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i Where We Are Going Next?

= We want to turn strings (code) into
computer instructions

= Done in phases

= Turn strings into abstract syntax trees

(parse)
= Translate abstract syntax trees into
executable instructions (interpret or compile)
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i Meta-discourse

= Language Syntax and Semantics
= Syntax
- Regular Expressions, DFSAs and NDFSAs
- Grammars
= Semantics
- Natural Semantics
- Transition Semantics
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i Language Syntax

= Syntax is the description of which strings of
symbols are meaningful expressions in a
language

= It takes more than syntax to understand a
language; need meaning (semantics) too

= Syntax is the entry point
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i Syntax of English Language

s Pattern 1

sings
The dog | barked

Susan | vawned

" Paem 2 [ subject [ Verb | Direct Object _

David sings | ballads

The professor | wants | to retire

The jury found | the defendant guilty
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i Elements of Syntax

= Character set — previously always ASCII,
now often 64 character sets

= Keywords — usually reserved

= Special constants — cannot be assigned to
= Identifiers — can be assigned to

= Operator symbols

= Delimiters (parenthesis, braces, brackets)
= Blanks (aka white space)
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i Elements of Syntax

= EXpressions
If ... then begin ... ; ... end else begin ... ; ... end

= [ype expressions
typexpr, -> typexpr,

= Declarations (in functional languages)
let pattern = expr

= Statements (in imperative languages)
a=b+c

= Subprograms
let pattern, = expr, in expr
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i Elements of Syntax

= Modules
= Interfaces
= Classes (for object-oriented languages)
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i Lexing and Parsing

= Converting strings to abstract syntax trees
done in two phases

= Lexing: Converting string (or streams of
characters) into lists (or streams) of
tokens (the “words” of the language)

= Specification Technique: Regular Expressions

= Parsing: Convert a list of tokens into an
abstract syntax tree

= Specification Technique: BNF Grammars
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i Formal Language Descriptions

= Regular expressions, regular grammars,
finite state automata

= Context-free grammars, BNF grammars,
syntax diagrams

= Whole family more of grammars and
automata — covered in automata theory
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i Grammars

= Grammars are formal descriptions of which
strings over a given character set are in a
particular language

= Language designers write grammar

= Language implementers use grammar to
know what programs to accept

= Language users use grammar to know how
to write legitimate programs
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i Regular Expressions - Review

= Start with a given character set —
a b, c.
- L(g) = {""}
= Each character is a regular expression

= It represents the set of one string
containing just that character

= [(a) ={a}
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i Regular Expressions

= If x and y are regular expressions, then xy is
a regular expression

= It represents the set of all strings made from first
a string described by x then a string described by

Yy
If L(x)={a,ab} and L(y)={c,d}
then L(xy) ={ac,ad,abc,abd}
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i Regular Expressions

= If x and y are regular expressions, then xvy
IS @ regular expression

= It represents the set of strings described by
either x or y

If /(x)={a,ab} and L(y)={c,d}
then L(x v y)={a,ab,c,d}
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i Regular Expressions

= If X is a regular expression, then so is (x)
= It represents the same thing as x

= If X is a regular expression, then so is x*

« It represents strings made from concatenating zero
or more strings from x

If /(x) = {a,ab} then L(x*) ={"",a,ab,aa,aab,abab,...}
m €
= It represents {“"}, set containing the empty string

s @
= It represents { }, the empty set
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i Example Regular Expressions

O (0V1)*1
= The set of all strings of 0's and 1’ s ending in 1,
{1,01,11,...}
O a*b(a*)
= The Iget of all strings of a’ s and b’ s with exactly
one

= ((01) v(10))*
= You tell me

= Regular expressions (equivalently, regular
grammars) important for lexing, breaking
strings into recognized words
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i Right Regular Grammars

Subclass of BNF (covered in detail sool)

Only rules of form
<nonterminal>::=<terminal><nonterminal> or
<nonterminal>::=<terminal> or
<nonterminal>::=¢

Defines same class of languages as regular
expressions

Important for writing lexers (programs that
convert strings of characters into strings of
tokens)

Close connection to nondeterministic finite state
automata — nonterminals = states; rule = edge
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i Example

= Right regular grammar:
<Balanced> ::= ¢
<Balanced> ::= 0<OneAndMore>
<Balanced> ::= 1<ZeroAndMore>
<OneAndMore> ::= 1<Balanced>
<ZeroAndMore> ::= 0<Balanced>

= Generates even length strings where every
initial substring of even length has same
numberof 0’sas 1’s
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i Implementing Regular Expressions

= Regular expressions reasonable way to
generate strings in language

= Not so good for recognizing when a
string is in language
= Problems with Regular Expressions

= Which option to choose,
= how many repetitions to make

s Answer: finite state automata
= Should have seen in CS374
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i Example: Lexing

= Regular expressions good for describing
lexemes (words) in @ programming language

« Identifier=(avbv..vzvAvBv..v/Z)(a
vbv..vzvAvBv..vZvOv1lv..v9*

« Digt=0v1v..v9)

« Number=0v(1v..v9)O0v..v9*v
~(1lv..v90v..vI*

» Keywords: if = if, while = while, ...
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i Lexing

= Different syntactic categories of “words™:
tokens

Example:

= Convert sequence of characters into
sequence of strings, integers, and floating
point numbers.

= "asd 123 jkl 3.14" will become:

[String "asd"; Int 123; String "jkl"; Float
3.14]
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i Lex, ocamllex

= Could write the reg exp, then translate to
DFA by hand

= A lot of work

= Better: Write program to take reg exp as
input and automatically generates automata

= Lex is such a program
s ocamllex version for ocaml
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i How to do it

= TO use regular expressions to parse
our input we need:

= Some way to identify the input string
— call it a lexing buffer

= Set of regular expressions,

= Corresponding set of actions to take
when they are matched.
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i How to do it

= The lexer will take the regular expressions
and generate a state machine.

= The state machine will take our lexing buffer
and apply the transitions...

= If we reach an accepting state from which
we can go no further, the machine will
perform the appropriate action.
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i Mechanics

= Put table of reg exp and corresponding
actions (written in ocaml) into a file
< filename>.mll

= Call

ocamllex < filename>.mll

= Produces Ocaml code for a lexical analyzer in
file <filename>.ml
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i Sample Input

rule main = parse

'0'-'9']+ { print_string "Int\n"}
['0'-'9"]+".''0"-'9"]+ { print_string "Float\n"}
['a'-'z']+ { print_string "String\n"}

_{ main lexbuf }

{

let newlexbuf = (Lexing.from_channel stdin) in
main newlexbuf

¥
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i General Input

{ header }

let /gent = regexp ...

rule entrypoint [ argl... argn] = parse
regexp { action }

regexp { action }
and entrypoint|argl... argn] = parse ...and

{ trailer }
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i Ocamllex Input

s header and trailer contain arbitrary
ocaml| code put at top an bottom of
<filename>.ml

s let /dent = regexp ... Introduces ident
for use in later regular expressions
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i Ocamllex Input

n <fllename>.ml contains one lexing
function per entrypoint

= Name of function is name given for
entrypoint

= Each entry point becomes an Ocaml
function that takes n+1 arguments, the
extra implicit last argument being of type
Lexing.lexbuf

= grgl... argn are for use in action
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i Ocamllex Regular Expression

= Single quoted characters for letters:
£a7

s . (underscore) matches any letter
m Eof: special “end_of_file” marker
= Concatenation same as usual

s " String’: concatenation of sequence
of characters

m €,/ &,: choice - what was e,V e,
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i Ocamllex Regular Expression

m [C, - C,]: choice of any character
between first and second inclusive, as
determined by character codes

s [C, - C;]: choice of any character NOT
In set

= &°: same as before

m &+ Same as e e*

m &7; option -was e v ¢
m (€): same as e
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i Ocamllex Regular Expression

m &, # e, the characters in ¢, but not in e,
e, and e, must describe just sets of
characters

m /dent. abbreviation for earlier reg exp in
let /gent = regexp

m &,as /d. binds the result of e, to /dto
be used in the associated action
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‘L Ocamllex Manual

s More details can be found at
Version for ocaml 4.07:

https://v2.ocaml.org/releases/4.07/htmlman/le
xyacc.html

Current version (ocaml 4.14)

https://v2.0caml.org/releases/4.14/htmiman/le
Xyacc.html

(same, except formatting, I think)
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i Example : test.mll

{ type result = Int of int | Float of float
| String of string }

let digit = ['0'-"9"]

let digits = digit +

let lower case = ['a'-"z"]

let upper case = ['A'-"Z"]

let letter = upper _case | lower_ case
let letters = letter +
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i Example : test.mll

rule main = parse
(digits)'.'digits as f
{ Float (float of string f) }

digits as n { Int (int_of string n) }
letters as s { String s}
_{ main lexbuf }

{ let newlexbuf =
(Lexing.from channel stdin) in
print_newline ();
main newlexbuf }
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i Example

# #use "test.ml";;

val main : Lexing.lexbuf -> result = <fun>

val __ocaml_lex_main_rec : Lexing.lexbuf -> int ->
result = <fun>

hi there 234 5.2
- 1 result = String "hi”

What happened to the rest?!?
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‘L Example

# let b = Lexing.from_channel stdin;;
# main b;;

hi 673 there

- : result = String "hi"

# main b;;

- result = Int 673

# main b;;

- : result = String "there"
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i Problem

= How to get lexer to look at more than the
first token at one time?

s Answer: action has to tell it to -- recursive
calls

= Not what you want to sew this together with
ocamlyacc

= Side Benefit: can add “state” into lexing
= Note: already used this with the _ case
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i Example

rule main = parse
(digits) '.' digits as f
{ Float (float of string f) :: main lexbuf}
| digits as n
{ Int (int_of_string n) :: main lexbuf }
| letters as s
{ String s :: main lexbuf}

| eof { []}
| { main lexbuf }
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i Example Results

hi there 234 5.2

- : result list = [String "hi"; String "there"; Int
234; Float 5.2]

#

Used Ctrl-d to send the end-of-file signal
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Dealing with comments

First Attempt |

let open_comment = "(*"
let close_comment = "*)"
rule main = parse

édlgltS) "' digits as f { Float (float_of_string
main lexbuf?}

| digits as n { Int (int_of_string n) ::
main lexbuf }

| letters as s { String s :: main lexbuf}
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i Dealing with comments

open_comment { comment lexbuf}
eof {1}
_{ main lexbuf }
and comment = parse
close_comment { main lexbuf }
| { comment lexbuf }
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i Dealing with nested comments

rule main = parse ...
open_comment { comment 1 lexbuf?}
eof {7}
_{ main lexbuf }
and comment depth = parse
open_comment { comment (depth+1) lexbuf

}

| close_comment { if depth =1

then main lexbuf

else comment (depth - 1) lexbuf }
| _ { comment depth lexbuf }
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i Dealing with nested comments

rule main = parse

(digits) "." digits as f { Float (float_of_string f) ::
main lexbuf}

| digits as n { Int (int_of_string n) :: main
lexbuf }
letters as s { String s :: main lexbuf}
open_comment { (comment 1 lexbuf}
eof {15}
_{ main lexbuf }
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i Dealing with nested comments

and comment depth = parse
open_comment { comment (depth+1) lexbuf

¥

| close_comment {ifdepth =1

then main lexbuf

else comment (depth - 1) lexbuf }
{ comment depth lexbuf }
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i Types of Formal Language Descriptions

= Regular expressions, regular grammars

= Context-free grammars, BNF grammars,
syntax diagrams

s Finite state automata
= Pushdown automata

= Whole family more of grammars and
automata — covered in automata theory
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i Sample Grammar

= Language: Parenthesized sums of 0’ s and
1's

= <Sum> ::=0

= <Sum >::=1

s <Sum> ;= <Sum> + <Sum>

= <Sum> ::= (<Sum>)
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i BNF Grammars

= Start with a set of characters, a,b,c,...
=« We call these terminals

= Add a set of different characters,
XY, Z,...
= We call these nonterminals

= One special nonterminal S called start
symbol
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i BNF Grammars

= BNF rules (aka productions) have form
Xiu=y
where X is any nonterminal and yis a string
of terminals and nonterminals

s BNF grammaris a set of BNF rules such that
every nonterminal appears on the left of
some rule
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i Sample Grammar

= Terminals: 01 + ()
= Nonterminals: <Sum>
= Start symbol = <Sum>

<Sum> ::=0
<Sum >::=1
<Sum> ::= <Sum> + <Sum>

<Sum> ::= (<Sum>)
Can be abbreviated as
<Sum> ::=0] 1
| <Sum> + <Sum> | (<Sum>)
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i BNF Deriviations

= Given rules
Xi:i= )yZwand Z::=v
we may replace Z by vto say
X=>)VZw => yvw

= Sequence of such replacements called
derivation

= Derivation called right-most if always
replace the right-most non-terminal
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i BNF Derivations

= Start with the start symbol:

<Sum> =>
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i BNF Derivations

= Pick a non-terminal

<Sum> =>
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i BNF Derivations

s Pick a rule and substitute:
s <Sum> ;1= <Sum> + <Sum>
<Sum> => <Sum> + <Sum >
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i BNF Derivations

= Pick a non-terminal:

<Sum> => <Sum> + <Sum >
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i BNF Derivations

= Pick a rule and substitute:
s <Sum> = ( <Sum> )
<Sum> => <Sum> + <Sum >
=> ( <Sum> ) + <Sum>
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i BNF Derivations

= Pick a non-terminal:

<Sum> => <Sum> + <Sum >
=> ( <Sum> ) + <Sum>
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i BNF Derivations

= Pick a rule and substitute:
= <Sum> ::= <Sum> + <Sum>
<Sum> => <Sum> + <Sum >
=> ( <Sum> ) + <Sum>

=> ( <Sum> + <Sum> ) + <Sum>
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i BNF Derivations

= Pick a non-terminal:
<Sum> => <Sum> + <Sum >

=> ( <Sum> ) + <Sum>
=> ( <Sum> + <Sum> ) + <Sum>
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i BNF Derivations

= Pick a rule and substitute:
= <Sum >::=1
<Sum> => <Sum> + <Sum >
=> ( <Sum> ) + <Sum>
=> ( <Sum> + <Sum> ) + <Sum>
=> ( <Sum> + 1) + <Sum>
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i BNF Derivations

= Pick a non-terminal:

<Sum> => <Sum> + <Sum >
=> ( <Sum> ) + <Sum>
=> ( <Sum> + <Sum> ) + <Sum>
=> ( <Sum> + 1) + <Sum>
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i BNF Derivations

= Pick a rule and substitute:
= <Sum >::=0
<Sum> => <Sum> + <Sum >
=> ( <Sum> ) + <Sum>
=> ( <Sum> + <Sum> ) + <Sum>
=> ( <Sum> + 1) + <Sum>
=>(<Sum>+1)+0
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i BNF Derivations

= Pick a non-terminal:

<Sum> => <Sum> + <Sum >
=> ( <Sum> ) + <Sum>
=> ( <Sum> + <Sum> ) + <Sum>
=> ( <Sum> + 1) + <Sum>
=>(<Sum> +1)+0
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i BNF Derivations

= Pick a rule and substitute
« <Sum> ;=0

<Sum> => <Sum> + <Sum >
=> ( <Sum> ) + <Sum>
=> ( <Sum> + <Sum> ) + <Sum>
=> ( <Sum> + 1) + <Sum>
=>(<Sum> +1)0
=>(0+1)+0
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i BNF Derivations

= (0+ 1)+ 0 isgenerated by grammar

<Sum> => <Sum> + <Sum >
=> ( <Sum> ) + <Sum>
=> ( <Sum> + <Sum> ) + <Sum>
=> ( <Sum> + 1) + <Sum>
=>(<Sum>+1)+0
=>(0+1)+0
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