
9/14/24 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
https://courses.engr.illinois.edu/cs421/fa2017/CS421D

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

9/14/24 2

Structural Recursion

n Functions on recursive datatypes (eg lists)
tend to be recursive

n Recursion over recursive datatypes generally
by structural recursion
n Recursive calls made to components of structure

of the same recursive type
n Base cases of recursive types stop the recursion

of the function

9/14/24 3

Functions Over Lists

let rec double_up list =
match list
with [] -> [] (* pattern before ->,

expression after *)
| (x :: xs) -> (x :: x :: double_up xs);;

val double_up : 'a list -> 'a list = <fun>
let fib5_2 = double_up fib5;;
val fib5_2 : int list = [8; 8; 5; 5; 3; 3; 2; 2; 1;

1; 1; 1]

9/14/24 4

Functions Over Lists

let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"]
let rec poor_rev list =
match list
with [] -> []

| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>
poor_rev silly;;
- : string list = ["there"; "there"; "hi"; "hi"]

Your turn: doubleList : int list -> int list

n Write a function that takes a list of int and
returns a list of the same length, where each
element has been multiplied by 2

let rec doubleList list =
match list with [] -> []
| (first :: rest) -> (2 * first) :: (doubleList rest)

9/14/24 6

Your turn: doubleList : int list -> int list

n Write a function that takes a list of int and
returns a list of the same length, where each
element has been multiplied by 2

let rec doubleList list =
match list

with [] ->[]
| x :: xs -> (2 * x) :: doubleList xs

9/14/24 7

Your turn: doubleList : int list -> int list

n Write a function that takes a list of int and
returns a list of the same length, where each
element has been multiplied by 2

let rec doubleList list =
match list

with [] ->[]
| x :: xs -> (2 * x) :: doubleList xs

9/14/24 8

Same Length

n How can we efficiently answer if two lists
have the same length?

9/14/24 17

Same Length

n How can we efficiently answer if two lists
have the same length?

let rec same_length list1 list2 =
match list1 with [] ->

(match list2 with [] -> true
| (y::ys) -> false)

| (x::xs) ->
(match list2 with [] -> false

| (y::ys) -> same_length xs ys)
9/14/24 18

Same Length

n How can we efficiently answer if two lists
have the same length?

let rec same_length list1 list2 =
match list1 with [] ->

(match list2 with [] -> true
| (y::ys) -> false)

| (x::xs) ->
(match list2 with [] -> false

| (y::ys) -> same_length xs ys)
9/14/24 19

Same Length

n How can we efficiently answer if two lists
have the same length?

let rec same_length list1 list2 =
match list1 with [] ->

(match list2 with [] -> true
| (y::ys) -> false)

| (x::xs) ->
(match list2 with [] -> false

| (y::ys) -> same_length xs ys)
9/14/24 20

Same Length

n How can we efficiently answer if two lists
have the same length?

let rec same_length list1 list2 =
match list1 with [] ->

(match list2 with [] -> true
| (y::ys) -> false)

| (x::xs) ->
(match list2 with [] -> false

| (y::ys) -> same_length xs ys)
9/14/24 21

Same Length

n How can we efficiently answer if two lists
have the same length?

let rec same_length list1 list2 =
match list1 with [] ->

(match list2 with [] -> true
| (y::ys) -> false)

| (x::xs) ->
(match list2 with [] -> false

| (y::ys) -> same_length xs ys)
9/14/24 22

Same Length

n How can we efficiently answer if two lists
have the same length?

let rec same_length list1 list2 =
match list1 with [] ->

(match list2 with [] -> true
| (y::ys) -> false)

| (x::xs) ->
(match list2 with [] -> false

| (y::ys) -> same_length xs ys)
9/14/24 23

9/14/24 25

Folding Recursion

n Another common form “folds” an operation
over the elements of the structure

let rec multList list = match list
with [] -> 1
| x::xs -> x * multList xs;;

val multList : int list -> int = <fun>
multList [2;4;6];;
- : int = 48
n Computes (2 * (4 * (6 * 1)))

9/14/24 26

Folding Recursion : Length Example

let rec length list = match list
with [] -> 0 (* Nil case *)
| a :: bs -> 1 + length bs;; (* Cons case *)

val length : 'a list -> int = <fun>
length [5; 4; 3; 2];;
- : int = 4
n Nil case [] is base case, 0 is the base value
n Cons case recurses on component list bs
n What do multList and length have in common?

9/14/24 28

Forward Recursion

n In Structural Recursion, split input into
components and (eventually) recurse

n Forward Recursion form of Structural
Recursion

n In forward recursion, first call the function
recursively on all recursive components, and
then build final result from partial results

n Wait until whole structure has been
traversed to start building answer

9/14/24 29

Forward Recursion: Examples

let rec double_up list =
match list
with [] -> []

| (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
match list
with [] -> []

| (x::xs) -> let r = poor_rev xs in r @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

9/14/24 30

Forward Recursion: Examples

let rec double_up list =
match list
with [] -> []

| (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

Base Case Operator Recursive Call
let rec poor_rev list =
match list
with [] -> []

| (x::xs) -> let r = poor_rev xs in r @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

Base Case Operator Recursive Call
9/14/24 31

Recursing over lists

let rec fold_right f list b =
match list
with [] -> b
| (x :: xs) -> f x (fold_right f xs b);;

val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b =
<fun>

fold_right
(fun s -> fun () -> print_string s)
["hi"; "there"]
();;

therehi- : unit = ()

The Primitive
Recursion Fairy

9/14/24 32

Folding Recursion : Length Example

let rec length list = match list
with [] -> 0 (* Nil case *)
| a :: bs -> 1 + length bs;; (* Cons case *)

val length : 'a list -> int = <fun>
let length list =
fold_right (fun a -> fun r -> 1 + r) list 0;;
val length : 'a list -> int = <fun>
length [5; 4; 3; 2];;
- : int = 4

9/14/24 33

Forward Recursion: Examples

let rec double_up list =
match list
with [] -> []

| (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

Base Case Operator Recursive Call
let double_up =

fold_right (fun x -> fun r -> x :: x :: r) list []
Operator Recursive result Base Case

double_up ["a";"b"];;
- : string list = ["a"; "a"; "b"; "b"]

n let rec multList_fr list =
match list

with [] -> 1
| (x::xs) -> let r = (multList_fr xs) in

(x * r)

9/14/24 34 9/14/24 35

Folding Recursion

n multList folds to the right
n Same as:
let multList list =

List.fold_right
(fun x -> fun p -> x * p)
list 1;;

val multList : int list -> int = <fun>
multList [2;4;6];;
- : int = 48

9/14/24 49

Terminology

n Available: A function call that can be
executed by the current expression

n The fastest way to be unavailable is to be
guarded by an abstraction (anonymous
function, lambda lifted).
n if (h x) then f x else (x + g x)
n if (h x) then (fun x -> f x) else (g (x + x))

Not available

9/14/24 50

Terminology

n Tail Position: A subexpression s of
expressions e, which is available and such
that if evaluated, will be taken as the value
of e (last thing done in this expression)
n if (x>3) then x + 2 else x - 4
n let x = 5 in x + 4

n Tail Call: A function call that occurs in tail
position
n if (h x) then f x else (x + g x)

9/14/24 51

Tail Recursion

n A recursive program is tail recursive if all
recursive calls are tail calls

n Tail recursive programs may be optimized to
be implemented as loops, thus removing the
function call overhead for the recursive calls

n Tail recursion generally requires extra
“accumulator” arguments to pass partial
results
n May require an auxiliary function

Tail Recursion - length

n How can we write length with tail recursion?
let length list =

let rec length_aux list acc_length =
match list
with [] -> acc_length

| (x::xs) ->
length_aux xs (1 + acc_length)

in length_aux list 0

9/14/24 52

Your turn: num_neg – tail recursive

let num_neg list =

9/14/24 55

Your turn: num_neg – tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =

in num_neg_aux ? ?

9/14/24 56

Your turn: num_neg – tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =

match list with [] ->
| (x :: xs) ->

in num_neg_aux ? ?

9/14/24 57

Your turn: num_neg – tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =

match list with [] -> curr_neg
| (x :: xs) ->

in num_neg_aux ? ?

9/14/24 58

Your turn: num_neg – tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =

match list with [] -> curr_neg
| (x :: xs) ->

num_neg_aux xs ?

in num_neg_aux ? ?

9/14/24 59

Your turn: num_neg – tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =

match list with [] -> curr_neg
| (x :: xs) ->

num_neg_aux xs
(if x < 0 then 1 + curr_neg
else curr_neg)

in num_neg_aux ? ?

9/14/24 60

Your turn: num_neg – tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =

match list with [] -> curr_neg
| (x :: xs) ->

num_neg_aux xs
(if x < 0 then 1 + curr_neg
else curr_neg)

in num_neg_aux list ?

9/14/24 61

Your turn: num_neg – tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =

match list with [] -> curr_neg
| (x :: xs) ->

num_neg_aux xs
(if x < 0 then 1 + curr_neg
else curr_neg)

in num_neg_aux list 0

9/14/24 62

let num_neg list =
List.fold_left

(fun curr_neg -> (fun x ->
(if x < 0 then 1 + curr_neg else curr_neg)

)
)

0
list

9/14/24 63 9/14/24 83

Folding

let rec fold_left f a list = match list
with [] -> a | (x :: xs) -> fold_left f (f a x) xs;;

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a =
<fun>

fold_left f a [x1; x2;…;xn] = f(…(f (f a x1) x2)…)xn

let rec fold_right f list b = match list
with [] -> b | (x :: xs) -> f x (fold_right f xs b);;

val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b =
<fun>

fold_right f [x1; x2;…;xn] b = f x1(f x2 (…(f xn b)…))

9/14/24 84

Folding

n Can replace recursion by fold_right in any
forward primitive recursive definition
n Primitive recursive means it only recurses on

immediate subcomponents of recursive data
structure

n Can replace recursion by fold_left in any tail
primitive recursive definition

9/14/24 85

Mapping Recursion

let rec map f list =
match list
with [] -> []
| (h::t) -> (f h) :: (map f t);;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
map plus_two fib5;;
- : int list = [10; 7; 5; 4; 3; 3]
map (fun x -> x - 1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; 0]

9/14/24 86

Map is forward recursive

let rec map f list =
match list
with [] -> []
| (h::t) -> (f h) :: (map f t);;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
let map f list =

List.fold_right (fun h -> fun r -> (f h) :: r)
list [];;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

9/14/24 87

Mapping Recursion

n Can use the higher-order recursive map
function instead of direct recursion

let doubleList list =
List.map (fun x -> 2 * x) list;;

val doubleList : int list -> int list = <fun>
doubleList [2;3;4];;
- : int list = [4; 6; 8]
Same function, but no rec

9/14/24 88

Mapping Recursion

n Can use the higher-order recursive map
function instead of direct recursion

let doubleList list =
List.map (fun x -> 2 * x) list;;

val doubleList : int list -> int list = <fun>
doubleList [2;3;4];;
- : int list = [4; 6; 8]
n Same function, but no explicit recursion

