
Programming Languages and
Compilers (CS 421)

Sasa Misailovic

4110 SC, UIUC
https://courses.engr.illinois.edu/cs421/fa2024/CS421C

Based on slides by Elsa Gunter, which are based in part on previous

slides by Mattox Beckman and updated by Vikram Adve and Gul Agha

https://courses.engr.illinois.edu/cs421/fa2024/CS421C

3

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const

 | BinOpAppExp of bin_op * exp * exp

 | FunExp of string * exp | AppExp of exp * exp

◼ How to count the number of variables in an exp?

let rec varCnt exp =

 match exp with

 VarExp x ->

 | ConstExp c ->

 | BinOpAppExp (b, e1, e2) ->

 | FunExp (x,e) ->

 | AppExp (e1, e2) ->

Why can't you pass data constructors
around like regular functions in OCaml?

From: https://stackoverflow.com/questions/66833935/why-cant-you-pass-data-
constructors-around-like-regular-functions-in-ocaml

https://stackoverflow.com/questions/66833935/why-cant-you-pass-data-constructors-around-like-regular-functions-in-ocaml
https://stackoverflow.com/questions/66833935/why-cant-you-pass-data-constructors-around-like-regular-functions-in-ocaml

5

Mutually Recursive Types

type 'a tree =

 TreeLeaf of 'a

 | TreeNode of 'a treeList

and

 'a treeList =

 Last of 'a tree

 | More of ('a tree * 'a treeList);;

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a
treeList)

6

Mutually Recursive Types

type 'a tree =

 TreeLeaf of 'a

 | TreeNode of 'a treeList

and

 'a treeList =

 Last of 'a tree

 | More of ('a tree * 'a treeList);;

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a
treeList)

10/8/2024 7

Mutually Recursive Types - Values

let tree =

 TreeNode

 (More (TreeLeaf 5,

 (More (TreeNode

 (More (TreeLeaf 3,

 Last (TreeLeaf 2))),

 Last (TreeLeaf 7)))));;

10/8/2024 9

Mutually Recursive Types - Values

TreeNode

More More Last

TreeLeaf TreeNode TreeLeaf

 5 More Last 7

 TreeLeaf TreeLeaf

 3 2

10/8/2024 10

Mutually Recursive Types - Values

A more conventional picture

 5 7

 3 2

11

Mutually Recursive Functions

let rec fringe tree =
 match tree with
 (TreeLeaf x) -> [x]
 | (TreeNode list) -> list_fringe list
and list_fringe tree_list =
 match tree_list with
 (Last tree) -> fringe tree
 | (More (tree,list)) ->
 (fringe tree) @ (list_fringe list);;

val fringe : 'a tree -> 'a list = <fun>
val list_fringe : 'a treeList -> 'a list = <fun>

10/8/2024 12

Mutually Recursive Functions

fringe tree;;

- : int list = [5; 3; 2; 7]

10/8/2024 13

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

◼ Define tree_size

10/8/2024 14

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

◼ Define tree_size

let rec tree_size t =

 match t with TreeLeaf _ ->

 | TreeNode ts ->

10/8/2024 15

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

◼ Define tree_size

let rec tree_size t =

 match t with TreeLeaf _ -> 1

 | TreeNode ts -> treeList_size ts

10/8/2024 16

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

◼ Define tree_size and treeList_size

let rec tree_size t =

 match t with TreeLeaf _ -> 1

 | TreeNode ts -> treeList_size ts

and treeList_size ts =

10/8/2024 17

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

◼ Define tree_size and treeList_size

let rec tree_size t =

 match t with TreeLeaf _ -> 1

 | TreeNode ts -> treeList_size ts

and treeList_size ts =

 match ts with Last t ->

 | More t ts’ ->

10/8/2024 18

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

◼ Define tree_size and treeList_size

let rec tree_size t =

 match t with TreeLeaf _ -> 1

 | TreeNode ts -> treeList_size ts

and treeList_size ts =

 match ts with Last t -> tree_size t

 | More t ts’ -> tree_size t +
 treeList_size ts’

10/8/2024 19

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

◼ Define tree_size and treeList_size

let rec tree_size t =

 match t with TreeLeaf _ -> 1

 | TreeNode ts -> treeList_size ts

and treeList_size ts =

 match ts with Last t -> tree_size t

 | More t ts’ -> tree_size t +
 treeList_size ts’

Nested Recursive Types

type intlist =

 Nil | Cons of (int * intlist)

type ‘a mylist =

 Nil | Cons of (‘a * ‘a mylist)

From the standard library: can use “type list”
let x = [3] ;;

- val x : int list = [3]

let (x : int list) = [3] ;;

- val x : int list = [3]

10/8/2024 21

Nested Recursive Types

type 'a labeled_tree =

 TreeNode of ('a * 'a labeled_tree list);;

type 'a labeled_tree =

 TreeNode of ('a * 'a labeled_tree list)

Compare:

type 'a tree =

 TreeLeaf of 'a

 | TreeNode of 'a treeList

and 'a treeList =

 Last of 'a tree

 | More of ('a tree * 'a treeList);;

10/8/2024 22

Nested Recursive Type Values

let ltree =

 TreeNode(5,

 [TreeNode (3, []);

 TreeNode (2, [TreeNode (1, []);

 TreeNode (7, [])]);

 TreeNode (5, [])]);;

10/8/2024 23

Nested Recursive Type Values

Ltree = TreeNode(5)

 :: :: :: []

TreeNode(3) TreeNode(2) TreeNode(5)

 [] :: :: [] []

 TreeNode(1) TreeNode(7)

 [] []

10/8/2024 24

Nested Recursive Type Values

5

3 2 5

1 7

10/8/2024 25

Mutually Recursive Functions

let rec flatten_tree labtree =

 match labtree with

 TreeNode (x,treelist) ->

 x::flatten_tree_list treelist

 and flatten_tree_list treelist =

 match treelist with

 [] -> []

 | labtree::labtrees ->

 flatten_tree labtree

 @ (flatten_tree_list labtrees);;

10/8/2024 26

Mutually Recursive Functions

val flatten_tree : 'a labeled_tree -> 'a list = <fun>

val flatten_tree_list : 'a labeled_tree list -> 'a list =
<fun>

flatten_tree ltree;;

- : int list = [5; 3; 2; 1; 7; 5]

◼ Nested recursive types lead to mutually
recursive functions

10/8/2024 28

Why Data Types?

◼ Data types play a key role in:
◼ Data abstraction in the design of programs

◼ Type checking in the analysis of programs

◼ Compile-time code generation in the
translation and execution of programs

◼ Data layout (how many words; which are data
and which are pointers) dictated by type

10/8/2024 29

Terminology

◼ Type: A type t defines a set of possible
data values

◼ E.g. short in C is {x| 215 - 1 x -215}

◼ A value in this set is said to have type t

◼ Type system: rules of a language
assigning types to expressions

10/8/2024 30

Types as Specifications

◼ Types describe properties

◼ Different type systems describe different
properties, eg

◼ Data is read-write versus read-only

◼ Operation has authority to access data

◼ Data came from “right” source

◼ Operation might or could not raise an exception

◼ Common type systems focus on types describing
same data layout and access methods

10/8/2024 32

Sound Type System

◼ Type: A type t defines a set of possible data values

◼ E.g. short in C is {x| 215 - 1 x -215}

◼ A value in this set is said to have type t

◼ Type system: rules of a language assigning types to
expressions

◼ If an expression is assigned type t, and it evaluates to
a value v, then v is in the set of values defined by t

Sound Type System

If an expression is assigned type t, and it

evaluates to a value v, then v is in the set

of values defined by t

For instance:

◼ let x = true in let y = true in let z = x && y

◼ let x = 5 in let y = 6 + x

◼ let r = 2.0 in let w = 3.14 *. 2.0 *. r

Sound Type System

◼ SML, OCAML, Rust, Scheme and Ada have sound
type systems (as far as we know)

◼ Most implementations of C and C++ do not

◼ But Java and Scala are also (slightly) unsound

34

◼ For details, see this paper:

Java and Scala’s Type

Systems are Unsound ∗
The Existential Crisis of

Null Pointers.

Amin and Tate

(OOPSLA 2016)

10/8/2024 35

Strongly Typed Language

◼ When no application of an operator to
arguments can lead to a run-time type
error, language is strongly typed

◼ Eg: 1 + 2.3;;

◼ Depends on definition of “type error”

10/8/2024 36

Strongly Typed Language

◼ When no application of an operator to
arguments can lead to a run-time type
error, language is strongly typed

◼ Eg: 1 + 2.3;;

◼ Depends on definition of “type error”

10/8/2024 37

Strongly Typed Language

◼ C++ claimed to be “strongly typed”, but
◼ Union types allow creating a value at one

type and using it at another
◼ Type coercions may cause unexpected

(undesirable) effects
◼ No array bounds check. In fact, no

runtime checks at all.

◼ SML, OCAML “strongly typed” but still must
do dynamic array bounds checks, runtime
type case analysis, and other checks

10/8/2024 38

Static vs Dynamic Types

• Static type : type assigned to an
expression at compile time

• Dynamic type : type assigned to a storage
location at run time

• Statically typed language : static type
assigned to every expression at compile time

• Dynamically typed language : type of an
expression determined at run time

10/8/2024 39

Type Checking

◼ When is op(arg1,…,argn) allowed?

◼ Type checking assures that operations are
applied to the right number of arguments of
the right types

◼ Right type may mean same type as was
specified, or may mean that there is a
predefined implicit coercion that will be
applied

◼ Used to resolve overloaded operations

10/8/2024 40

Type Checking

◼ Type checking may be done statically at
compile time or dynamically at run time

◼ Dynamically typed (aka untyped) languages
(e.g., LISP, Prolog) do only dynamic type
checking

◼ Statically typed languages can do most type
checking statically

10/8/2024 41

Dynamic Type Checking

◼ Performed at run-time before each
operation is applied

◼ Types of variables and operations left
unspecified until run-time

◼ Same variable may be used at different
types

10/8/2024 42

Dynamic Type Checking

◼ Data object must contain type
information

◼ Errors aren’t detected until violating
application is executed (maybe years
after the code was written)

10/8/2024 43

Static Type Checking

◼ Performed after parsing, before code
generation

◼ Type of every variable and signature of
every operator must be known at
compile time

10/8/2024 44

Static Type Checking

◼ Can eliminate need to store type
information in data object if no dynamic
type checking is needed

◼ Catches many programming errors at
earliest point

◼ Can’t check types that depend on
dynamically computed values
◼ Eg: array bounds

10/8/2024 45

Static Type Checking

◼ Typically places restrictions on
languages
◼ Garbage collection

◼ References instead of pointers

◼ All variables initialized when created

◼ Variable only used at one type
◼ Union types allow for work-arounds, but

effectively introduce dynamic type checks

10/8/2024 48

Type Declarations

◼ Type declarations: explicit assignment
of types to variables (signatures to
functions) in the code of a program

◼ Must be checked in a strongly typed
language

◼ Often not necessary for strong typing or
even static typing (depends on the type
system)

10/8/2024 49

Type Inference

◼ Type inference: A program analysis to
assign a type to an expression from the
program context of the expression

◼ Fully static type inference first introduced
by Robin Miller in ML

◼ Haskle, OCAML, SML all use type inference

◼ Records are a problem for type
inference

10/8/2024 50

Format of Type Judgments

◼ A type judgement has the form

 |- exp :

◼ is a typing environment
◼ Supplies the types of variables (and function

names when function names are not variables)

◼ is a set of the form { x : , . . . }

◼ For any x at most one such that (x :)

◼ exp is a program expression

◼ is a type to be assigned to exp

◼ |- pronounced “turnstyle”, or “entails” (or
“satisfies” or, informally, “shows”)

Inductive Proof System

◼ Hypotheses and Conclusion are logical formulas

◼ Inference Rule: Hypotheses imply Conclusion

 Hypothesis_1 Hypothesis_2 … Hypothesis_n

Conclusion

◼ Axiom: Holds without any previous hypothesis

 Conclusion

◼ Analogy: Axiom as a base case, Theorem as an
inductive case, Proof as a recursive derivation 51

10/8/2024 52

Axioms – Constants (Monomorphic)

 |- n : int (assuming n is an integer constant)

 |- true : bool |- false : bool

◼ These rules are true with any typing
environment

◼ , n are meta-variables

10/8/2024 53

Axioms – Constants (Monomorphic)

 |- n : int (assuming n is an integer constant)

 |- true : bool |- false : bool

◼ These rules are true with any typing
environment

◼ , n are meta-variables

54

Axioms – Variables (Monomorphic Rule)

Notation: Let (x) = if x :

Note: if such exits, its unique

Variable axiom:

 |- x : if (x) =

◼ The predicate (x) = is defined such that it is
false if x has different type or x is not defined.

10/8/2024 55

Simple Rules – Arithmetic (Example)

Primitive Binary operators:

 |- e1:int |- e2:int (+): int → int → int

 |- e1 + e2 : int

Relations:
 |- e1 : int |- e2 : int (=):int → int → bool

 |- e1 = e2 :bool

56

Simple Rules – Arithmetic (Mono)

Primitive Binary operators ({ +, -, *, …}):

 |- e1:1 |- e2:2 ():1 → 2 → 3

 |- e1 e2 : 3

Special case: Relations (˜ { < , > , =, <=, >= }):

 |- e1 : |- e2 : (˜): → → bool

 |- e1 ˜ e2 :bool

All are type variables

For the moment, think is int or bool

Example: {x:int} |- x + 2 = 3 :bool

{x:int} |- x:int {x:int} |- 2:int

{x : int} |- x + 2 : bool {x:int} |- 3 :int

{x:int} |- x + 2 = 3 : bool

10/8/2024 57

What do we need to show first?

Example: {x:int} |- x + 2 = 3 :bool

{x:int} |- x:int {x:int} |- 2:int

{x : int} |- x + 2 : bool {x:int} |- 3 :int

{x:int} |- x + 2 = 3 : bool

10/8/2024 58

What do we need to show first?

Example: {x:int} |- x + 2 = 3 :bool

{x:int} |- x:int {x:int} |- 2:int

 {x : int} |- x + 2 : int {x:int} |- 3 :int

{x:int} |- x + 2 = 3 : bool

10/8/2024 59

Bin

What do we need for the

left side?

Example: {x:int} |- x + 2 = 3 :bool

{x:int} |- x:int {x:int} |- 2:int

 {x : int} |- x + 2 : int {x:int} |- 3 :int

{x:int} |- x + 2 = 3 : bool

10/8/2024 60

Bin

What do we need for the

left side?

Example: {x:int} |- x + 2 = 3 :bool

{x:int} |- x:int {x:int} |- 2:int

 {x : int} |- x + 2 : int {x:int} |- 3 :int

{x:int} |- x + 2 = 3 : bool

10/8/2024 61

Bin

Bin

How to finish?

Example: {x:int} |- x + 2 = 3 :bool

{x:int} |- x:int {x:int} |- 2:int

 {x : int} |- x + 2 : int {x:int} |- 3 :int

{x:int} |- x + 2 = 3 : bool

10/8/2024 62

Bin

Bin

How to finish?

Example: {x:int} |- x + 2 = 3 :bool

{x:int} |- x:int {x:int} |- 2:int

 {x : int} |- x + 2 : int {x:int} |- 3 :int

{x:int} |- x + 2 = 3 : bool

10/8/2024 63

Bin

Bin
Const

Const

Almost Complete Proof

(type derivation)

Example: {x:int} |- x + 2 = 3 :bool

{x:int} |- x:int {x:int} |- 2:int

 {x : int} |- x + 2 : int {x:int} |- 3 :int

{x:int} |- x + 2 = 3 : bool

10/8/2024 64

Bin

Bin
Const

Const

Almost Complete Proof

(type derivation)

Example: {x:int} |- x + 2 = 3 :bool

{x:int} |- x:int {x:int} |- 2:int

 {x : int} |- x + 2 : int {x:int} |- 3 :int

{x:int} |- x + 2 = 3 : bool

10/8/2024 65

Bin

Bin
Const

ConstVar

Complete Proof (type derivation)

10/8/2024 67

Simple Rules - Booleans

Connectives

 |- e1 : bool |- e2 : bool

 |- e1 && e2 : bool

 |- e1 : bool |- e2 : bool

 |- e1 || e2 : bool

Conditionals?

◼ If_then_else rule:

 ?

 |- (if e1 then e2 else e3) :

◼ If the conditional expression has type , then
what should the types of subexpressions be?

Conditionals?

◼ If_then_else rule:

 |- e1 : ? |- e2 : ? |- e3 : ?

 |- (if e1 then e2 else e3) :

Conditionals?

◼ If_then_else rule:

 |- e1 : bool |- e2 : |- e3 :

 |- (if e1 then e2 else e3) :

10/8/2024 71

Type Variables in Rules

◼ If_then_else rule:

 |- e1 : bool |- e2 : |- e3 :

 |- (if e1 then e2 else e3) :

◼ is a type variable (meta-variable)

◼ Can take any type at all

◼ All instances in a rule application must get
same type

◼ Then branch, else branch and if_then_else
must all have same type

Example derivation: if-then-else-

◼ = {x:int, int_of_float:float -> int, y:float}

 |- if x > 3 then x + 2 .

 else int_of_float y : int

10/8/2024 72

Example derivation: if-then-else-

◼ = {x:int, int_of_float:float -> int, y:float}

 |- x > 3 |- x+2 |- int_of_float y

 : bool : int : int

 |- if x > 3 then x + 2 .

 else int_of_float y : int

10/8/2024 73

Function Application?

◼ Application rule:

?

 |- (e1 e2) : 2

◼ If the function application has type 2 , then what
should the types of subexpressions be?

Function Application?

◼ Application rule:

 |- e1 : 1 → 2 |- e2 : 1

 |- (e1 e2) : 2

Function Application?

◼ Application rule:

 |- e1 : 1 → 2 |- e2 : 1

 |- (e1 e2) : 2

10/8/2024 77

Function Application

◼ Application rule:

 |- e1 : 1 → 2 |- e2 : 1

 |- (e1 e2) : 2

◼ If you have a function expression e1 of
type 1 → 2 applied to an argument
e2 of type 1, the resulting expression
e1e2 has type 2

Example: Application

◼ = {x: int, int_of_float: float -> int, y: float}

 |- int_of_float : float -> int |- y : float

 |- int_of_float y : int

10/8/2024 79

Example: Application

◼ = {x:int, int_of_float:float -> int, y:float}

 |- (fun z -> z > 3)

 : int -> bool |- x : int

 |- (fun z -> z > 3) x : bool

10/8/2024 80

Function Abstraction?

◼ Fun rule:

?

 |- fun x -> e : 1 → 2

Function Abstraction?

◼ Fun rule:

(1) We add x to the typing environment

(2) We check that e has the proper type

 |- fun x -> e : 1 → 2

Function Abstraction?

◼ Fun rule:

(1) We add x to the environment with type 1

(2) We check that e has the type 2

 |- fun x -> e : 1 → 2

10/8/2024 84

Fun Rule

◼ Rules describe types, but also how the
environment may change

◼ Can only do what rule allows!

◼ fun rule:

 {x : 1 } + |- e : 2

 |- fun x -> e : 1 → 2

10/8/2024 85

Fun Examples

{y : int } + |- y + 3 : int

 |- fun y -> y + 3 : int → int

{f : int → bool} + |- f 2 :: [true] : bool list

 |- (fun f -> (f 2) :: [true])

 : (int → bool) → bool list

How about let ?

◼ Let rule

?

 |- (let x = e1 in e2) : 2

◼ Recall: how was let … in … represented with
just function abstraction and application?

How about let ?

◼ Let rule

?

 |- (let x = e1 in e2) : 2

◼ let x = e1 in e2 <====>

◼ (fun x -> e2) e1

10/8/2024 88

(Monomorphic) Let and Let Rec

◼ let rule:

 |- e1 : 1 {x : 1} + |- e2 : 2

 |- (let x = e1 in e2) : 2

10/8/2024 89

(Monomorphic) Let and Let Rec

◼ let rule:

 |- e1 : 1 {x : 1} + |- e2 : 2

 |- (let x = e1 in e2) : 2

◼ let rec rule:

 {f : 1} + |- e1 : 1 {f : 1} + |- e2 :2

 |- (let rec f = e1 in e2) : 2

10/8/2024 90

(Monomorphic) Let and Let Rec

◼ let rule:

 |- e1 : 1 {x : 1} + |- e2 : 2

 |- (let x = e1 in e2) : 2

◼ let rec rule:

{f : 1} + |- e1 : 1 {f : 1} + |- e2 :2

 |- (let rec f = e1 in e2) : 2

10/8/2024 107

Curry - Howard Isomorphism

◼ Type Systems are logics; logics are type
systems

◼ Types are propositions; propositions are
types

◼ Terms are proofs; proofs are terms

◼ Function space arrow corresponds to
implication; application corresponds to
modus ponens

10/8/2024 108

Curry - Howard Isomorphism

◼ Modus Ponens

A B A

B

• Application

 |- e1 : → |- e2 :

 |- (e1 e2) :

	Slide 1: Programming Languages and Compilers (CS 421)
	Slide 3: Recursion over Recursive Data Types
	Slide 4: Why can't you pass data constructors around like regular functions in OCaml?
	Slide 5: Mutually Recursive Types
	Slide 6: Mutually Recursive Types
	Slide 7: Mutually Recursive Types - Values
	Slide 9: Mutually Recursive Types - Values
	Slide 10: Mutually Recursive Types - Values
	Slide 11: Mutually Recursive Functions
	Slide 12: Mutually Recursive Functions
	Slide 13: Problem
	Slide 14: Problem
	Slide 15: Problem
	Slide 16: Problem
	Slide 17: Problem
	Slide 18: Problem
	Slide 19: Problem
	Slide 20: Nested Recursive Types
	Slide 21: Nested Recursive Types
	Slide 22: Nested Recursive Type Values
	Slide 23: Nested Recursive Type Values
	Slide 24: Nested Recursive Type Values
	Slide 25: Mutually Recursive Functions
	Slide 26: Mutually Recursive Functions
	Slide 28: Why Data Types?
	Slide 29: Terminology
	Slide 30: Types as Specifications
	Slide 32: Sound Type System
	Slide 33: Sound Type System
	Slide 34: Sound Type System
	Slide 35: Strongly Typed Language
	Slide 36: Strongly Typed Language
	Slide 37: Strongly Typed Language
	Slide 38: Static vs Dynamic Types
	Slide 39: Type Checking
	Slide 40: Type Checking
	Slide 41: Dynamic Type Checking
	Slide 42: Dynamic Type Checking
	Slide 43: Static Type Checking
	Slide 44: Static Type Checking
	Slide 45: Static Type Checking
	Slide 48: Type Declarations
	Slide 49: Type Inference
	Slide 50: Format of Type Judgments
	Slide 51: Inductive Proof System
	Slide 52: Axioms – Constants (Monomorphic)
	Slide 53: Axioms – Constants (Monomorphic)
	Slide 54: Axioms – Variables (Monomorphic Rule)
	Slide 55: Simple Rules – Arithmetic (Example)
	Slide 56: Simple Rules – Arithmetic (Mono)
	Slide 57: Example: {x:int} |- x + 2 = 3 :bool
	Slide 58: Example: {x:int} |- x + 2 = 3 :bool
	Slide 59: Example: {x:int} |- x + 2 = 3 :bool
	Slide 60: Example: {x:int} |- x + 2 = 3 :bool
	Slide 61: Example: {x:int} |- x + 2 = 3 :bool
	Slide 62: Example: {x:int} |- x + 2 = 3 :bool
	Slide 63: Example: {x:int} |- x + 2 = 3 :bool
	Slide 64: Example: {x:int} |- x + 2 = 3 :bool
	Slide 65: Example: {x:int} |- x + 2 = 3 :bool
	Slide 67: Simple Rules - Booleans
	Slide 68: Conditionals?
	Slide 69: Conditionals?
	Slide 70: Conditionals?
	Slide 71: Type Variables in Rules
	Slide 72: Example derivation: if-then-else-
	Slide 73: Example derivation: if-then-else-
	Slide 74: Function Application?
	Slide 75: Function Application?
	Slide 76: Function Application?
	Slide 77: Function Application
	Slide 79: Example: Application
	Slide 80: Example: Application
	Slide 81: Function Abstraction?
	Slide 82: Function Abstraction?
	Slide 83: Function Abstraction?
	Slide 84: Fun Rule
	Slide 85: Fun Examples
	Slide 86: How about let ?
	Slide 87: How about let ?
	Slide 88: (Monomorphic) Let and Let Rec
	Slide 89: (Monomorphic) Let and Let Rec
	Slide 90: (Monomorphic) Let and Let Rec
	Slide 107: Curry - Howard Isomorphism
	Slide 108: Curry - Howard Isomorphism

