Programming Languages and Compilers (CS 421)

Sasa Misailovic 4110 SC, UIUC

<https://courses.engr.illinois.edu/cs421/fa2024/CS421C>

Based on slides by Elsa Gunter, which are based in part on previous slides by Mattox Beckman and updated by Vikram Adve and Gul Agha

Recursion over Recursive Data Types

- **# type exp = VarExp of string | ConstExp of const | BinOpAppExp of bin_op * exp * exp | FunExp of string * exp | AppExp of exp * exp**
- How to count the number of variables in an exp?

```
# let rec varCnt exp =
    match exp with 
       VarExp x -> 
     | ConstExp c ->
     | BinOpAppExp (b, e1, e2) ->
    | FunExp (x,e) ->
     | AppExp (e1, e2) ->
```
Why can't you pass data constructors around like regular functions in OCaml?

From the horse's mouth, Xavier Leroy, in this mailing list message from 2001:

The old Caml V3.1 implementation treated constructors as functions like SML. In Caml Light, I chose to drop this equivalence for several reasons:

- Simplicity of the compiler. Internally, constructors are not functions, and a special case is needed to transform Succ into (fun x -> Succ x) when needed. This isn't hard, but remember that Caml Light was really a minimal, stripped-down version of Caml.
- Constructors in Caml Light and OCaml really have an arity, e.g. C of int * int is really a constructor with two integer arguments, not a constructor taking one argument that is a pair. Hence, there would be two ways to map the constructor C to a function: fun $(x,y) \rightarrow C(x,y)$ or fun x y -> $C(x,y)$ The former is more natural if you come from an SML background (where constructors have 0 or 1 argument), but the latter fits better the Caml Light / OCaml execution model, which favors curried functions. By not treating constructors like functions, we avoid having to choose...
- Code clarity. While using a constructor as a function is sometimes convenient, I would arque it is often hard to read. Writing "fun x -> Succ x" is more verbose, but easier to read, I think.

From: [https://stackoverflow.com/questions/66833935/why-cant-you-pass-data](https://stackoverflow.com/questions/66833935/why-cant-you-pass-data-constructors-around-like-regular-functions-in-ocaml)[constructors-around-like-regular-functions-in-ocaml](https://stackoverflow.com/questions/66833935/why-cant-you-pass-data-constructors-around-like-regular-functions-in-ocaml)

Mutually Recursive Types

```
# type 'a tree = 
         TreeLeaf of 'a
        | TreeNode of 'a treeList
and
    'a treeList = 
          Last of 'a tree
        | More of ('a tree * 'a treeList);;
```
type 'a tree $=$ TreeLeaf of 'a | TreeNode of 'a treeList and 'a treeList = Last of 'a tree | More of ('a tree $*$ 'a treeList)

Mutually Recursive Types

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

type 'a tree $=$ TreeLeaf of 'a | TreeNode of 'a treeList and 'a treeList $=$ Last of 'a tree | More of ('a tree $*$ 'a treeList)

Mutually Recursive Types - Values

let tree = TreeNode (More (TreeLeaf 5, (More (TreeNode (More (TreeLeaf 3, Last (TreeLeaf 2))), Last (TreeLeaf 7)))));;

Mutually Recursive Types - Values

Mutually Recursive Types - Values

A more conventional picture

Mutually Recursive Functions

```
# let rec fringe tree =
     match tree with 
       (TreeLeaf x) -> [x] | (TreeNode list) -> list_fringe list
and list fringe tree list =match tree list with
        (Last tree) -> fringe tree
   | (More (tree,list)) ->
        (fringe tree) @ (list_fringe list);;
```
val fringe : 'a tree \rightarrow 'a list $=$ <fun> val list fringe : 'a treeList $-$ 'a list = $<$ fun >

Mutually Recursive Functions

- # fringe tree;;
- $-$: int list = [5; 3; 2; 7]

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList and 'a treeList = Last of 'a tree | More of ('a tree $*$ 'a treeList);;

■ Define tree_size

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList and 'a treeList = Last of 'a tree | More of ('a tree $*$ 'a treeList);;

- Define tree_size
- let rec tree size $t =$

 $match$ t with TreeLeaf $->$

| TreeNode ts ->

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList and 'a treeList = Last of 'a tree | More of ('a tree $*$ 'a treeList);;

- Define tree_size
- let rec tree size $t =$

match t with TreeLeaf \rightarrow 1

| TreeNode ts -> treeList_size ts

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList and 'a treeList = Last of 'a tree | More of ('a tree $*$ 'a treeList);; ■ Define tree_size and treeList_size let rec tree size $t =$ match t with TreeLeaf \rightarrow 1 | TreeNode ts -> treeList size ts and treeList size ts =

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList and 'a treeList = Last of 'a tree | More of ('a tree $*$ 'a treeList);; ■ Define tree_size and treeList_size let rec tree size $t =$ match t with TreeLeaf \rightarrow 1 | TreeNode ts -> treeList size ts and treeList size ts = match ts with Last t -> | More t ts' ->

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList and 'a treeList = Last of 'a tree | More of ('a tree $*$ 'a treeList);; ■ Define tree_size and treeList_size let rec tree size $t =$ match t with TreeLeaf \rightarrow 1 | TreeNode ts -> treeList size ts and treeList size ts = match ts with Last $t \rightarrow$ tree size t More t ts' -> tree_size t + treeList size ts'

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList and 'a treeList = Last of 'a tree | More of ('a tree $*$ 'a treeList);; ■ Define tree_size and treeList_size let rec tree size $t =$ match t with TreeLeaf \rightarrow 1 | TreeNode ts -> treeList size ts and treeList size ts = match ts with Last $t \rightarrow$ tree size t More t ts' -> tree_size t + treeList size ts'

Nested Recursive Types

- # type intlist = Nil | Cons of (int * intlist)
- # type 'a mylist = Nil | Cons of ('a * 'a mylist)

From the standard library: can use "type list"

- # let $x = [3]$;;
- val $x : int list = [3]$
- # let $(x : int list) = \lceil 3 \rceil$;
- val $x : int list = [3]$

Nested Recursive Types

- # type 'a labeled tree = TreeNode of ('a * 'a labeled_tree list);;
- type 'a labeled tree $=$ TreeNode of ('a $*$ 'a labeled tree list)

```
Compare: 
# type 'a tree = 
       TreeLeaf of 'a
        | TreeNode of 'a treeList
and 'a treeList = 
         Last of 'a tree
        | More of ('a tree * 'a treeList);;
```
10/8/2024 21

Nested Recursive Type Values

let ltree = TreeNode(5, [TreeNode (3, []); TreeNode (2, [TreeNode (1, []); TreeNode (7, [])]); TreeNode (5, [])]);;

Nested Recursive Type Values

Nested Recursive Type Values

Mutually Recursive Functions

let rec flatten tree labtree = match labtree with TreeNode (x,treelist) -> x::flatten_tree_list treelist

and flatten tree list treelist = match treelist with $[$] -> $[$] | labtree::labtrees -> flatten tree labtree @ (flatten_tree_list labtrees);;

Mutually Recursive Functions

val flatten_tree : 'a labeled_tree -> 'a list = <fun> val flatten tree list : 'a labeled tree list -> 'a list = <fun>

- # flatten_tree ltree;;
- : int list = $[5; 3; 2; 1; 7; 5]$

■ **Nested recursive types lead to mutually recursive functions**

Why Data Types?

■ Data types play a key role in:

- *Data abstraction* in the design of programs
- Type checking in the analysis of programs
- Compile-time code generation in the translation and execution of programs
	- Data layout (how many words; which are data and which are pointers) dictated by type

Terminology

- \blacksquare Type: A type *t* defines a set of possible data values
	- **E.g. short in C is** $\{x | 2^{15} 1 \ge x \ge -2^{15}\}$
	- \blacksquare A value in this set is said to have type t

■ Type system: rules of a language assigning types to expressions

Types as Specifications

- Types describe properties
- Different type systems describe different properties, eg
	- Data is read-write versus read-only
	- Operation has authority to access data
	- Data came from "right" source
	- Operation might or could not raise an exception
- Common type systems focus on types describing same data layout and access methods

Sound Type System

 \blacksquare Type: A type *t* defines a set of possible data values

- **E.g. short in C is** $\{x | 2^{15} 1 \ge x \ge -2^{15}\}$
- \blacksquare A value in this set is said to have type t
- Type system: rules of a language assigning types to expressions

If an expression is assigned type t , and it evaluates to a value v , then v is in the set of values defined by t

Sound Type System

If an expression is assigned type t, and it evaluates to a value v, then ^v is in the set of values defined by t

For instance:

- \blacksquare let x = true in let y = true in let z = x && y
- \blacksquare let $x = 5$ in let $y = 6 + x$

 \blacksquare let r = 2.0 in let w = 3.14 $*$. 2.0 $*$. r

Sound Type System

- SML, OCAML, Rust, Scheme and Ada have sound type systems (as far as we know)
- \blacksquare Most implementations of C and C++ do not ■ But Java and Scala are also (slightly) unsound
	- class Unsound $\{$ static class Constrain $\{A, B \text{ extends } A \geq \{\}\}$ static class Bind<A> { $\langle B \right|$ extends \land A upcast(Constrain<A,B> constrain, B b) { return b: ł \mathcal{F} static $\langle T, U \rangle$ U coerce(T t) { Constrain<U,? super T > constrain = null; Bind<U> bind = new Bind<U>(); **return** bind.upcast(constrain, t); public static void main(String[] args) { String zero = Unsound.<Integer.String>coerce(0); ₹ \mathcal{F}
- For details, see this paper: Java and Scala's Type Systems are Unsound ∗ The Existential Crisis of Null Pointers. Amin and Tate (OOPSLA 2016)

Figure 1. Unsound valid Java program compiled by javac, version 1.8.0 25

Strongly Typed Language

- When no application of an operator to arguments can lead to a run-time type error, language is strongly typed \blacksquare Eg: 1 + 2.3;;
- Depends on definition of "type error"

Strongly Typed Language

■ When no application of an operator to arguments can lead to a run-time type error, language is **strongly typed** \blacksquare Eg: 1 + 2.3;;

■ Depends on definition of "type error"

Strongly Typed Language

■ $C++$ claimed to be "strongly typed", but ■ Union types allow creating a value at one type and using it at another

- Type coercions may cause unexpected (undesirable) effects
- No array bounds check. In fact, no runtime checks at all.

■ SML, OCAML "strongly typed" but still must do dynamic array bounds checks, runtime type case analysis, and other checks

Static vs Dynamic Types

- **Static type** : type assigned to an expression at compile time
- **Dynamic type** : type assigned to a storage location at run time
- **Statically typed language** : static type assigned to every expression at compile time
- **Dynamically typed language** : type of an expression determined at run time

Type Checking

- When is op(arg1,...,argn) allowed?
- **Type checking** assures that operations are applied to the right number of arguments of the right types
	- Right type may mean same type as was specified, or may mean that there is a predefined implicit coercion that will be applied
- Used to resolve overloaded operations

Type Checking

- Type checking may be done statically at compile time or **dynamically** at run time
- Dynamically typed (aka untyped) languages (e.g., LISP, Prolog) do only dynamic type checking
- Statically typed languages can do most type checking statically
Dynamic Type Checking

- Performed at run-time before each operation is applied
- Types of variables and operations left unspecified until run-time
	- Same variable may be used at different types

Dynamic Type Checking

- Data object must contain type information
- Errors aren't detected until violating application is executed (maybe years after the code was written)

Static Type Checking

- Performed after parsing, before code generation
- Type of every variable and signature of every operator must be known at compile time

Static Type Checking

- Can eliminate need to store type information in data object if no dynamic type checking is needed
- Catches many programming errors at earliest point
- Can't check types that depend on dynamically computed values
	- Eg: array bounds

Static Type Checking

- Typically places restrictions on languages
	- Garbage collection
	- References instead of pointers
	- All variables initialized when created
	- Variable only used at one type
		- Union types allow for work-arounds, but effectively introduce dynamic type checks

Type Declarations

- Type declarations: explicit assignment of types to variables (signatures to functions) in the code of a program
	- Must be checked in a strongly typed language
	- Often not necessary for strong typing or even static typing (depends on the type system)

Type Inference

- Type inference: A program analysis to assign a type to an expression from the program context of the expression
	- Fully static type inference first introduced by Robin Miller in ML
	- Haskle, OCAML, SML all use type inference ■ Records are a problem for type inference

Format of Type Judgments

- A type judgement has the form
	- Γ exp : τ
- \blacksquare \blacksquare is a typing environment
	- Supplies the types of variables (and function names when function names are not variables)
	- Γ is a set of the form $\{x:\sigma, \ldots\}$
	- **For any x at most one** σ **such that** $(x : \sigma \in \Gamma)$
- exp is a program expression
- \mathbf{r} is a type to be assigned to exp
- 10/8/2024 50 ■ |- pronounced "turnstyle", or "entails" (or 'satisfies" or, informally, "shows")

Inductive Proof System

■ Hypotheses and Conclusion are logical formulas ■ Inference Rule: Hypotheses imply Conclusion

Hypothesis_1 Hypothesis_2 … Hypothesis_n **Conclusion**

■ **Axiom:** Holds without any previous hypothesis

Conclusion

■ Analogy: Axiom as a base case, Theorem as an inductive case, Proof as a recursive derivation $_{51}$ Axioms – Constants (Monomorphic)

 Γ - n: int (assuming n is an integer constant)

 Γ |- true : bool Γ |- false : bool

■ These rules are true with any typing environment

 Γ , *n* are meta-variables

Axioms – Constants (Monomorphic)

 Γ - n: int (assuming n is an integer constant)

 Γ |- true : bool Γ |- false : bool

■ These rules are true with any typing environment

 Γ , *n* are meta-variables

Axioms – Variables (Monomorphic Rule)

Notation: Let $\Gamma(x) = \sigma$ if $x : \sigma \in \Gamma$ Note: if such σ exits, its unique

Variable axiom:

$$
\Gamma \mid -x : \sigma \quad \text{if } \Gamma(x) = \sigma
$$

The predicate $\Gamma(x) = \sigma$ **is defined such that it is** false if x has different type or x is not defined.

Simple Rules – Arithmetic (Example)

Primitive Binary operators: Γ |- e_1 :int Γ |- e_2 :int (+): int \rightarrow int \rightarrow int Γ |- $e_{\!\scriptscriptstyle 1}^{}$ + $\,e_{\!\scriptscriptstyle 2}^{}$: int

Relations: $\Gamma \hspace{.1cm} \vert \hspace{.1cm} \cdot \hspace{.1cm} e_1 : \textsf{int} \hspace{.1cm} \Gamma \hspace{.1cm} \vert \hspace{.1cm} \cdot \hspace{.1cm} e_2 : \textsf{int} \hspace{.1cm} (=) : \textsf{int} \rightarrow \textsf{int} \rightarrow \textsf{bool}$ Γ |- $e_1 = e_2$:bool

Simple Rules – Arithmetic (Mono)

Primitive Binary operators $(\oplus \in \{+, -, *, ...\})$: $\Gamma \mid e_1: \tau_1 \quad \Gamma \mid e_2: \tau_2 \quad (\oplus): \tau_1 \rightarrow \tau_2 \rightarrow \tau_3$ Γ |- $e_1 \oplus e_2 : \tau_3$ Special case: Relations $(\sim \in \{ \leq, >, =, \leq, > = \}).$ $\Gamma \mid -e_1 : \tau \quad \Gamma \mid -e_2 : \tau \quad (\sim): \tau \rightarrow \tau \rightarrow \text{bool}$ Γ |- $e_1 \sim e_2$:bool

For the moment, think τ is int or bool₅₆ All τ are **type variables**

Example: $\{x: \text{int}\}$ |- $x + 2 = 3$: bool

What do we need to show first?

$\{x:int\}$ |- $x + 2 = 3$: bool

${x:int}$ |- x + 2 = 3 : bool

55

Example: $\{x: \text{int}\}$ |- $x + 2 = 3$: bool

What do we need for the left side?

$\{x : \text{int}\}$ |- x + 2 : int $\{x:\text{int}\}$ |- 3 :int ${x:int}$ |- x + 2 = 3 : bool Bin

Example: $\{x: \text{int}\}$ |- $x + 2 = 3$: bool

How to finish?

Example: $\{x: \text{int}\}$ |- $x + 2 = 3$:bool

How to finish?

Axioms - Constants (Monomorphic)

 Γ |- n : int (assuming *n* is an integer constant)

 Γ |- true : bool

 Γ |- false : bool

$$
\frac{\{x: \text{int}\} | -x: \text{int } \{x: \text{int}\} | -2: \text{int} \text{Bin } \{x: \text{int}\} | -3: \text{int} \text{Bin } \{x: \text{int}\} | -x + 2: \text{int} \text{Bin } \{x: \text{int}\} | -x + 2 = 3: \text{bool} \}
$$

Example: $\{x: \text{int}\}$ |- $x + 2 = 3$: bool

Almost Complete Proof (type derivation)

Example: $\{x: \text{int}\}$ |- $x + 2 = 3$: bool

Complete Proof (type derivation)

Simple Rules - Booleans

Connectives

$$
\frac{\Gamma \mid -e_1 : \text{bool} \quad \Gamma \mid -e_2 : \text{bool}}{\Gamma \mid -e_1 \& \text{Re } e_2 : \text{bool}}
$$

 Γ |- e_1 : bool Γ |- e_2 : bool Γ |- e_1 || e_2 : bool

If the conditional expression has type τ **, then** what should the types of subexpressions be?

Conditionals?

■ If then else rule:

Γ |- e_1 : ? Γ |- e_2 : ? Γ |- e_3 : ? Γ |- (if $e_{\!\scriptscriptstyle 1}$ then e_{2} else e_{3}) : τ

Conditionals?

■ If then else rule:

 Γ |- $\bm{e}_{\!\!1}$: <mark>bool</mark> Γ |- $\bm{\mathsf{e}}_{\!\!2}$: $\bm{\tau}$ Γ |- $\bm{\mathsf{e}}_{\!\!3}$: $\bm{\tau}$ Γ |- (if e_1 then e_2 else e_3) : τ

Type Variables in Rules

■ If then else rule:

 Γ |- $e_{\!\!1}$: bool Γ |- $\!e_{\textsf 2}$: τ Γ |- $\!e_{\textsf 3}$: τ Γ |- (if e_1 then e_2 else e_3) : τ

- \bullet τ is a type variable (meta-variable)
- Can take any type at all
- All instances in a rule application must get same type
- Then branch, else branch and if then else must all have same type

Example derivation: if-then-else-

$\Gamma = \{x: \text{int, int_of_float:float} \rightarrow \text{int, y:float}\}$

Type Variables in Rules

If_then_else rule: Γ |- e_1 : bool Γ |- e_2 : τ Γ |- e_3 : τ
 Γ |- (if e_1 then e_2 else e_3) : τ

Γ |- if $x > 3$ then $x + 2$ else int_of_float y : int

Example derivation: if-then-else-

 $\Gamma = \{x: \text{int, int_of_float:float} \rightarrow \text{int, y:float}\}$

 Γ |- x > 3 Γ |- x + 2 Γ |- int_of_float y : bool : int : int

> Γ |- if x > 3 then x + 2 else int_of_float y : int

Function Application? ■ Application rule: ? Γ |- $(e_1\,\,e_2)$: τ_2 **If the function application has type** τ_2 **, then what** should the types of subexpressions be?

Function Application?

■ Application rule:

$$
\frac{\Gamma \mid -e_1 : \tau_1 \rightarrow \tau_2 \quad \Gamma \mid -e_2 : \tau_1}{\Gamma \mid - (e_1 \ e_2) : \tau_2}
$$

Function Application?

■ Application rule:

$$
\frac{1}{\sqrt{\frac{1}{2}}}
$$

$$
\Gamma \mid \negthinspace \negthinspace - e_1 : \tau_1 \rightarrow \tau_2 \quad \Gamma \mid \negthinspace - e_2 : \tau_1
$$
\n
$$
\Gamma \mid \negthinspace - (e_1 e_2) : \tau_2
$$

Function Application

■ Application rule: Γ |- e_1 : $\tau_1 \rightarrow \tau_2$ | Γ |- e_2 : τ_1 Γ |- $(e_1\ e_2): \tau_2$

 \blacksquare If you have a function expression e_1 of type $\tau_1 \rightarrow \tau_2$ applied to an argument e_2 of type τ_1 , the resulting expression e_1e_2 has type τ_2

Example: Application

Function Application

Application rule:

 $\frac{\Gamma \mid \vdash e_1 : \tau_1 \rightarrow \tau_2 \quad \Gamma \mid \vdash e_2 : \tau_1}{\Gamma \mid \vdash (e_1 \ e_2) : \tau_2}$

 $\blacksquare \Gamma = \{x: \text{int, int_of_float: float \rightarrow int, y: float}\}$

Γ |- int_of_float : float -> int Γ |- y : float Γ - int of float y : int

Example: Application

Function Application

Application rule:

 $\frac{\Gamma \mid \vdash e_1 : \tau_1 \rightarrow \tau_2 \quad \Gamma \mid \vdash e_2 : \tau_1}{\Gamma \mid \vdash (e_1 \ e_2) : \tau_2}$

 $\Gamma = \{x: \text{int, int_of_float:float} \rightarrow \text{int, y:float}\}$

 Γ |- (fun z -> z > 3) : int -> bool Γ |- x : int

 Γ |- (fun z -> z > 3) x : bool
Function Abstraction?

Fun rule:

?

Γ |- fun $x \rightarrow e : \tau_1 \rightarrow \tau_2$

Function Abstraction?

■ Fun rule:

(1) We add x to the typing environment (2) We check that e has the proper type

 Γ |- fun $x \rightarrow e : \tau_1 \rightarrow \tau_2$

Function Abstraction?

■ Fun rule:

(1) We add x to the environment with type τ_1 (2) We check that e has the type τ_2

 Γ |- fun $x \rightarrow e : \tau_1 \rightarrow \tau_2$

Fun Rule

- Rules describe types, but also how the environment Γ may change
- Can only do what rule allows!
- fun rule:

$$
\frac{\{x : \tau_1\} + \Gamma \mid -e : \tau_2}{\Gamma \mid -\text{fun } x \rightarrow e : \tau_1 \rightarrow \tau_2}
$$

Fun Examples

 ${y : int } + \Gamma | - y + 3 : int$ Γ |- fun y -> y + 3 : int \rightarrow int

 ${f : int \rightarrow bool} + \Gamma | - f 2 :: [true] : bool list$ Γ |- (fun f -> (f 2) :: [true]) : (int \rightarrow bool) \rightarrow bool list

(Monomorphic) Let and Let Rec

■ let rule: Γ |- e_1 : τ_1 $\{X : \tau_1\}$ + Γ |- e_2 : τ_2 Γ |- (let $x = e_1$ in e_2) : τ_2

(Monomorphic) Let and Let Rec

Let rule:

\n
$$
\frac{\Gamma \mid -e_1 : \tau_1 \quad \{x : \tau_1\} + \Gamma \mid -e_2 : \tau_2}{\Gamma \mid - (\text{let } x = e_1 \text{ in } e_2) : \tau_2}
$$

■ let rec rule: $\{f: \tau_1\} + \Gamma \mid e_1: \tau_1 \{f: \tau_1\} + \Gamma \mid e_2: \tau_2$ Γ |- (let rec $f = e_1$ in e_2) : τ_2

(Monomorphic) Let and Let Rec

■ let rule: Γ |- e_1 : τ_1 $\{X : \tau_1\}$ + Γ |- e_2 : τ_2 Γ |- (let $x = e_1$ in e_2) : τ_2

■ let rec rule:

$$
\frac{\{f: \tau_1\} + \Gamma \mid -e_1: \tau_1 \{f: \tau_1\} + \Gamma \mid -e_2: \tau_2}{\Gamma \mid - (\text{let rec } f = e_1 \text{ in } e_2): \tau_2}
$$

Curry - Howard Isomorphism

- Type Systems are logics; logics are type systems
- Types are propositions; propositions are types
- Terms are proofs; proofs are terms
- Function space arrow corresponds to implication; application corresponds to modus ponens

Curry - Howard Isomorphism

• Modus Ponens

• Application Γ |- e_1 : $\alpha \rightarrow \beta$ Γ |- e_2 : α Γ |- $(e_1 e_2)$: β