Programming Languages and
Compilers (CS 421)

Sasa Misallovic

4110 SC, UIUC ,
https.//courses.engr.illinois.edu/cs421/fa2024/CS421C

Based on slides by Elsa Gunter, which are based in part on previous
slides by Mattox Beckman and updated by Vikram Adve and Gul Agha

https://courses.engr.illinois.edu/cs421/fa2024/CS421C

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
| BinOpAppExp of bin_op * exp * exp
| FunExp of string * exp | AppExp of exp * exp
= How to count the number of variables in an exp?

let rec varCnt exp =
match exp with
VarkExp x ->
ConstExp ¢ ->
BinOpAppExp (b, el, e2) -»>
FunExp (x,e) ->
AppExp (el, e2) ->

Why can't you pass data constructors
around like regular functions in OCaml?

From the horse's mouth, Xavier Leroy, in this mailing list message from 2001:

The old Caml V3.1 implementation treated constructors as functions like SML. In Caml g
Light, | chose to drop this equivalence for several reasons: ~
« Simplicity of the compiler. Internally, constructors are not functions, and a special Kg' \q

case is needed to transform Succ into (fun x -> Succ x) when needed. This isn't hard, ’ >~
but remember that Caml Light was really a minimal, stripped-down version of Caml.

¢ Constructors in Caml Light and OCaml really have an arity, e.g. C of int * int is really a
constructor with two integer arguments, not a constructor taking one argument that
Is a pair. Hence, there would be two ways to map the constructor C to a function: fun
(xy) -> C(xy) or fun x y -> C(x,y) The former is more natural if you come from an SML
background (where constructors have 0 or 1 argument), but the latter fits better the
Caml Light / OCaml execution model, which favors curried functions. By not treating
constructors like functions, we avoid having to choose...

¢ Code clarity. While using a constructor as a function is sometimes convenient, | would
argue it is often hard to read. Writing "fun x -> Succ x" is more verbose, but easier to
read, | think.

From: https://stackoverflow.com/questions/66833935/why-cant-you-pass-data-
constructors-around-like-regular-functions-in-ocaml

https://stackoverflow.com/questions/66833935/why-cant-you-pass-data-constructors-around-like-regular-functions-in-ocaml
https://stackoverflow.com/questions/66833935/why-cant-you-pass-data-constructors-around-like-regular-functions-in-ocaml

Mutually Recursive Types

type 'a tree =
TreeLeaf of 'a
| TreeNode of 'a treelist
and
'a treelist =
Last of 'a tree

| More of ('a tree * 'a treelList);;

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treelList

and 'a treeList = Last of 'a tree | More of (‘a tree * 'a
treeList)

5

Mutually Recursive Types

type 'a [tree =
TreeLeaf of 'a
| TreeNode of 'a treelist
and
'a treelist =
Last of 'a tree

| More of ('a tree * 'a treelList);;

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treelList

and 'a treeList = Last of 'a tree | More of (‘a tree * 'a
treeList)

6

Mutually Recursive Types - Values

let tree =
TreeNode
(More (TreeLeaf 5,
(More (TreeNode
(More (TreeLeaf 3,
Last (TreeLeaf 2))),
Last (TreeLeaf 7)))));;

10/8/2024

Mutually Recursive Types - Values

TreeNode

More More Last

TreelLeaf TreIeNode \I'reeLeaf
5I MLre Last L

TreelLeaf TreelLeaf

3 2

10/8/2024

Mutually Recursive Types - Values

A more conventional picture

10/8/2024

10

Mutually Recursive Functions

let rec fringe tree =
match tree with
(TreeLeaf x) -> [x]
| (TreeNode list) -> list fringe list
and list fringe tree list =
match tree list with
(Last tree) -> fringe tree
| (More (tree,list)) -»>
(fringe tree) @ (list fringe list);;

val fringe : 'a tree -> 'a list = <fun>
val list_fringe : 'a treelList -> 'a list = <fun>

11

Mutually Recursive Functions

fringe tree;;
- ¢ 1nt 1list = [5; 3; 2; 7]

10/8/2024

12

Problem

type 'a tree = TreelLeaf of ‘a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of (‘a tree * 'a treelist);;

s Define tree_size

10/8/2024 13

Problem

type 'a tree = TreelLeaf of ‘a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of (‘a tree * 'a treelist);;

= Define tree_size

let rec tree size t =
match t with TreeLeaft ->
| TreeNode ts ->

10/8/2024 14

Problem

type 'a tree = TreelLeaf of ‘a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of (‘a tree * 'a treelist);;

= Define tree_size
let rec tree size t =

match t with TreeLeat _ -> 1
| TreeNode ts -> treelList size ts

10/8/2024 15

Problem

type 'a tree = TreelLeaf of ‘a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of (‘a tree * 'a treelist);;

= Define tree_size and treelList_size
let rec tree size t =

match t with TreeLeat _ -> 1

| TreeNode ts -> treelList size ts
and treelList size ts =

10/8/2024 16

Problem

type 'a tree = TreelLeaf of ‘a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of (‘a tree * 'a treelist);;

= Define tree_size and treelList_size
let rec tree size t =

match t with TreeLeaft _ -> 1

| TreeNode ts -> treelList size ts
and treelList size ts =

match ts with Last t ->

| More t ts’ ->

10/8/2024 17

Problem

type 'a tree = TreelLeaf of ‘a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of (‘a tree * 'a treelist);;

= Define tree_size and treelList_size
let rec tree size t =

match t with TreeLeaft _ -> 1

| TreeNode ts -> treelList size ts
and treelList size ts =

match ts with Last t -> tree size t

| More t ts’ -> tree_size t +
treeList size ts’

10/8/2024 18

Problem

type 'a tree = TreelLeaf of ‘a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of (‘a tree * 'a treelist);;

= Define tree_size and treelList_size
let rec tree size t =

match t with TreeLeaft _ -> 1

| TreeNode ts -> treelList size ts
and treelList size ts =

match ts with Last t -> tree size t

| More t ts’ -> tree size t +
treeList size ts’

10/8/2024 19

Nested Recursive Types

intlist =
Nil | Cons (int * intlist)

‘a mylist =
Nil | Cons (‘a * ‘a mylist)

From the standard library: can use “type list”
let x = [3] ;;
- val x : int list = [3]

let (x : int list) = [3] ;;
- val x : int list = [3]

Nested Recursive Types

type 'a labeled tree =
TreeNode of ('a * 'a labeled tree list);;

type 'a labeled tree =
TreeNode of ('a * 'a labeled tree list)

Compare:
type 'a tree =
TreeLeaf of 'a
| TreeNode of 'a treelList
and 'a treelist =
Last of 'a tree

| More of ('a tree * 'a treelist);;
10/8/2024 21

Nested Recursive Type Values

let ltree =
TreeNode(5,
[TreeNode (3, []);
TreeNode (2, [TreeNode (1, []);
TreeNode (7, [1)]);
TreeNode (5, [1)]1);;

10/8/2024

22

Nested Recursive Type Values

Ltree = TreeNode(5)

+ = + + []
| | |

TreeNode(3) TreeNode(2) TreeNode(5)
[I] =:= =|=—[] [I]
TreeNode(1) TreeNode(7)
[I] [I]

10/8/2024 23

Nested Recursive Type Values

10/8/2024

24

Mutually Recursive Functions

let rec flatten tree labtree =
match labtree with
TreeNode (x,treelist) ->
X treelist

and flatten tree list treelist =
match treelist with
[1 -> []
| labtree::labtrees ->
flatten tree labtree
@ (labtrees);;

10/8/2024 25

Mutually Recursive Functions

val flatten tree : 'a labeled tree -> 'a list = <fun>

val flatten tree list : 'a labeled tree list -> 'a list =
<fun>

flatten_tree ltree;;
: int list = [5; 3; 2; 1; 7; 5]

= Nested recursive types lead to mutually
recursive functions

10/8/2024 26

Why Data Types?

= Data types play a key role in:
» Data abstraction in the design of programs
» Type checking in the analysis of programs

« Compile-time code generation in the
translation and execution of programs

= Data layout (how many words; which are data
and which are pointers) dictated by type

10/8/2024 28

Terminology

= Type: A type tdefines a set of possible
data values

= E.g. short in Cis {x| 21>-1> x> -21>}
= A value in this set is said to have type ¢

= Type system: rules of a language
assigning types to expressions

10/8/2024 29

Types as Specifications

= Types describe properties

= Different type systems describe different
properties, eg

= Data is read-write versus read-only

« Operation has authority to access data

= Data came from “right” source

= Operation might or could not raise an exception

= Common type systems focus on types describing
same data layout and access methods

10/8/2024 30

Sound Type System

= Type: A type fdefines a set of possible data values
=« E.g.short inCis{x| 21>-1>x>-21}
= A value in this set is said to have type ¢

= Type system: rules of a language assigning types to
expressions

If an expression is assigned type ¢, and it evaluates to
a value v, then vis in the set of values defined by ¢

10/8/2024 32

Sound Type System

If an expression is assighed type £ and it
evaluates to a value v, then vis in the set

of values defined by ¢

For instance:

m let X = true 1n let y = true in let z = x && y

m let x =5 1n lety = 6 + X

m let r 2.0 in let w = 3.14 *, 2.0 *, pr

Sound Type System

= SML, OCAML, Rust, Scheme and Ada have sound
type systems (as far as we know)

Most implementations of C and C++ do not
= But Java and Scala are also (slightly) unsound

class Unsound {
static class Constrain<A, B extends A> {}
static class Bind<A> {
<B extends A>
A upcast(Constrain<A,B> constrain, B b) {
return b;
}
}
static <T,U> U coerce(T t) {
Constrain<U, ? super T> constrain = null;
Bind<U> bind = new Bind<U>();
return bind.upcast(constrain, t);
¥
public static void main(String[] args) {
String zero = Unsound.<Integer,String>coerce(0);
¥
}

Figure 1. Unsound valid Java program compiled by javac,

version 1.8.0_25

For details, see this paper:
Java and Scala’s Type
Systems are Unsound *
The Existential Crisis of
Null Pointers.

Amin and Tate

(OOPSLA 2016)

34

Strongly Typed Language

= When no application of an operator to
arguments can lead to a run-time type
error, language is strongly typed

« Eg: 1+ 2.3;;
= Depends on definition of “type error”

10/8/2024 35

Strongly Typed Language
= When no application of an operator to

arguments can lead to a run-time type
error, language is strongly typed

« Eg: 1+ 2.3;;

= Depends on definition of “type error”

10/8/2024 36

Strongly Typed Language

= C++ claimed to be “strongly typed”, but
= Union types allow creating a value at one
type and using it at another
= Type coercions may cause unexpected
(undesirable) effects
= No array bounds check. In fact, no
runtime checks at all.

= SML, OCAML “strongly typed” but still must
do dynamic array bounds checks, runtime
type case analysis, and other checks

10/8/2024 37

Static vs Dynamic Types

. Static type : type assigned to an
expression at compile time

. Dynamic type : type assigned to a storage
location at run time

. Statically typed language : static type
assigned to every expression at compile time

. Dynamically typed language : type of an
expression determined at run time

10/8/2024 38

Type Checking

= When is op(argl,...,argn) allowed?

= Type checking assures that operations are
applied to the right number of arguments of
the right types

= Right type may mean same type as was
specified, or may mean that there is a
predefined implicit coercion that will be
applied

= Used to resolve overloaded operations

10/8/2024 39

Type Checking

= Type checking may be done statically at
compile time or dynamically at run time

= Dynamically typed (aka untyped) languages
(e.g., LISP, Prolog) do only dynamic type
checking

= Statically typed languages can do most type
checking statically

10/8/2024 40

Dynamic Type Checking

s Performed at run-time before each
operation is applied

= Types of variables and operations left
unspecified until run-time

= Same variable may be used at different
types

10/8/2024

41

Dynamic Type Checking

= Data object must contain type
information

= Errors aren’ t detected until violating
application is executed (maybe years
after the code was written)

10/8/2024

42

Static Type Checking

= Performed after parsing, before code
generation

= Type of every variable and signature of
every operator must be known at
compile time

10/8/2024 43

Static Type Checking

= Can eliminate need to store type
information in data object if no dynamic
type checking is needed

= Catches many programming errors at
earliest point

= Can’ t check types that depend on
dynamically computed values

= Eg: array bounds

10/8/2024 44

Static Type Checking

= Typically places restrictions on
languages
= Garbage collection
= References instead of pointers
= All variables initialized when created

= Variable only used at one type

= Union types allow for work-arounds, but
effectively introduce dynamic type checks

10/8/2024 45

Type Declarations

m [ype declarations. explicit assignment
of types to variables (signatures to
functions) in the code of a program
= Must be checked in a strongly typed

language

» Often not necessary for strong typing or
even static typing (depends on the type
system)

10/8/2024 48

Type Inference

m /ype inference: A program analysis to
assign a type to an expression from the
program context of the expression

= Fully static type inference first introduced
by Robin Miller in ML

= Haskle, OCAML, SML all use type inference

= Records are a problem for type
inference

10/8/2024 49

Format of Type Judgments

s A lype judgement has the form
[|-exp:r
= [Is a typing environment

= Supplies the types of variables (and function
names when function names are not variables)

«» 'isasetoftheform{ x:ic,...}
= For any xat most one s such that (x: c € I')

= eXp IS a program expression
= 7 iS a type to be assigned to exp

= |- pronounced “turnstyle”, or “entails” (or
“satisfies” or, informally, “shows™)

10/8/2024 50

Inductive Proof System

= Hypotheses and Conclusion are logical formulas
= Inference Rule: Hypotheses imply Conclusion

Hypothesis_1 Hypothesis_2 ... Hypothesis_n

Conclusion

= Axiom: Holds without any previous hypothesis

Conclusion

= Analogy: Axiom as a base case, Theorem as an
inductive case, Proof as a recursive derivation s

Axioms — Constants (Monomorphic)

['|- n:int (assuming nis an integer constant)

[" |- true : bool " |- false : bool
= These rules are true with any typing

environment
= [, n are meta-variables

10/8/2024 52

Axioms — Constants (Monomorphic)

['|- n:int (assuming nis an integer constant)

[" |- true : bool " |- false : bool
= These rules are true with any typing

environment
= [, n are meta-variables

10/8/2024 53

Axioms — Variables (Monomorphic Rule)

Notation: LetI'(x) = o if X:c e T
Note: if such o exits, its unique

Variable axiom:

'|-x:0 ifI'(x)=o0

= The predicate I'(x) = o is defined such that it is
false if x has different type or x is not defined.

54

Simple Rules — Arithmetic (Example)

Primitive Binary operators:
['|-e:nt T |-e:nt (+):int > int - int
[[-e + 6 :iInt

Relations:
|- :int T[-6:int (=):int > int —» bool

['|-e =6 :bool

10/8/2024 55

Simple Rules — Arithmetic (Mono)

Primitive Binary operators (@ € { +, -, *, ...}):
Cl-e:ty T -6t (@)ity—>1 1
|- ®e: t;

Special case: Relations (~< (<, >, = <=, >=1):
rf-¢:7 rrl-:7 (~):t—> 11— bool
rl-e ~ & :bool

All T are type variables
For the moment, think r is int or bool_

Example: {x:int} |-x + 2 = 3 :bool

What do we need to show first?

{x:int} |-x + 2 = 3 : bool

10/8/2024

57

Example: {x:int} |-x + 2 = 3 :bool
‘ Simple Rules — Arithmetic (Example)

Primitive Binary operators:

What do we need 1{0) ShOW ﬁrst? ['|- e:int T |- esint (+):int - int — int

-6+ 6:int

Relations:
[]-e¢:int T|-&:int (=):int - int - bool ‘

I' |- e = & :bool

{x:int} |-x + 2 = 3 : bool

10/8/2024 58

Example: {x:int} |-x + 2 = 3 :bool

What do we need for the
left side?

{X:int} |-x+ 2 :int {x:int} |- 3 :inl’Bc_
IN
{x:int} |-x + 2 = 3 : bool

10/8/2024 59

Example: {x:int} |-x + 2 = 3 :bool

What do we need for the
left side?

{X:int} |-x+ 2 :int

‘ Simple Rules — Arithmetic (Example)

Primitive Binary operators:
[']-e:int I|-e:int (+):int - int - int
-6+ 6:int

Relations:
[]-e¢:int T|-&:int (=):int - int - bool

I' |- e = & :bool

{x:int} |- 3 :int
Bin

{x:int} |-x + 2 = 3 : bool

10/8/2024

60

Example: {x:int} |-x + 2 = 3 :bool

How to finish?
{x:int} |- x:int {x:int} |- 2:intB_

XNt - X + 2 : int " ixint |- 3 int
{x:int} |-x + 2 = 3 : bool "

10/8/2024 61

Example: {x:int} |-x + 2 = 3 :bool

Axioms — Constants (Monomorphic)

How to finish?

I |- n:int (assuming nis an integer constant)

" |- true : bool " |- false : bool
{x:int} |- x:int {x:int} |- 2:intBiln
{X:int} |-x+ 2 :int {x:int} |- 3 :int

18
{x:int} |-x + 2 = 3 : bool "

10/8/2024 62

Example: {x:int} |-x + 2 = 3 :bool

Almost Complete Proof
(type derivation)

Const
{x:int} |- x:int {x:int} |- 2:intBiln Const
{X:int} |-x+ 2 :int {x:int} |- 3 :inl’Bcin
{x:int} |-x + 2 = 3 : bool

10/8/2024 63

Example: {x:int} |-x + 2 = 3 :bool

Axioms — Variables (Monomorphic Rule)

Notation: LetT'(xX) = o ifxX:c e’
Almost C_Omplete Proof Note: if such o exits, its unique
(type derivation)

Variable axiom:

Cons F-x:0 ifT(X)=oc

{x:int} |- x:int {x:int} |- 2:intBiln Const
{X:int} |-x+ 2 :int {x:int} |- 3 :inéc_
IN

{x:int} |-x + 2 = 3 : bool

10/8/2024 64

Example: {x:int} |-x + 2 = 3 :bool

Complete Proof (type derivation)

Var Const
{x:int} |- x:int {x:int} |- 2:intBiln Const
{X:int} |-x+ 2 :int {x:int} |- 3 :int

Bin

{x:int} |-x + 2 = 3 : bool

10/8/2024 65

Simple Rules - Booleans

Connectives

['|-¢ :bool T |-e : bool

F\ e, && &, : bool

['|-¢ :bool T |-e : bool

F\ & || & : bool

10/8/2024

67

Conditionals?

» If then_else rule:

?
[|- (if e thene, else e;): 1

= If the conditional expression has type <t , then
what should the types of subexpressions be?

Conditionals?

» If then_else rule:

Cl-e:? T'|l-e,:? T'|-e5:7?
[|- (if e thene, else e;): 1

Conditionals?

» If then_else rule:

['|-e:bool T'|-e,:1t T'|-e;5:7
[|- (if e thene, else e;): 1

Type Variables in Rules

= If then_else rule:
I'|-e :bool I'l[-& 1 I'|-€5:*
[|- (if e, then e, else e;): 1

= T iS a type variable (meta-variable)
= Can take any type at al

= All instances in a rule application must get
same type

= Then branch, else branch and if _then_else
must all have same type

10/8/2024 71

Example derivation: if-then-else-

= [= {x:int, int_of_float:float -> int, y:float}

Type Variables in Rules

= If then_else rule:
'|-e:bool T'|-e,:t T'|-e5:1
['|-(if e thene, elsee;):

['|-ifx>3 thenx + 2
else int_of floaty : int

10/8/2024 72

Example derivation: if-then-else-

= [= {x:int, int_of_float:float -> int, y:float}

[|-x>3 ['|-x+2 TI|-int_of floaty
: bool :int :int

['|-ifx>3 thenx + 2
else int_of floaty : int

10/8/2024 73

Function Application?

= Application rule:

?

I'l[-(66):1

= If the function application has type 1, , then what
should the types of subexpressions be?

Function Application?

= Application rule:

F"el:fl—)fz F"ez:Tl
I-(e &)

Function Application?

= Application rule:

F‘-é‘l:’tl—)’tz F"ez:rl
I-(e &)

Function Application

= Application rule:
F"el:'cl—)'cz F"eZ:Tl
I'l-(6 6):1

= If you have a function expression e, of
type t; — 1, applied to an argument
e, of type t,, the resulting expression
e, 6, has type 1,

10/8/2024 77

Function Application

Example: Application

= Application rule:
r|'€1:T1—>T2 rl'eZ.Tl
[-(e &)t

s [= {x:int, int_of float: float -> int, y: float}

[" |- int_of _float : float -> int [|-y : float

[|- int_of floaty : int

10/8/2024 79

Function Application

Example: Application

= Application rule:
r|'€1:T1—>T2 rl'eZ.Tl

r-(ee):n

s [= {x:int, int_of_float:float -> int, y:float}

I'|-(funz->2z>3)
. int -> bool ['|-Xx:int

I'|-(funz->2z> 3)x: bool

10/8/2024 80

Function Abstraction?

= Fun rule:

?

Fl-funx->e:t >,

Function Abstraction?

= Fun rule:

(1) We add x to the typing environment
(2) We check that e has the proper type

Fl-funx->e:t >,

Function Abstraction?

= Fun rule:

(1) We add x to the environment with type 1,
(2) We check that e has the type 1,

Fl-funx->e:t >,

Fun Rule

= Rules describe types, but also how the
environment I' may change

= Can only do what rule allows!
= fun rule:
x:tyry+r|-€:71
r|-funx->e:t >,

10/8/2024 84

Fun Examples

{y:int}+IT|-y+3:int
C|l-funy->y+ 3 :int - int

{f : int »> bool} + I' |-f 2 :: [true] : bool list
|- (fun f-> (f 2) :: [true])
. (int - bool) — bool list

10/8/2024 85

How about let ?

n Let rule

?

[|-(letx=¢ing): 1,

= Recall: how was let ... in ... represented with
just function abstraction and application?

How about let ?

= Let rule
?
[|-(letx=¢ing): 1,
s letx=¢gine <====>
s (fun x -> e2) el

(Monomorphic) Let and Let Rec

s let rule:

I'f-e, v Axityr+I|-6 i1,

|-(letx=¢ine&): 1,

10/8/2024

88

(Monomorphic) Let and Let Rec

= let rule;
-, v xityy+I|-6 1
['|-(letx=¢ine):,

= let rec rule:
fitp+T|-einy {fitp+T |- 61
['|-(letrecf=¢ing): 1

10/8/2024 89

(Monomorphic) Let and Let Rec

= let rule;
-, v xityy+I|-6 1
['|-(letx=¢ine):,

= let rec rule:
fitgp+T|-einy {fitp+T |- 61
['|-(letrecf=¢ing): 1

10/8/2024 90

Curry - Howard Isomorphism

= Type Systems are logics; logics are type
systems

= [ypes are propositions; propositions are
types

= Terms are proofs; proofs are terms

= Function space arrow corresponds to
implication; application corresponds to
modus ponens

10/8/2024

107

Curry - Howard Isomorphism

= Modus Ponens
A=B A
B

. Application
rl-e:a—->p I'|l-6:«a

I'[-(e&):p

10/8/2024 108

	Slide 1: Programming Languages and Compilers (CS 421)
	Slide 3: Recursion over Recursive Data Types
	Slide 4: Why can't you pass data constructors around like regular functions in OCaml?
	Slide 5: Mutually Recursive Types
	Slide 6: Mutually Recursive Types
	Slide 7: Mutually Recursive Types - Values
	Slide 9: Mutually Recursive Types - Values
	Slide 10: Mutually Recursive Types - Values
	Slide 11: Mutually Recursive Functions
	Slide 12: Mutually Recursive Functions
	Slide 13: Problem
	Slide 14: Problem
	Slide 15: Problem
	Slide 16: Problem
	Slide 17: Problem
	Slide 18: Problem
	Slide 19: Problem
	Slide 20: Nested Recursive Types
	Slide 21: Nested Recursive Types
	Slide 22: Nested Recursive Type Values
	Slide 23: Nested Recursive Type Values
	Slide 24: Nested Recursive Type Values
	Slide 25: Mutually Recursive Functions
	Slide 26: Mutually Recursive Functions
	Slide 28: Why Data Types?
	Slide 29: Terminology
	Slide 30: Types as Specifications
	Slide 32: Sound Type System
	Slide 33: Sound Type System
	Slide 34: Sound Type System
	Slide 35: Strongly Typed Language
	Slide 36: Strongly Typed Language
	Slide 37: Strongly Typed Language
	Slide 38: Static vs Dynamic Types
	Slide 39: Type Checking
	Slide 40: Type Checking
	Slide 41: Dynamic Type Checking
	Slide 42: Dynamic Type Checking
	Slide 43: Static Type Checking
	Slide 44: Static Type Checking
	Slide 45: Static Type Checking
	Slide 48: Type Declarations
	Slide 49: Type Inference
	Slide 50: Format of Type Judgments
	Slide 51: Inductive Proof System
	Slide 52: Axioms – Constants (Monomorphic)
	Slide 53: Axioms – Constants (Monomorphic)
	Slide 54: Axioms – Variables (Monomorphic Rule)
	Slide 55: Simple Rules – Arithmetic (Example)
	Slide 56: Simple Rules – Arithmetic (Mono)
	Slide 57: Example: {x:int} |- x + 2 = 3 :bool
	Slide 58: Example: {x:int} |- x + 2 = 3 :bool
	Slide 59: Example: {x:int} |- x + 2 = 3 :bool
	Slide 60: Example: {x:int} |- x + 2 = 3 :bool
	Slide 61: Example: {x:int} |- x + 2 = 3 :bool
	Slide 62: Example: {x:int} |- x + 2 = 3 :bool
	Slide 63: Example: {x:int} |- x + 2 = 3 :bool
	Slide 64: Example: {x:int} |- x + 2 = 3 :bool
	Slide 65: Example: {x:int} |- x + 2 = 3 :bool
	Slide 67: Simple Rules - Booleans
	Slide 68: Conditionals?
	Slide 69: Conditionals?
	Slide 70: Conditionals?
	Slide 71: Type Variables in Rules
	Slide 72: Example derivation: if-then-else-
	Slide 73: Example derivation: if-then-else-
	Slide 74: Function Application?
	Slide 75: Function Application?
	Slide 76: Function Application?
	Slide 77: Function Application
	Slide 79: Example: Application
	Slide 80: Example: Application
	Slide 81: Function Abstraction?
	Slide 82: Function Abstraction?
	Slide 83: Function Abstraction?
	Slide 84: Fun Rule
	Slide 85: Fun Examples
	Slide 86: How about let ?
	Slide 87: How about let ?
	Slide 88: (Monomorphic) Let and Let Rec
	Slide 89: (Monomorphic) Let and Let Rec
	Slide 90: (Monomorphic) Let and Let Rec
	Slide 107: Curry - Howard Isomorphism
	Slide 108: Curry - Howard Isomorphism

