Programming Languages and
Compilers (CS 421)

Elsa L Gunter (Lecture 18)
Sasa Misailovic (Lecture 19)
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

10/29/2024

http://courses.engr.illinois.edu/cs421

i Major Phases of a Compiler

Optimize
Source Program Optimized IR N
Lex Instruction Relocatable
Tokens Selection Object Code
Parse Unoptimized Machine- Linker
Abstract Syntax | Specific Assembly Language | Machine
Semantic Optimize Code
Analysis Optimized Machine-Specific

Symbol Table Assembly Language
Translate Emit code

Intermediate
Representation

Assembly Language

Assembler

Modified from “Modern Compiler Implementation in ML”, by Andrew Appel

i Where We Are Going Next?

= We want to turn strings (code) into
computer instructions

= Done in phases

= Turn strings into abstract syntax trees

(parse)
= Translate abstract syntax trees into
executable instructions (interpret or compile)

10/29/2024 40

i Meta-discourse

= Language Syntax and Semantics
= Syntax
- Regular Expressions, DFSAs and NDFSAs
- Grammars
= Semantics
- Natural Semantics
- Transition Semantics

10/29/2024 41

i Language Syntax

= Syntax is the description of which strings of
symbols are meaningful expressions in a
language

= It takes more than syntax to understand a
language; need meaning (semantics) too

= Syntax is the entry point

10/29/2024 42

i Syntax of English Language

s Pattern 1

sings
The dog | barked

Susan | vawned

" Paem 2 [subject [Verb | Direct Object _

David sings | ballads

The professor | wants | to retire

The jury found | the defendant guilty

10/29/2024 43

i Elements of Syntax

= Character set — previously always ASCII,
now often 64 character sets

= Keywords — usually reserved

= Special constants — cannot be assigned to
= Identifiers — can be assigned to

= Operator symbols

= Delimiters (parenthesis, braces, brackets)
= Blanks (aka white space)

10/29/2024

44

i Elements of Syntax

= EXpressions
If ... then begin ... ; ... end else begin ... ; ... end

= [ype expressions
typexpr, -> typexpr,

= Declarations (in functional languages)
let pattern = expr

= Statements (in imperative languages)
a=b+c

= Subprograms
let pattern, = expr, in expr

10/29/2024 45

i Elements of Syntax

= Modules
= Interfaces
= Classes (for object-oriented languages)

10/29/2024 46

i Lexing and Parsing

= Converting strings to abstract syntax trees
done in two phases

= Lexing: Converting string (or streams of
characters) into lists (or streams) of
tokens (the “words” of the language)

= Specification Technique: Regular Expressions

= Parsing: Convert a list of tokens into an
abstract syntax tree

= Specification Technique: BNF Grammars

10/29/2024 47

i Formal Language Descriptions

= Regular expressions, regular grammars,
finite state automata

= Context-free grammars, BNF grammars,
syntax diagrams

= Whole family more of grammars and
automata — covered in automata theory

10/29/2024

48

i Grammars

= Grammars are formal descriptions of which
strings over a given character set are in a
particular language

= Language designers write grammar

= Language implementers use grammar to
know what programs to accept

= Language users use grammar to know how
to write legitimate programs

10/29/2024 49

i Regular Expressions - Review

= Start with a given character set —
a b, c.
- L(g) = {""}
= Each character is a regular expression

= It represents the set of one string
containing just that character

= [(a) ={a}

10/29/2024 50

i Regular Expressions

= If x and y are regular expressions, then xy is
a regular expression

= It represents the set of all strings made from first
a string described by x then a string described by

Yy
If L(x)={a,ab} and L(y)={c,d}
then L(xy) ={ac,ad,abc,abd}

10/29/2024 51

i Regular Expressions

= If x and y are regular expressions, then xvy
IS @ regular expression

= It represents the set of strings described by
either x or y

If /(x)={a,ab} and L(y)={c,d}
then L(x v y)={a,ab,c,d}

10/29/2024 52

i Regular Expressions

= If X is a regular expression, then so is (x)
= It represents the same thing as x

= If X is a regular expression, then so is x*

« It represents strings made from concatenating zero
or more strings from x

If /(x) = {a,ab} then L(x*) ={"",a,ab,aa,aab,abab,...}
m €
= It represents {“"}, set containing the empty string

s @
= It represents { }, the empty set

10/29/2024 53

i Example Regular Expressions

O (0V1)*1
= The set of all strings of 0's and 1’ s ending in 1,
{1,01,11,...}
O a*b(a*)
= The Iget of all strings of a’ s and b’ s with exactly
one

= ((01) v(10))*
= You tell me

= Regular expressions (equivalently, regular
grammars) important for lexing, breaking
strings into recognized words

10/29/2024 54

i Right Regular Grammars

Subclass of BNF (covered in detail sool)

Only rules of form
<nonterminal>::=<terminal><nonterminal> or
<nonterminal>::=<terminal> or
<nonterminal>::=¢

Defines same class of languages as regular
expressions

Important for writing lexers (programs that
convert strings of characters into strings of
tokens)

Close connection to nondeterministic finite state
automata — nonterminals = states; rule = edge

10/29/2024 55

i Example

= Right regular grammar:
<Balanced> ::= ¢
<Balanced> ::= 0<OneAndMore>
<Balanced> ::= 1<ZeroAndMore>
<OneAndMore> ::= 1<Balanced>
<ZeroAndMore> ::= 0<Balanced>

= Generates even length strings where every
initial substring of even length has same
numberof 0’sas 1’s

10/29/2024 56

i Implementing Regular Expressions

= Regular expressions reasonable way to
generate strings in language

= Not so good for recognizing when a
string is in language
= Problems with Regular Expressions

= Which option to choose,
= how many repetitions to make

s Answer: finite state automata
= Should have seen in CS374

10/29/2024 57

i Example: Lexing

= Regular expressions good for describing
lexemes (words) in @ programming language

« Identifier=(avbv..vzvAvBv..v/Z)(a
vbv..vzvAvBv..vZvOv1lv..v9*

« Digt=0v1v..v9)

« Number=0v(1v..v9)O0v..v9*v
~(1lv..v90v..vI*

» Keywords: if = if, while = while, ...

10/29/2024 58

i Lexing

= Different syntactic categories of “words™:
tokens

Example:

= Convert sequence of characters into
sequence of strings, integers, and floating
point numbers.

= "asd 123 jkl 3.14" will become:

[String "asd"; Int 123; String "jkl"; Float
3.14]

10/29/2024 59

i Lex, ocamllex

= Could write the reg exp, then translate to
DFA by hand

= A lot of work

= Better: Write program to take reg exp as
input and automatically generates automata

= Lex is such a program
s ocamllex version for ocaml

10/29/2024 60

i How to do it

= TO use regular expressions to parse
our input we need:

= Some way to identify the input string
— call it a lexing buffer

= Set of regular expressions,

= Corresponding set of actions to take
when they are matched.

10/29/2024 61

i How to do it

= The lexer will take the regular expressions
and generate a state machine.

= The state machine will take our lexing buffer
and apply the transitions...

= If we reach an accepting state from which
we can go no further, the machine will
perform the appropriate action.

10/29/2024 62

i Mechanics

= Put table of reg exp and corresponding
actions (written in ocaml) into a file
< filename>.mll

= Call

ocamllex < filename>.mll

= Produces Ocaml code for a lexical analyzer in
file <filename>.ml

10/29/2024 63

i Sample Input

rule main = parse

'0'-'9']+ { print_string "Int\n"}
['0'-'9"]+".''0"-'9"]+ { print_string "Float\n"}
['a'-'z']+ { print_string "String\n"}

_{ main lexbuf }

{

let newlexbuf = (Lexing.from_channel stdin) in
main newlexbuf

¥

10/29/2024

64

i General Input

{ header }

let /gent = regexp ...

rule entrypoint [argl... argn] = parse
regexp { action }

regexp { action }
and entrypoint|argl... argn] = parse ...and

{ trailer }

10/29/2024

65

i Ocamllex Input

s header and trailer contain arbitrary
ocaml| code put at top an bottom of
<filename>.ml

s let /dent = regexp ... Introduces ident
for use in later regular expressions

10/29/2024 66

i Ocamllex Input

n <fllename>.ml contains one lexing
function per entrypoint

= Name of function is name given for
entrypoint

= Each entry point becomes an Ocaml
function that takes n+1 arguments, the
extra implicit last argument being of type
Lexing.lexbuf

= grgl... argn are for use in action

10/29/2024 67

i Ocamllex Regular Expression

= Single quoted characters for letters:
£a7

s . (underscore) matches any letter
m Eof: special “end_of_file” marker
= Concatenation same as usual

s " String’: concatenation of sequence
of characters

m €,/ &,: choice - what was e,V e,

10/29/2024 68

i Ocamllex Regular Expression

m [C, - C,]: choice of any character
between first and second inclusive, as
determined by character codes

s [C, - C;]: choice of any character NOT
In set

= &°: same as before

m &+ Same as e e*

m &7; option -was e v ¢
m (€): same as e

10/29/2024 69

i Ocamllex Regular Expression

m &, # e, the characters in ¢, but not in e,
e, and e, must describe just sets of
characters

m /dent. abbreviation for earlier reg exp in
let /gent = regexp

m &,as /d. binds the result of e, to /dto
be used in the associated action

10/29/2024 70

‘L Ocamllex Manual

s More details can be found at
Version for ocaml 4.07:

https://v2.ocaml.org/releases/4.07/htmlman/le
xyacc.html

Current version (ocaml 4.14)

https://v2.0caml.org/releases/4.14/htmiman/le
Xyacc.html

(same, except formatting, I think)

10/29/2024 71

https://v2.ocaml.org/releases/4.07/htmlman/lexyacc.html
https://v2.ocaml.org/releases/4.07/htmlman/lexyacc.html
https://v2.ocaml.org/releases/4.14/htmlman/lexyacc.html
https://v2.ocaml.org/releases/4.14/htmlman/lexyacc.html

i Example : test.mll

{ type result = Int of int | Float of float
| String of string }

let digit = ['0'-"9"]

let digits = digit +

let lower case = ['a'-"z"]

let upper case = ['A'-"Z"]

let letter = upper _case | lower_ case
let letters = letter +

10/29/2024 73

i Example : test.mll

rule main = parse
(digits)'.'digits as f
{ Float (float of string f) }

digits as n { Int (int_of string n) }
letters as s { String s}
_{ main lexbuf }

{ let newlexbuf =
(Lexing.from channel stdin) in
print_newline ();
main newlexbuf }

10/29/2024 74

i Example

#use "test.ml";;

val main : Lexing.lexbuf -> result = <fun>

val __ocaml_lex_main_rec : Lexing.lexbuf -> int ->
result = <fun>

hi there 234 5.2
- 1 result = String "hi”

What happened to the rest?!?

10/29/2024

75

‘L Example

let b = Lexing.from_channel stdin;;
main b;;

hi 673 there

- : result = String "hi"

main b;;

- result = Int 673

main b;;

- : result = String "there"

10/29/2024

76

i Problem

= How to get lexer to look at more than the
first token at one time?

s Answer: action has to tell it to -- recursive
calls

= Not what you want to sew this together with
ocamlyacc

= Side Benefit: can add “state” into lexing
= Note: already used this with the _ case

10/29/2024

78

i Example

rule main = parse
(digits) '.' digits as f
{ Float (float of string f) :: main lexbuf}
| digits as n
{ Int (int_of_string n) :: main lexbuf }
| letters as s
{ String s :: main lexbuf}

| eof { []}
| { main lexbuf }

10/29/2024 79

i Example Results

hi there 234 5.2

- : result list = [String "hi"; String "there"; Int
234; Float 5.2]

#

Used Ctrl-d to send the end-of-file signal

10/29/2024 80

Dealing with comments

First Attempt |

let open_comment = "(*"
let close_comment = "*)"
rule main = parse

édlgltS) "' digits as f { Float (float_of_string
main lexbuf?}

| digits as n { Int (int_of_string n) ::
main lexbuf }

| letters as s { String s :: main lexbuf}

10/29/2024 81

i Dealing with comments

open_comment { comment lexbuf}
eof {1}
_{ main lexbuf }
and comment = parse
close_comment { main lexbuf }
| { comment lexbuf }

10/29/2024

82

i Dealing with nested comments

rule main = parse ...
open_comment { comment 1 lexbuf?}
eof {7}
_{ main lexbuf }
and comment depth = parse
open_comment { comment (depth+1) lexbuf

}

| close_comment { if depth =1

then main lexbuf

else comment (depth - 1) lexbuf }
| _ { comment depth lexbuf }

10/29/2024 83

i Dealing with nested comments

rule main = parse

(digits) "." digits as f { Float (float_of_string f) ::
main lexbuf}

| digits as n { Int (int_of_string n) :: main
lexbuf }
letters as s { String s :: main lexbuf}
open_comment { (comment 1 lexbuf}
eof {15}
_{ main lexbuf }

10/29/2024 84

i Dealing with nested comments

and comment depth = parse
open_comment { comment (depth+1) lexbuf

¥

| close_comment {ifdepth =1

then main lexbuf

else comment (depth - 1) lexbuf }
{ comment depth lexbuf }

10/29/2024 85

i Types of Formal Language Descriptions

= Regular expressions, regular grammars

= Context-free grammars, BNF grammars,
syntax diagrams

s Finite state automata
= Pushdown automata

= Whole family more of grammars and
automata — covered in automata theory

10/29/2024

86

i Sample Grammar

= Language: Parenthesized sums of 0’ s and
1's

= <Sum> ::=0

= <Sum >::=1

s <Sum> ;= <Sum> + <Sum>

= <Sum> ::= (<Sum>)

10/29/2024

i BNF Grammars

= Start with a set of characters, a,b,c,...
=« We call these terminals

= Add a set of different characters,
XY, Z,...
= We call these nonterminals

= One special nonterminal S called start
symbol

10/29/2024 88

i BNF Grammars

= BNF rules (aka productions) have form
Xiu=y
where X is any nonterminal and yis a string
of terminals and nonterminals

s BNF grammaris a set of BNF rules such that
every nonterminal appears on the left of
some rule

10/29/2024 89

i Sample Grammar

= Terminals: 01 + ()
= Nonterminals: <Sum>
= Start symbol = <Sum>

<Sum> ::=0
<Sum >::=1
<Sum> ::= <Sum> + <Sum>

<Sum> ::= (<Sum>)
Can be abbreviated as
<Sum> ::=0] 1
| <Sum> + <Sum> | (<Sum>)

10/29/2024 90

i BNF Deriviations

= Given rules
Xi:i=)yZwand Z::=v
we may replace Z by vto say
X=>)VZw => yvw

= Sequence of such replacements called
derivation

= Derivation called right-most if always
replace the right-most non-terminal

10/29/2024 91

i BNF Derivations

= Start with the start symbol:

<Sum> =>

10/29/2024

92

i BNF Derivations

= Pick a non-terminal

<Sum> =>

10/29/2024

93

i BNF Derivations

s Pick a rule and substitute:
s <Sum> ;1= <Sum> + <Sum>
<Sum> => <Sum> + <Sum >

10/29/2024

94

i BNF Derivations

= Pick a non-terminal:

<Sum> => <Sum> + <Sum >

10/29/2024

95

i BNF Derivations

= Pick a rule and substitute:
s <Sum> = (<Sum>)
<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>

10/29/2024

96

i BNF Derivations

= Pick a non-terminal:

<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>

10/29/2024

97

i BNF Derivations

= Pick a rule and substitute:
= <Sum> ::= <Sum> + <Sum>
<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>

=> (<Sum> + <Sum>) + <Sum>

10/29/2024

98

i BNF Derivations

= Pick a non-terminal:
<Sum> => <Sum> + <Sum >

=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>

10/29/2024 99

i BNF Derivations

= Pick a rule and substitute:
= <Sum >::=1
<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>
=> (<Sum> + 1) + <Sum>

10/29/2024 100

i BNF Derivations

= Pick a non-terminal:

<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>
=> (<Sum> + 1) + <Sum>

10/29/2024 101

i BNF Derivations

= Pick a rule and substitute:
= <Sum >::=0
<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>
=> (<Sum> + 1) + <Sum>
=>(<Sum>+1)+0

10/29/2024 102

i BNF Derivations

= Pick a non-terminal:

<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>
=> (<Sum> + 1) + <Sum>
=>(<Sum> +1)+0

10/29/2024 103

i BNF Derivations

= Pick a rule and substitute
« <Sum> ;=0

<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>
=> (<Sum> + 1) + <Sum>
=>(<Sum> +1)0
=>(0+1)+0

10/29/2024 104

i BNF Derivations

= (0+ 1)+ 0 isgenerated by grammar

<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>
=> (<Sum> + 1) + <Sum>
=>(<Sum>+1)+0
=>(0+1)+0

10/29/2024 105

	Slide 1: Programming Languages and Compilers (CS 421)
	Slide 39: Major Phases of a Compiler
	Slide 40: Where We Are Going Next?
	Slide 41: Meta-discourse
	Slide 42: Language Syntax
	Slide 43: Syntax of English Language
	Slide 44: Elements of Syntax
	Slide 45: Elements of Syntax
	Slide 46: Elements of Syntax
	Slide 47: Lexing and Parsing
	Slide 48: Formal Language Descriptions
	Slide 49: Grammars
	Slide 50: Regular Expressions - Review
	Slide 51: Regular Expressions
	Slide 52: Regular Expressions
	Slide 53: Regular Expressions
	Slide 54: Example Regular Expressions
	Slide 55: Right Regular Grammars
	Slide 56: Example
	Slide 57: Implementing Regular Expressions
	Slide 58: Example: Lexing
	Slide 59: Lexing
	Slide 60: Lex, ocamllex
	Slide 61: How to do it
	Slide 62: How to do it
	Slide 63: Mechanics
	Slide 64: Sample Input
	Slide 65: General Input
	Slide 66: Ocamllex Input
	Slide 67: Ocamllex Input
	Slide 68: Ocamllex Regular Expression
	Slide 69: Ocamllex Regular Expression
	Slide 70: Ocamllex Regular Expression
	Slide 71: Ocamllex Manual
	Slide 73: Example : test.mll
	Slide 74: Example : test.mll
	Slide 75: Example
	Slide 76: Example
	Slide 78: Problem
	Slide 79: Example
	Slide 80: Example Results
	Slide 81: Dealing with comments
	Slide 82: Dealing with comments
	Slide 83: Dealing with nested comments
	Slide 84: Dealing with nested comments
	Slide 85: Dealing with nested comments
	Slide 86: Types of Formal Language Descriptions
	Slide 87: Sample Grammar
	Slide 88: BNF Grammars
	Slide 89: BNF Grammars
	Slide 90: Sample Grammar
	Slide 91: BNF Deriviations
	Slide 92: BNF Derivations
	Slide 93: BNF Derivations
	Slide 94: BNF Derivations
	Slide 95: BNF Derivations
	Slide 96: BNF Derivations
	Slide 97: BNF Derivations
	Slide 98: BNF Derivations
	Slide 99: BNF Derivations
	Slide 100: BNF Derivations
	Slide 101: BNF Derivations
	Slide 102: BNF Derivations
	Slide 103: BNF Derivations
	Slide 104: BNF Derivations
	Slide 105: BNF Derivations

