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Recursion over Recursive Data Types

# type exp = VarExp of string | ConstExp of const

   | BinOpAppExp of bin_op * exp * exp

   | FunExp of string * exp | AppExp of exp * exp

◼ How to count the number of variables in an exp?

# let rec varCnt exp =

   match exp with 

      VarExp x -> 

    | ConstExp c ->

    | BinOpAppExp (b, e1, e2) ->

    | FunExp (x,e) -> 

    | AppExp (e1, e2) ->



Why can't you pass data constructors 
around like regular functions in OCaml?

From: https://stackoverflow.com/questions/66833935/why-cant-you-pass-data-
constructors-around-like-regular-functions-in-ocaml 

https://stackoverflow.com/questions/66833935/why-cant-you-pass-data-constructors-around-like-regular-functions-in-ocaml
https://stackoverflow.com/questions/66833935/why-cant-you-pass-data-constructors-around-like-regular-functions-in-ocaml
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Mutually Recursive Types

# type 'a tree = 

        TreeLeaf of 'a

      | TreeNode of 'a treeList

and 

   'a treeList = 

        Last of 'a tree

      | More of ('a tree * 'a treeList);;

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a 
treeList)
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Mutually Recursive Types

# type 'a tree = 

        TreeLeaf of 'a

      | TreeNode of 'a treeList

and 

   'a treeList = 

        Last of 'a tree

      | More of ('a tree * 'a treeList);;

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a 
treeList)
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Mutually Recursive Types - Values

# let tree =

   TreeNode

    (More (TreeLeaf 5,

           (More (TreeNode

                  (More (TreeLeaf 3,

                         Last (TreeLeaf 2))),

                  Last (TreeLeaf 7)))));;
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Mutually Recursive Types - Values

TreeNode

More              More             Last 

TreeLeaf       TreeNode            TreeLeaf

    5                More            Last   7

                      TreeLeaf      TreeLeaf

                        3                  2
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Mutually Recursive Types - Values

A more conventional picture 

             5                                   7

                        3               2
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Mutually Recursive Functions

# let rec fringe tree =
    match tree with 
       (TreeLeaf x) -> [x]
  | (TreeNode list) -> list_fringe list
and list_fringe tree_list =
    match tree_list with 
       (Last tree) -> fringe tree
  | (More (tree,list)) ->
       (fringe tree) @ (list_fringe list);;

val fringe : 'a tree -> 'a list = <fun>
val list_fringe : 'a treeList -> 'a list = <fun>
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Mutually Recursive Functions

# fringe tree;;

- : int list = [5; 3; 2; 7]
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Problem

# type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

◼ Define tree_size 
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Problem

# type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

◼ Define tree_size 

let rec tree_size t =

      match t with TreeLeaf _ -> 

      | TreeNode ts ->
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Problem

# type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

◼ Define tree_size 

let rec tree_size t =

      match t with TreeLeaf _ -> 1

      | TreeNode ts -> treeList_size  ts
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Problem

# type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

◼ Define tree_size and treeList_size 

let rec tree_size t =

      match t with TreeLeaf _ -> 1

      | TreeNode ts -> treeList_size  ts

and treeList_size ts =
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Problem

# type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

◼ Define tree_size and treeList_size

let rec tree_size t =

      match t with TreeLeaf _ -> 1

      | TreeNode ts -> treeList_size  ts

and treeList_size ts =

      match ts with Last t ->

      | More t ts’ ->
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Problem

# type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

◼ Define tree_size and treeList_size

let rec tree_size t =

      match t with TreeLeaf _ -> 1

      | TreeNode ts -> treeList_size  ts

and treeList_size ts =

      match ts with Last t -> tree_size t 

      | More t ts’ -> tree_size t + 
                    treeList_size ts’
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Problem

# type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

◼ Define tree_size and treeList_size

let rec tree_size t =

      match t with TreeLeaf _ -> 1

      | TreeNode ts -> treeList_size  ts

and treeList_size ts =

      match ts with Last t -> tree_size t 

      | More t ts’ -> tree_size t + 
                    treeList_size ts’



Nested Recursive Types

# type intlist = 

        Nil | Cons of (int * intlist)

# type ‘a mylist = 

        Nil | Cons of (‘a * ‘a mylist)

From the standard library:  can use “type list”
# let x = [3] ;;

- val x : int list = [3]

# let (x : int list) = [3] ;;

- val x : int list = [3]
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Nested Recursive Types

# type 'a labeled_tree =

 TreeNode of ('a * 'a labeled_tree list);;

type 'a labeled_tree = 

 TreeNode of ('a * 'a labeled_tree list)

Compare: 

# type 'a tree = 

        TreeLeaf of 'a

      | TreeNode of 'a treeList

and 'a treeList = 

        Last of 'a tree

      | More of ('a tree * 'a treeList);;
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Nested Recursive Type Values

# let ltree =

  TreeNode(5,

    [TreeNode (3, []);

     TreeNode (2, [TreeNode (1, []);

                   TreeNode (7, [])]);

     TreeNode (5, [])]);;
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Nested Recursive Type Values

Ltree =  TreeNode(5)

          ::                ::                 ::           [ ]

TreeNode(3)   TreeNode(2)   TreeNode(5)

      [ ]             ::             ::    [ ]        [ ]   

                 TreeNode(1)  TreeNode(7)

                       [ ]              [ ]
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Nested Recursive Type Values

5

3           2           5

1           7
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Mutually Recursive Functions

# let rec flatten_tree labtree =

    match labtree with 

       TreeNode (x,treelist) ->               

            x::flatten_tree_list treelist

  and flatten_tree_list treelist =

     match treelist with 

       [] -> []

     | labtree::labtrees ->

         flatten_tree labtree

              @ (flatten_tree_list labtrees);;
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Mutually Recursive Functions

val flatten_tree : 'a labeled_tree -> 'a list = <fun>

val flatten_tree_list : 'a labeled_tree list -> 'a list = 
<fun>

# flatten_tree ltree;;

- : int list = [5; 3; 2; 1; 7; 5]

◼ Nested recursive types lead to mutually 
recursive functions
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Why Data Types?

◼ Data types play a key role in:
◼ Data abstraction in the design of programs

◼ Type checking in the analysis of programs

◼ Compile-time code generation in the 
translation and execution  of programs

◼ Data layout (how many words; which are data 
and which are pointers) dictated by type



10/8/2024 29

Terminology

◼ Type: A type t defines a set of possible 
data values

◼ E.g. short  in C is {x| 215 - 1  x  -215}

◼  A value in this set is said to have type t

◼ Type system: rules of a language 
assigning types to expressions
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Types as Specifications

◼ Types describe properties

◼ Different type systems describe different 
properties, eg

◼ Data is read-write versus read-only

◼ Operation has authority to access data

◼ Data came from “right” source

◼ Operation might or could not raise an exception

◼ Common type systems focus on types describing 
same data layout and access methods
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Sound Type System

◼ Type: A type t defines a set of possible data values

◼ E.g. short  in C is {x| 215 - 1  x  -215}

◼  A value in this set is said to have type t

◼ Type system: rules of a language assigning types to 
expressions

◼ If an expression is assigned type t, and it evaluates to 
a value v, then v is in the set of values defined by t



Sound Type System

If an expression is assigned type t, and it 

evaluates to a value v, then v is in the set 

of values defined by t

For instance:

◼ let x = true in let y = true in let z = x && y

◼ let x = 5 in let y = 6 + x

◼ let r = 2.0 in let w = 3.14 *. 2.0 *. r



Sound Type System

◼ SML, OCAML, Rust, Scheme and Ada have sound 
type systems (as far as we know)

◼ Most implementations of C and C++ do not 

◼ But Java and Scala are also (slightly) unsound

34

◼ For details, see this paper:

Java and Scala’s Type 

Systems are Unsound ∗ 
The Existential Crisis of 

Null Pointers. 

Amin and Tate

(OOPSLA 2016)
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Strongly Typed Language

◼ When no application of an operator to 
arguments can lead to a run-time type 
error, language is strongly typed

◼ Eg: 1 + 2.3;;

◼ Depends on definition of “type error”
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Strongly Typed Language

◼ When no application of an operator to 
arguments can lead to a run-time type 
error, language is strongly typed

◼ Eg: 1 + 2.3;;

◼ Depends on definition of “type error”
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Strongly Typed Language

◼ C++ claimed to be “strongly typed”, but 
◼ Union types allow creating a value at one 

type and using it at another
◼ Type coercions  may cause unexpected 

(undesirable) effects
◼ No array bounds check. In fact, no 

runtime checks at all.

◼ SML, OCAML “strongly typed” but still must 
do dynamic array bounds checks, runtime 
type case analysis, and other checks
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Static vs Dynamic Types

• Static type : type assigned to an 
expression at compile time

• Dynamic type : type assigned to a storage 
location at run time

• Statically typed language : static type 
assigned to every expression at compile time

• Dynamically typed language : type of an 
expression determined at run time



10/8/2024 39

Type Checking

◼ When is op(arg1,…,argn) allowed?

◼ Type checking assures that operations are 
applied to the right number of arguments of 
the right types

◼ Right type may mean same type as was 
specified, or may mean that there is a 
predefined implicit coercion that will be 
applied

◼ Used to resolve overloaded operations
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Type Checking

◼ Type checking may be done statically at 
compile time or dynamically at run time

◼ Dynamically typed (aka untyped) languages 
(e.g., LISP, Prolog) do only dynamic type 
checking

◼ Statically typed languages can do most type 
checking statically
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Dynamic Type Checking

◼ Performed at run-time before each 
operation is applied

◼ Types of variables and operations left 
unspecified until run-time

◼  Same variable may be used at different 
types
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Dynamic Type Checking

◼ Data object must contain type 
information

◼ Errors aren’t detected until violating 
application is executed (maybe years 
after the code was written)
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Static Type Checking

◼ Performed after parsing, before code 
generation

◼ Type of every variable and signature of 
every operator must be known at 
compile time
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Static Type Checking

◼ Can eliminate need to store type 
information in data object if no dynamic 
type checking is needed

◼ Catches many programming errors at 
earliest point

◼ Can’t check types that depend on 
dynamically computed values
◼ Eg: array bounds
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Static Type Checking

◼ Typically places restrictions on 
languages
◼ Garbage collection

◼ References instead of pointers

◼ All variables initialized when created

◼ Variable only used at one type
◼ Union types allow for work-arounds, but 

effectively introduce dynamic type checks
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Type Declarations

◼ Type declarations: explicit assignment 
of types to variables (signatures to 
functions) in the code of a program

◼ Must be checked in a strongly typed 
language

◼ Often not necessary for  strong typing or 
even static typing (depends on the type 
system)
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Type Inference

◼ Type inference: A program analysis to 
assign a type to an expression from the 
program context of the expression

◼ Fully static type inference first introduced 
by Robin Miller in ML

◼ Haskle, OCAML, SML all use type inference

◼ Records are a problem for type 
inference
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Format of Type Judgments

◼ A type judgement  has the form

 |- exp : 

◼   is a typing environment
◼ Supplies the types of variables (and function 

names when function names are not variables)

◼   is a set of the form { x : , . . . }

◼ For any x at most one  such that (x :   ) 

◼ exp  is a program expression

◼   is a type to be assigned to exp

◼ |- pronounced “turnstyle”, or “entails” (or 
“satisfies” or, informally, “shows”)



Inductive Proof System

◼ Hypotheses and Conclusion are logical formulas

◼ Inference Rule: Hypotheses imply Conclusion

   Hypothesis_1     Hypothesis_2   …  Hypothesis_n

Conclusion

◼ Axiom: Holds without any previous hypothesis

    Conclusion

◼ Analogy: Axiom as a base case, Theorem as an 
inductive case, Proof as a recursive derivation 51
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Axioms – Constants  (Monomorphic)

 |- n : int   (assuming n is an integer constant)

 |- true : bool            |- false : bool

◼  These rules are true with any typing 
environment

◼  , n  are meta-variables
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Axioms – Constants  (Monomorphic)

 |- n : int   (assuming n is an integer constant)

 |- true : bool            |- false : bool

◼  These rules are true with any typing 
environment

◼  , n  are meta-variables
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Axioms – Variables (Monomorphic Rule)

Notation: Let (x) =   if x :    

Note: if such  exits, its unique

Variable axiom:

  |- x :      if (x ) = 

◼ The predicate (x) =  is defined such that it is 
false if x has different type or x is not defined.  
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Simple Rules – Arithmetic  (Example)

Primitive Binary operators:

 |- e1:int      |- e2:int   (+): int → int → int

  |- e1 + e2 : int

Relations:
 |- e1 : int    |- e2 : int   (=):int → int → bool

  |- e1 = e2 :bool
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Simple Rules – Arithmetic  (Mono)

Primitive Binary operators (  { +, -, *, …}):

  |- e1:1      |- e2:2   ():1 → 2 → 3

  |- e1  e2 : 3

Special case: Relations (˜ { < , > , =, <=, >= }):

 |- e1 :     |- e2 :    (˜): →  → bool

  |- e1 ˜ e2 :bool

All  are type variables

For the moment, think  is int or bool



Example:  {x:int} |- x + 2 = 3 :bool

{x:int} |- x:int  {x:int} |- 2:int                          

{x : int} |- x + 2 : bool            {x:int} |- 3 :int 

{x:int} |- x + 2 = 3 : bool
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What do we need to show first?



Example:  {x:int} |- x + 2 = 3 :bool

{x:int} |- x:int  {x:int} |- 2:int                          

{x : int} |- x + 2 : bool            {x:int} |- 3 :int 

{x:int} |- x + 2 = 3 : bool
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What do we need to show first?



Example:  {x:int} |- x + 2 = 3 :bool

{x:int} |- x:int  {x:int} |- 2:int                          

 {x : int} |- x + 2 : int              {x:int} |- 3 :int 

{x:int} |- x + 2 = 3 : bool
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Bin

What do we need for the 

left side?



Example:  {x:int} |- x + 2 = 3 :bool

{x:int} |- x:int  {x:int} |- 2:int                          

 {x : int} |- x + 2 : int              {x:int} |- 3 :int 

{x:int} |- x + 2 = 3 : bool
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Bin

What do we need for the 

left side?



Example:  {x:int} |- x + 2 = 3 :bool

{x:int} |- x:int  {x:int} |- 2:int                          

 {x : int} |- x + 2 : int              {x:int} |- 3 :int 

{x:int} |- x + 2 = 3 : bool
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Bin

Bin

How to finish?



Example:  {x:int} |- x + 2 = 3 :bool

{x:int} |- x:int  {x:int} |- 2:int                          

 {x : int} |- x + 2 : int              {x:int} |- 3 :int 

{x:int} |- x + 2 = 3 : bool
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Bin

Bin

How to finish?



Example:  {x:int} |- x + 2 = 3 :bool

{x:int} |- x:int  {x:int} |- 2:int                          

 {x : int} |- x + 2 : int              {x:int} |- 3 :int 

{x:int} |- x + 2 = 3 : bool

10/8/2024 63

Bin

Bin
Const

Const

Almost Complete Proof  

(type derivation)



Example:  {x:int} |- x + 2 = 3 :bool

{x:int} |- x:int  {x:int} |- 2:int                          

 {x : int} |- x + 2 : int              {x:int} |- 3 :int 

{x:int} |- x + 2 = 3 : bool
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Bin

Bin
Const

Const

Almost Complete Proof  

(type derivation)



Example:  {x:int} |- x + 2 = 3 :bool

{x:int} |- x:int  {x:int} |- 2:int                          

 {x : int} |- x + 2 : int              {x:int} |- 3 :int 

{x:int} |- x + 2 = 3 : bool
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Bin

Bin
Const

ConstVar

Complete Proof  (type derivation)
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Simple Rules - Booleans

Connectives 

  |- e1 : bool      |- e2 : bool

  |- e1 && e2 : bool

  |- e1 : bool      |- e2 : bool

  |- e1 || e2 : bool



Conditionals?

◼ If_then_else rule:

 ?

  |- (if e1 then e2  else e3) : 

◼ If the conditional expression has type  , then 
what should the types of subexpressions be?



Conditionals?

◼ If_then_else rule:

  |- e1 : ?    |- e2  : ?    |- e3  : ?

  |- (if e1 then e2  else e3) : 



Conditionals?

◼ If_then_else rule:

  |- e1 : bool    |- e2  :   |- e3  : 

  |- (if e1 then e2  else e3) : 
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Type Variables in Rules

◼ If_then_else rule:

  |- e1 : bool    |- e2  :     |- e3  : 

  |- (if e1 then e2  else e3) : 

◼  is a type variable (meta-variable)

◼ Can take any type at all

◼ All instances in a rule application must get 
same type

◼ Then branch, else branch and if_then_else 
must all have same type



Example derivation: if-then-else-

◼   = {x:int, int_of_float:float -> int, y:float}

 

 |- if x > 3  then x + 2     .

                             else int_of_float y : int
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Example derivation: if-then-else-

◼   = {x:int, int_of_float:float -> int, y:float}

  |- x > 3            |- x+2  |- int_of_float y  

       : bool               : int               : int

 |- if x > 3  then x + 2     .

                             else int_of_float y : int
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Function Application?

◼ Application rule:

? 

  |- (e1 e2) : 2

◼ If the function application has type 2 , then what 
should the types of subexpressions be?



Function Application?

◼ Application rule:

  |- e1 : 1 → 2   |- e2  : 1

  |- (e1 e2) : 2



Function Application?

◼ Application rule:

  |- e1 : 1 → 2  |- e2  : 1

  |- (e1 e2) : 2
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Function Application

◼ Application rule:

  |- e1 : 1 → 2   |- e2  : 1

  |- (e1 e2) : 2

◼ If you have a function expression e1 of 
type  1 → 2 applied to an argument 
e2 of type 1, the resulting expression 
e1e2 has type 2 



Example: Application

◼  = {x: int,  int_of_float: float -> int, y: float}

 |- int_of_float : float -> int        |- y : float 

  |- int_of_float y : int
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Example: Application

◼  = {x:int, int_of_float:float -> int, y:float}

     |- (fun z -> z > 3)

           : int -> bool                  |- x : int 

  |- (fun z -> z > 3) x : bool

10/8/2024 80



Function Abstraction?

◼ Fun rule:

?

 |- fun x -> e  : 1 → 2



Function Abstraction?

◼ Fun rule:

(1) We add x to the typing environment

(2) We check that e has the proper type

 |- fun x -> e  : 1 → 2



Function Abstraction?

◼ Fun rule:

(1) We add x to the environment with type 1 

(2) We check that e has the type 2

 |- fun x -> e  : 1 → 2
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Fun Rule

◼ Rules describe types, but also how the 
environment  may change

◼  Can only do what rule allows!

◼  fun rule:

 {x : 1 } +  |- e  : 2

  |- fun x -> e  : 1 → 2
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Fun Examples

{y : int } +  |- y + 3  : int

 |- fun y -> y + 3  : int → int 

{f : int → bool} +  |- f  2 :: [true]  : bool list

 |- (fun f -> (f  2) :: [true]) 

                       : (int → bool) → bool list 



How about let ? 

◼ Let rule

?

 |- (let x = e1 in e2 ) : 2

◼ Recall: how was let … in … represented with 
just function abstraction and application?



How about let ? 

◼ Let rule

?

 |- (let x = e1 in e2 ) : 2

◼ let x = e1 in e2   <====>

◼ (fun x -> e2) e1
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(Monomorphic) Let and Let Rec

◼ let rule:

  |- e1  : 1       {x : 1} +  |- e2  : 2

 |- (let x = e1 in e2 ) : 2
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(Monomorphic) Let and Let Rec

◼ let rule:

  |- e1  : 1       {x : 1} +  |- e2  : 2

 |- (let x = e1 in e2 ) : 2

◼ let rec rule:

 {f : 1} +  |- e1 : 1   {f : 1} +  |- e2 :2

 |- (let rec f = e1 in e2 ) : 2
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(Monomorphic) Let and Let Rec

◼ let rule:

  |- e1  : 1       {x : 1} +  |- e2  : 2

 |- (let x = e1 in e2 ) : 2

◼ let rec rule:

{f : 1} +  |- e1 : 1   {f : 1} +  |- e2 :2

 |- (let rec f = e1 in e2 ) : 2
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Curry - Howard Isomorphism

◼ Type Systems are logics; logics are type 
systems

◼ Types are propositions; propositions are 
types

◼ Terms are proofs; proofs are terms

◼ Function space arrow corresponds to 
implication; application corresponds to 
modus ponens 
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Curry - Howard Isomorphism

◼ Modus Ponens

A  B   A

B

• Application

  |- e1 :  →    |- e2  : 

  |- (e1 e2) : 
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