Programming Languages and
Compilers (CS 421)

'Elsa L Gunter ﬂ
2112 SC, UIUC \

https://courses.engr.illinois.edu/cs421/fa2017/CS421D

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

9/14/24 1

‘ Structural Recursion

= Functions on recursive datatypes (eg lists)
tend to be recursive

= Recursion over recursive datatypes generally
by structural recursion

= Recursive calls made to components of structure
of the same recursive type

= Base cases of recursive types stop the recursion
of the function

9/14/24 2

‘ Functions Over Lists

let rec double_up list =
match list
with []->[] (* pattern before ->,
expression after *)
| (x ::xs)->(X::x::double_up xs);;
val double_up : 'a list -> 'a list = <fun>
let fib5_2 = double_up fib5;;
val fib5_2 :intlist = [8; 8; 5; 5; 3; 3; 2; 2; 1;
1; 1; 1]

9/14/24 3

‘ Functions Over Lists

let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"]
let rec poor_rev list =

match list

with []->[]

| (x::xs) -> poor_rev xs @ [X];;

val poor_rev : 'a list -> 'a list = <fun>
poor_rev silly;;
- : string list = ["there"; "there"; "hi"; "hi"]

9/14/24 4

‘ Your turn: doubleList : int list -> int list

= Write a function that takes a list of int and
returns a list of the same length, where each
element has been multiplied by 2

let rec doublelList list =

match list with [] -> []
| (first :: rest) -> (2 * first) :: (doubleList rest)

9/14/24 6

‘ Your turn: doubleList : int list -> int list

= Write a function that takes a list of int and
returns a list of the same length, where each
element has been multiplied by 2

let rec doubleList list =
match list
with [] ->[]
| x::xs-> (2 *x):: doubleList xs

9/14/24 7

‘ Your turn: doubleList : int list -> int list

= Write a function that takes a list of int and
returns a list of the same length, where each
element has been multiplied by 2

let rec doubleList list =
match list

| :: Xs[-> (2 * x) :| doubleList xs
. A

9/14/24 8

‘ Same Length

= How can we efficiently answer if two lists
have the same length?

9/14/24 17

‘ Same Length

= How can we efficiently answer if two lists
have the same length?

let rec same_length list1 list2 =
match listl with [] ->

| (X::xs) ->

9/14/24 18

‘ Same Length

= How can we efficiently answer if two lists
have the same length?

let rec same_length list1 list2 =
match listl with [] ->
(match list2 with [] -> true
| (y::ys) -> false)
| (x::xs) ->

9/14/24 19

‘ Same Length

= How can we efficiently answer if two lists
have the same length?

let rec same_length list1 list2 =
match listl with [] ->
(match list2 with [] ->
| (y::ys) ->)
| (x::xs) ->

9/14/24 20

‘ Same Length

= How can we efficiently answer if two lists
have the same length?

let rec same_length list1 list2 =
match listl with [] ->
(match list2 with [] -> true
| (y::ys) -> false)
| (x::xs) ->
(match list2 with [] ->
| (y::ys) ->)

9/14/24 21

‘ Same Length

= How can we efficiently answer if two lists
have the same length?

let rec same_length list1 list2 =
match listl with [] ->
(match list2 with [] -> true
| (y::ys) -> false)
| (X::xs) ->
(match list2 with [] -> false
| (y::ys) ->)

9/14/24 22

‘ Same Length

= How can we efficiently answer if two lists
have the same length?

let rec same_length list1 list2 =
match listl with [] ->
(match list2 with [] -> true
| (y::ys) -> false)
| (x::xs) ->
(match list2 with [] -> false
| (y::ys) -> same_length xs ys)

9/14/24 23

‘ Folding Recursion

= Another common form “folds” an operation
over the elements of the structure

let rec multList list = match list
with[]->1
| x::xs -> x * multList xs;;
val multList : int list -> int = <fun>
multList [2;4;6];;
-:int =48

= Computes (2 * (4 * (6 * 1)))

9/14/24 25

‘ Folding Recursion : Length Example

let rec length list = match list
with [1-> 0 (* Nil case *)
| a::bs->1+ length bs;; (* Cons case *)
val length : 'a list -> int = <fun>
length [5; 4; 3; 21;;
-:int=4

= Nil case [] is base case, 0 is the base value
= Cons case recurses on component list bs

= What do multList and length have in common?

9/14/24 26

Forward Recursion

= In Structural Recursion, split input into
components and (eventually) recurse

= Forward Recursion form of Structural
Recursion

= In forward recursion, first call the function
recursively on all recursive components, and
then build final result from partial results

= Wait until whole structure has been
traversed to start building answer

9/14/24 28

‘ Forward Recursion: Examples

let rec double_up list =
match list
with[]->1[]
| (x::xs)->(x::x::double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
match list
with []-> []
| (X::xs) -> letr = poor_rev xsinr @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

9/14/24 29

Forward Recursion: Examples

let rec double_up list =

match list
with []->
| (x 2 xs) ->[(x :: x ::|double_up xs);;
val double : 'alist ->{"a list = <funx_
Base Case | | Operator || Recursive Call|
let rec poor_rev list =
match list

with []->
| (X::X)SZ_>| let r = poor_rev xs in r|@ [x];; |
poor_rev : 'a list -> 'a list =<fup>
Base Case | | Operator || Recursive Call|

9/14/24 30

va

Recursing over lists

let rec fold_right f list b =
match list

with[]->b The Primi

tive

| (x :: xs) -> f x (fold_right f xs b);; Recursion Fairy
val fold_right : ('a->'b->'b)->'alist->'b->'b =

<fun>
fold_right
(fun s -> fun () -> print_string s)
[llhill; lltherell]
Or7
therehi- : unit = ()

9/14/24

31

‘ Folding Recursion : Length Example

let rec length list = match list
with [T-> 0 (* Nil case *)
| a::bs->1+ length bs;; (* Cons case *)
val length : 'a list -> int = <fun>
let length list =
fold_right (funa->funr->1+7r) list 0;;
val length : 'a list -> int = <fun>
length [5; 4; 3; 21;;
-:int=4

9/14/24 32

Forward Recursion: Examples

let rec double_up list =

match list
with [] -
| (x::x8) ->[(x :: x ::jdouble_up xs);;
val double : 'afist ->f"a [ist = <fun=_

Base Case | | Operator || Recursive Call|

let double_up =
fold_right (fun x -> funr ->|>_(X ::|[F[) Iist
[Operator] [Recursive resullfl?a; Case |

double_up ["a";"b"];;

- : string ||St - [lla"; lla"; llbll; Ilbll]

9/14/24

33

*

= let rec multList_fr list =

match list
with []->1
| (x::xs) -> let r = (multList_fr xs) in

(x*1)

9/14/24 34

’ Folding Recursion

= multList folds to the right
= Same as:

let multList list =
List.fold_right
(fun x -> fun p -> x * p)
list 1;;
val multList : int list -> int = <fun>
multList [2;4;6];;
-:int =48

9/14/24

35

‘ Terminology

= Available: A function call that can be
executed by the current expression

= The fastest way to be unavailable is to be
guarded by an abstraction (anonymous

function, lambda lifted).
. ifEh X thenHelse
= if [[h x)| then (fun x -> f x) else[(g (x + X))

Not available

9/14/24 49

‘ Terminology

= Tail Position: A subexpression s of
expressions e, which is available and such
that if evaluated, will be taken as the value
of e (last thing done in this expression)
= if (x>3) then|x + 2|else|x - 4 |
= letx=5in

= Tail Call: A function call that occurs in tail
position

« if (h x) then|[f x|else

9/14/24 50

i Tail Recursion

= A recursive program is tail recursive if all
recursive calls are tail calls

= Tail recursive programs may be optimized to
be implemented as loops, thus removing the
function call overhead for the recursive calls

= Tail recursion generally requires extra
“accumulator” arguments to pass partial
results
= May require an auxiliary function

9/14/24 51

‘ Tail Recursion - length

= How can we write length with tail recursion?
let length list =
let rec length_aux list acc_length =
match list
with [] -> acc_length
| (X::xs) ->
length_aux xs (1 + acc_length)
in length_aux list 0

9/14/24 52

i Your turn: num_neg — tail recursive

let num_neg list =

9/14/24 55

‘ Your turn: num_neg — tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =

in num_neg_aux ? ?

9/14/24 56

‘ Your turn: num_neg — tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =
match list with [] ->
| (x :: xs) ->

in num_neg_aux ? ?

9/14/24 57

‘ Your turn: num_neg — tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =
match list with [] -> curr_neg
| (x ::xs)->

in num_neg_aux ? ?

9/14/24 58

‘ Your turn: num_neg — tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =
match list with [] -> curr_neg
| (X ::xs)->
num_neg_aux xs ?

in num_neg_aux ? ?

9/14/24 59

‘ Your turn: num_neg — tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =
match list with [] -> curr_neg
| (X ::xs)->
numM_neg_aux xs
(if x < 0 then 1 + curr_neg
else curr_neg)
in num_neg_aux ? ?

9/14/24 60

‘ Your turn: num_neg — tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =
match list with [] -> curr_neg
| (X ::xs)->
num_neg_aux Xxs
(if x < 0 then 1 + curr_neg
else curr_neg)
in num_neg_aux list ?

9/14/24 61

‘ Your turn: num_neg — tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =
match list with [] -> curr_neg
| (X ::xs)->
nuM_neg_aux Xs
(if x < 0 then 1 + curr_neg
else curr_neg)
in num_neg_aux list 0

9/14/24 62

*

let num_neg list =
List.fold_left
(fun curr_neg -> (fun x ->
(if x < 0 then 1 + curr_neg else curr_neq)
)

)
0

list

9/14/24 63

‘ Folding

let rec fold_left f a list = match list
with []-> a | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a->'b->'a)->'a->'blist->'a=
<fun>

fold_left f a [Xy; Xp;...;%n] = F(...(F (f @ Xq) Xp)...)X,

let rec fold_right f list b = match list
with[]->b | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a->'b->"'b) -> 'alist->'b->'b =
<fun>

fold_right f [Xy; X5;...;%,] b = f x4(f X, (...(F X, b)...))

9/14/24 83

‘ Folding

= Can replace recursion by fold_right in any
forward primitive recursive definition
= Primitive recursive means it only recurses on
immediate subcomponents of recursive data
structure
= Can replace recursion by fold_left in any tail
primitive recursive definition

9/14/24 84

‘ Mapping Recursion

let rec map f list =
match list
with []-> []
| (h::t) -> (fh) :: (map ft);;
val map : (‘a->'b) -> 'alist -> 'b list = <fun>
map plus_two fib5;;
-rintlist = [10; 7; 5; 4; 3; 3]
map (fun x -> x - 1) fib6;;
vintlist =[12; 7; 4; 2; 1; 0; 0]

9/14/24 85

‘ Map is forward recursive

let rec map f list =

match list

with [] -

| :: ->[(Fn)|::[(map fo)};
val map-: (‘a~<> 'b) -> 'a list -> 'b list = <fun>
let map f list =

List.fold_right (fun h -> funr-> (fh) :: r)
list [1;;

val map : ('a->"'b) -> 'alist -> 'b list = <fun>

9/14/24 86

‘ Mapping Recursion

= Can use the higher-order recursive map

function instead of direct recursion

let doublelList list =
List.map (fun x -> 2 * x) list;;
val doublelList : int list -> int list = <fun>
doublelList [2;3;4];;
- 1 int list = [4; 6; 8]

9/14/24 87

‘ Mapping Recursion

= Can use the higher-order recursive map
function instead of direct recursion

let doubleList list =
List.map (fun x -> 2 * x) list;;
val doublelList : int list -> int list = <fun>
doublelList [2;3;4];;
- rint list = [4; 6, 8]

= Same function, but no explicit recursion

9/14/24 88

