -> 'b) -> 'b = <fun>

9/17/24 56

Example: all

#let rec all (p, l) = match l with [] -> true
| (x :: xs) -> let b = p x in

if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
n What is the CPS version of this?
#let rec allk (pk, l) k = match l with [] -> k true
| (x :: xs) -> pk x

(fun b -> if b then allk (pk, xs) k
else k false)

val allk :
('a -> (bool -> 'b) -> 'b) * 'a list -> (bool -> 'b) -> ‘b
= <fun>

9/17/24 57 9/17/24 58

475 minutes

