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CPS Transformation

◼ Step 1: Add continuation argument to any function 
definition:

◼ let f arg = e   let f arg k = e

◼ Idea: Every function takes an extra parameter 
saying where the result goes

◼ Step 2: A simple expression in tail position should 
be passed to a continuation instead of returned:

◼ return a  k a

◼ Assuming a is a constant or variable.

◼ “Simple” = “No available function calls.”
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CPS Transformation

◼ Step 3: Pass the current continuation to every 
function call in tail position
◼ return f arg  f arg k

◼ The function “isn’t going to return,” so we need 
to tell it where to put the result.



CPS Transformation

◼ Step 4: Each function call not in tail position needs 
to be converted to take a new continuation 
(containing the old continuation as appropriate)

◼ return op (f arg)  f arg (fun r -> k(op r))

◼ op represents a primitive operation

◼ return  f(g arg)  g arg (fun r-> f r k)

9/23/2024 5



9/23/2024 6

Example

Before:
let rec add_list lst =

match lst with

  [ ] -> 0

| 0 :: xs -> add_list xs

| x :: xs -> (+) x 
(add_list xs);;

After:
let rec add_listk lst k =

                  (* rule 1 *)

match lst with

| [ ] -> k 0      (* rule 2 *)

| 0 :: xs -> add_listk xs k

                  (* rule 3 *)

| x :: xs -> add_listk xs

           (fun r -> k ((+) x r));;

                  (* rule 4 *)

Step 1: Add continuation argument to any function definition

Step 2: A simple expression in tail position should be passed to a continuation 

            instead of returned

Step 3: Pass the current continuation to every function call in tail position

Step 4: Each function call not in tail position needs to be converted to take a 

             new continuation (containing the old continuation as appropriate)

Same as:

fun r -> addk x r k
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Example

Before:
let rec mem (y,lst) =

match lst with

  [ ] -> false

| x :: xs -> 

  if (x = y)

   then true

   else mem(y,xs);;

After:
let rec memk (y,lst) k =

                  (* rule 1 *)

match lst with

| [ ] -> k false (* rule 2 *)

| x :: xs ->

 eqk (x, y)

  (fun b ->if b (* rule 4 *)

then k true (* rule 2 *)

   else memk (y, xs) (* rule 3 
*)
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Other Uses for Continuations

◼ CPS designed to preserve evaluation order

◼ Continuations used to express order of 
evaluation

◼ Can also be used to change order of 
evaluation

◼ Implements:

◼ Exceptions and exception handling

◼ Co-routines

◼ (pseudo, aka green) threads
17
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Exceptions - Example

# exception Zero;;

exception Zero

# let rec list_mult_aux list = 

    match list with 

      [ ] -> 1

    | x :: xs ->

           if x = 0 then raise Zero 

                    else x * list_mult_aux xs;;

val list_mult_aux : int list -> int = <fun>
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Exceptions - Example

# let list_mult list =

    try list_mult_aux list with Zero -> 0;;

val list_mult : int list -> int = <fun>

# list_mult [3;4;2];;

- : int = 24

# list_mult [7;4;0];;

- : int = 0

# list_mult_aux [7;4;0];;

Exception: Zero.
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Exceptions

◼ When an exception is raised

◼ The current computation is aborted

◼ Control is “thrown” back up the call 
stack until a matching handler is 
found

◼ All the intermediate calls waiting for a 
return values are thrown away
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Implementing Exceptions

# let multkp (m, n) k =

   let r = m * n in

     ( print_string "product result: ";

       print_int r; print_string "\n";

       k r);;

val multkp : int ( int -> (int -> 'a) -> 'a = 
<fun>
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Implementing Exceptions

# let rec list_multk_aux list k kexcp =

    match list with 

       [ ] -> k 1

     | x :: xs -> if x = 0 then kexcp 0

                  else 

                    list_multk_aux xs

                        (fun r -> multkp (x, r) k) 

                        kexcp;;

# let rec list_multk list k = 

       list_multk_aux list k

                (fun x -> print_string "nil\n");;
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Implementing Exceptions

# list_multk [3;4;2] report;;

product result: 2

product result: 8

product result: 24

24

- : unit = ()

# list_multk [7;4;0] report;;

nil

- : unit = ()



Advanced: Using CPS as Compiler 
Intermediate Representation

Ocaml compiler (latest version) uses CPS:

◼ Blog: https://discuss.ocaml.org/t/blog-the-flambda2-snippets-by-
ocamlpro/14331 

◼ Tutorial: https://www.youtube.com/watch?v=eI5GBpT2Brs 

Various discussions in research literature:

◼ With? https://www.microsoft.com/en-us/research/wp-
content/uploads/2007/10/compilingwithcontinuationscontinued.pdf 

◼ Without? https://pauldownen.com/publications/pldi17.pdf 

◼ Whatever? https://dl.acm.org/doi/10.1145/3341643 

Intermediate representations CPS for functional vs SSA for imperative

◼ https://dl.acm.org/doi/10.1145/202530.202532 

https://discuss.ocaml.org/t/blog-the-flambda2-snippets-by-ocamlpro/14331
https://discuss.ocaml.org/t/blog-the-flambda2-snippets-by-ocamlpro/14331
https://www.youtube.com/watch?v=eI5GBpT2Brs
https://www.microsoft.com/en-us/research/wp-content/uploads/2007/10/compilingwithcontinuationscontinued.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2007/10/compilingwithcontinuationscontinued.pdf
https://pauldownen.com/publications/pldi17.pdf
https://dl.acm.org/doi/10.1145/3341643
https://dl.acm.org/doi/10.1145/202530.202532


Data type in Ocaml: lists

◼ Frequently used lists in recursive program

◼ Matched over two structural cases

◼ [ ]  - the empty list

◼ (x :: xs) a non-empty list

◼ Covers all possible lists 

◼ type ‘a list = [ ] | (::) of  ‘a * ‘a list

◼ Not quite legitimate declaration because of 
special syntax
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Variants - Syntax (slightly simplified)

◼ type name = C1 [of  ty1] | . . . | Cn [of tyn]

◼ Introduce a type called name

◼ (fun x -> Ci x) : ty1 -> name

◼ Ci is called a constructor; if the optional type 
argument is omitted, it is called a constant

◼ Constructors are the basis of almost all 
pattern matching
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Enumeration Types as Variants

An enumeration type is a collection of distinct 
values

In C and Ocaml they have an order structure; 
order by order of input
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Enumeration Types as Variants

# type weekday = Monday | Tuesday | Wednesday

   | Thursday | Friday | Saturday | Sunday;;

type weekday =

    Monday

  | Tuesday

  | Wednesday

  | Thursday

  | Friday

  | Saturday

  | Sunday
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Functions over Enumerations

# let day_after day = match day with

    Monday -> Tuesday

  | Tuesday -> Wednesday

  | Wednesday -> Thursday

 | Thursday -> Friday

 | Friday -> Saturday

  | Saturday -> Sunday

 | Sunday -> Monday;;

 val day_after : weekday -> weekday = <fun>
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Functions over 
Enumerations

# let rec days_later n day =

    match n with 

      0 -> day

    | _ -> if n > 0

          then day_after (days_later (n - 1) day)

         else days_later (n + 7) day;;

val days_later : int -> weekday -> weekday=<fun>

Write a function days_later n day that computes a day 

which is n days away from the day. Note that n can be 

greater than 7 (more than one week) and also 

negative (meaning a day before

# type weekday = Monday | Tuesday |
                            Wednesday  | Thursday | 
                            Friday | Saturday | Sunday;;
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Functions over Enumerations

# days_later 2 Tuesday;;

- : weekday = Thursday

# days_later (-1) Wednesday;;

- : weekday = Tuesday

# days_later (-4) Monday;;

- : weekday = Thursday



Problem:

# type weekday = Monday | Tuesday | Wednesday

   | Thursday | Friday | Saturday | Sunday;;

◼ Write function is_weekend : weekday -> bool 
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Problem:

# type weekday = Monday | Tuesday | Wednesday

   | Thursday | Friday | Saturday | Sunday;;

◼ Write function is_weekend : weekday -> bool 
let is_weekend day = 

 match day with 

 Saturday -> true

 | Sunday -> true

 | _ -> false
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Example Enumeration Types

# type bin_op = IntPlusOp | IntMinusOp 

          | EqOp | CommaOp | ConsOp

# type mon_op = HdOp | TlOp | FstOp

          | SndOp
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Disjoint Union Types

◼ Disjoint union of types, with some 
possibly occurring more than once

◼ We can also add in some new singleton 
elements

ty1 ty2 ty1
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Disjoint Union Types

# type id = DriversLicense of int                          
| SocialSecurity of int | Name of string;;

type id = DriversLicense of int | 
SocialSecurity of int | Name of string

# let check_id id = 
    match id with
      DriversLicense num -> 
       not (List.mem num [13570; 99999])
    | SocialSecurity num -> num < 900000000
    | Name str -> not (str = "John Doe");;
 val check_id : id -> bool = <fun>



Problem

◼ Create a type to represent the currencies for 
US, UK, Europe and Japan

◼ Hint: Dollar, Pound, Euro, Yen
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Problem

◼ Create a type to represent the currencies for 
US, UK, Europe and Japan

  type currency =

 Dollar of int

 | Pound of int

 | Euro of int

 | Yen of int
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Example Disjoint Union Type

# type const =

      BoolConst of bool 

    | IntConst of int

    | FloatConst of float

    | StringConst of string 

    | NilConst

    | UnitConst 
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Example Disjoint Union Type

# type const = BoolConst of bool 

    | IntConst of int | FloatConst of float

    | StringConst of string  | NilConst

    | UnitConst 

◼ How to represent 7 as a const?

◼ Answer:  IntConst 7
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Polymorphism in Variants

◼ The type 'a option gives us something to 
represent non-existence or failure

# type 'a option = Some of 'a | None;;

type 'a option = Some of 'a | None

◼ Used to encode partial functions

◼ Often can replace the raising of an exception
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Functions producing option

# let rec first p list =

    match list with [ ] -> None

    | (x::xs) -> if p x then Some x else first p xs;;

val first : ('a -> bool) -> 'a list -> 'a option = 
<fun>

# first (fun x -> x > 3) [1;3;4;2;5];;

- : int option = Some 4

# first (fun x -> x > 5) [1;3;4;2;5];;

- : int option = None

# type 'a option = 
     Some of 'a 
   | None;;
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Functions over option

# let result_ok r =

   match r with None -> false

   | Some _ -> true;;

val result_ok : 'a option -> bool = <fun>

# result_ok (first (fun x -> x > 3) [1;3;4;2;5]);;

- : bool = true

# result_ok (first (fun x -> x > 5) [1;3;4;2;5]);;

- : bool = false

# type 'a option = 
     Some of 'a 
   | None;;



Problem

◼ Write a hd and tl on lists that doesn’t raise 
an exception and works at all types of lists.
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# type 'a option = 
     Some of 'a 
   | None;;



Problem

◼ Write a hd and tl on lists that doesn’t raise 
an exception and works at all types of lists.

◼ let hd list = 

       match list with 

          [] -> None

        | (x::xs) -> Some x

◼ let tl list = 

       match list with 

          [] -> None

        | (x::xs) -> Some xs
9/23/2024 46

# type 'a option = 
     Some of 'a 
   | None;;
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Mapping over Variants

# let optionMap f opt =

    match opt with 

      None -> None

    | Some x -> Some (f x);;

val optionMap : ('a -> 'b) -> 'a option -> 'b 
option = <fun>

# optionMap

  (fun x -> x - 2)

  (first (fun x -> x > 3) [1;3;4;2;5]);;

- : int option = Some 2
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Folding over Variants

# let optionFold someFun noneVal opt =
    match opt with 
      None -> noneVal
    | Some x -> someFun x;;
val optionFold : ('a -> 'b) -> 'b -> 'a option 
-> 'b = <fun>

# let optionMap f opt =
   optionFold (fun x -> Some (f x)) None opt;;
val optionMap : ('a -> 'b) -> 'a option -> 'b 
option = <fun>
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Recursive Types

◼ The type being defined may be a component 
of itself

ty ty’ ty
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Recursive Data Types

# type int_Bin_Tree =

    Leaf of int 

  | Node of (int_Bin_Tree * int_Bin_Tree);;

type int_Bin_Tree = Leaf of int | Node of 
(int_Bin_Tree * int_Bin_Tree)



9/23/2024 51

Recursive Data Type Values

# let bin_tree =

 Node(Node(Leaf 3, Leaf 6),Leaf (-7));;

val bin_tree : int_Bin_Tree = Node (Node 
(Leaf 3, Leaf 6), Leaf (-7))
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Recursive Data Type Values

  bin_tree =   Node

         Node               Leaf (-7)

Leaf 3      Leaf 6

# let bin_tree =

    Node(Node(Leaf 3, Leaf 6),Leaf (-7));;
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Recursive Functions

# let rec first_leaf_value tree =

    match tree with 

       (Leaf n) -> n

    | Node (left_tree, right_tree) ->

     first_leaf_value left_tree;;

# let left = first_leaf_value bin_tree;;

val left : int = 3
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Recursive Data Types

# type exp = 

     VarExp of string

   | ConstExp of const

   | MonOpAppExp of mon_op * exp 

   | BinOpAppExp of bin_op * exp * exp

   | IfExp of exp* exp * exp
   | AppExp of exp * exp
   | FunExp of string * exp
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Recursive Data Types

# type bin_op = IntPlusOp | IntMinusOp 

          | EqOp | CommaOp | ConsOp | …

# type const = BoolConst of bool | IntConst of int 
| …

# type exp = VarExp of string | ConstExp of const

   | BinOpAppExp of bin_op * exp * exp  | …

◼How to represent 6 as an exp?
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Recursive Data Types

# type bin_op = IntPlusOp | IntMinusOp 

          | EqOp | CommaOp | ConsOp | …

# type const = BoolConst of bool | IntConst of int 
| …

# type exp = VarExp of string | ConstExp of const

   | BinOpAppExp of bin_op * exp * exp  | …

◼How to represent 6 as an exp?

◼Answer: ConstExp (IntConst 6)
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Recursive Data Types

# type bin_op = IntPlusOp | IntMinusOp 

          | EqOp | CommaOp | ConsOp | …

# type const = BoolConst of bool | IntConst of int 
| …

# type exp = VarExp of string | ConstExp of const

   | BinOpAppExp of bin_op * exp * exp  | …

◼How to represent (6, 3) as an exp?
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Recursive Data Types

# type bin_op = IntPlusOp | IntMinusOp 

          | EqOp | CommaOp | ConsOp | …

# type const = BoolConst of bool | IntConst of int 
| …

# type exp = VarExp of string | ConstExp of const

   | BinOpAppExp of bin_op * exp * exp  | …

◼How to represent (6, 3) as an exp?

◼BinOpAppExp (CommaOp, ConstExp (IntConst 6),

                         ConstExp (IntConst 3))
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Recursive Data Types

# type bin_op = IntPlusOp | IntMinusOp 

          | EqOp | CommaOp | ConsOp | …

# type const = BoolConst of bool | IntConst of int 
| …

# type exp = VarExp of string | ConstExp of const

   | BinOpAppExp of bin_op * exp * exp  | …

◼ How to represent [(6, 3)] as an exp?

◼ BinOpAppExp (ConsOp, BinOpAppExp (CommaOp, 
ConstExp (IntConst 6), ConstExp (IntConst 3)), 
ConstExp NilConst))));; 



Problem

type int_Bin_Tree =Leaf of int 

| Node of (int_Bin_Tree * int_Bin_Tree);;

◼ Write sum_tree : int_Bin_Tree -> int

◼ Adds all ints in tree

let rec sum_tree t =
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Solution

type int_Bin_Tree =Leaf of int 

| Node of (int_Bin_Tree * int_Bin_Tree);;

◼ Write sum_tree : int_Bin_Tree -> int

◼ Adds all ints in tree

let rec sum_tree t =

  match t with 

    Leaf n -> n

  | Node(t1,t2) -> sum_tree t1 + sum_tree t2
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Recursion over Recursive Data Types

# type exp = VarExp of string 

 | ConstExp of const

   | BinOpAppExp of bin_op * exp * exp

   | FunExp of string * exp 

 | AppExp of exp * exp

◼ How to count the number of variables in an exp?
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Recursion over Recursive Data Types

# type exp = VarExp of string | ConstExp of const

   | BinOpAppExp of bin_op * exp * exp

   | FunExp of string * exp | AppExp of exp * exp

◼ How to count the number of variables in an exp?

# let rec varCnt exp =

 match exp with 

 VarExp x -> 

 | ConstExp c ->

 | BinOpAppExp (b, e1, e2) ->

    | FunExp (x,e) -> 

 | AppExp (e1, e2) ->
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Recursion over Recursive Data Types

# type exp = VarExp of string | ConstExp of const

   | BinOpAppExp of bin_op * exp * exp

   | FunExp of string * exp | AppExp of exp * exp

◼ How to count the number of variables in an exp?

# let rec varCnt exp =

 match exp with 

 VarExp x -> 1

 | ConstExp c -> 0

 | BinOpAppExp (b, e1, e2) -> varCnt e1 +varCnt e2

    | FunExp (x,e) -> 1 + varCnt e

 | AppExp (e1, e2) -> varCnt e1 + varCnt e2
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Mapping over Recursive Types

# let rec ibtreeMap f tree =

    match tree with 

      (Leaf n) ->  

    | Node (left_tree, right_tree) ->
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Mapping over Recursive Types

# let rec ibtreeMap f tree =

    match tree with 

      (Leaf n) -> Leaf (f n)

    | Node (left_tree, right_tree) ->

           Node (ibtreeMap f left_tree,

                 IbtreeMap f right_tree);;

val ibtreeMap : (int -> int) -> int_Bin_Tree -> 
int_Bin_Tree = <fun>
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Mapping over Recursive Types

# let bin_tree =

 Node(Node(Leaf 3, Leaf 6),Leaf (-7));;

# ibtreeMap ((+) 2) bin_tree;;

- : int_Bin_Tree = Node (Node (Leaf 5, Leaf 
8), Leaf (-5))
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Summing up Elements of a Tree

# let rec tree_sum_0 tree =

   match tree with 

     Leaf n ->  

   | Node (left_tree, right_tree) ->
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Folding over Recursive Types

# let rec ibtreeFoldRight leafFun nodeFun tree =

   match tree with 

     Leaf n ->  

   | Node (left_tree, right_tree) ->

      

val ibtreeFoldRight : (int -> 'a) -> ('a -> 'a -> 'a) -> 
int_Bin_Tree -> 'a = <fun>
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Folding over Recursive Types

# let rec ibtreeFoldRight leafFun nodeFun tree =

   match tree with 

     Leaf n -> leafFun n

   | Node (left_tree, right_tree) ->

     nodeFun

     (ibtreeFoldRight leafFun nodeFun left_tree)

     (ibtreeFoldRight leafFun nodeFun right_tree);;

val ibtreeFoldRight : (int -> 'a) -> ('a -> 'a -> 'a) -> 
int_Bin_Tree -> 'a = <fun>
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Folding over Recursive Types

# let tree_sum = 

    ibtreeFoldRight (fun x -> x) (+);;

val tree_sum : int_Bin_Tree -> int = <fun>

# tree_sum bin_tree;;

- : int = 2
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Mutually Recursive Types

# type 'a tree = 

 TreeLeaf of 'a

   | TreeNode of 'a treeList

and 

 'a treeList = 

 Last of 'a tree

   | More of ('a tree * 'a treeList);;

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a 
treeList)
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Mutually Recursive Types - Values

# let tree =

   TreeNode

    (More (TreeLeaf 5,

           (More (TreeNode

                  (More (TreeLeaf 3,

                         Last (TreeLeaf 2))),

                  Last (TreeLeaf 7)))));;
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Mutually Recursive Types - Values

val tree : int tree =

  TreeNode

   (More

     (TreeLeaf 5,

      More

       (TreeNode (More (TreeLeaf 3, 
      Last (TreeLeaf 2))), 
  Last (TreeLeaf 7))))
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Mutually Recursive Types - Values

TreeNode

More              More               Last 

TreeLeaf       TreeNode            TreeLeaf

    5                More                 Last    7

                      TreeLeaf        TreeLeaf

                           3                     2
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Mutually Recursive Types - Values

A more conventional picture 

                5                                   7

                            3               2
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Mutually Recursive Functions

# let rec fringe tree =
    match tree with 
       (TreeLeaf x) -> [x]
  | (TreeNode list) -> list_fringe list
and list_fringe tree_list =
    match tree_list with 
       (Last tree) -> fringe tree
  | (More (tree,list)) ->
       (fringe tree) @ (list_fringe list);;

val fringe : 'a tree -> 'a list = <fun>
val list_fringe : 'a treeList -> 'a list = <fun>



9/23/2024 80

Mutually Recursive Functions

# fringe tree;;

- : int list = [5; 3; 2; 7]
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Problem

# type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

◼ Define tree_size 
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Problem

# type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

◼ Define tree_size 

let rec tree_size t =

      match t with TreeLeaf _ -> 

      | TreeNode ts ->
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Problem

# type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

◼ Define tree_size 

let rec tree_size t =

      match t with TreeLeaf _ -> 1

      | TreeNode ts -> treeList_size  ts



9/24/2024 84

Problem

# type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

◼ Define tree_size and treeList_size 

let rec tree_size t =

      match t with TreeLeaf _ -> 1

      | TreeNode ts -> treeList_size  ts

and treeList_size ts =
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Problem

# type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

◼ Define tree_size and treeList_size

let rec tree_size t =

      match t with TreeLeaf _ -> 1

      | TreeNode ts -> treeList_size  ts

and treeList_size ts =

      match ts with Last t ->

      | More t ts’ ->
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Problem

# type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

◼ Define tree_size and treeList_size

let rec tree_size t =

      match t with TreeLeaf _ -> 1

      | TreeNode ts -> treeList_size  ts

and treeList_size ts =

      match ts with Last t -> tree_size t 

      | More t ts’ -> tree_size t + treeList_size ts’
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Problem

# type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

◼ Define tree_size and treeList_size

let rec tree_size t =

      match t with TreeLeaf _ -> 1

      | TreeNode ts -> treeList_size  ts

and treeList_size ts =

      match ts with Last t -> tree_size t 

      | More t ts’ -> tree_size t + treeList_size ts’
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Nested Recursive Types

# type 'a labeled_tree =

 TreeNode of ('a * 'a labeled_tree list);;

type 'a labeled_tree = TreeNode of ('a * 'a 
labeled_tree list)

Compare: 

# type 'a tree = 

        TreeLeaf of 'a

      | TreeNode of 'a treeList

and 'a treeList = 

        Last of 'a tree

      | More of ('a tree * 'a treeList);;
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Nested Recursive Type Values

# let ltree =

  TreeNode(5,

    [TreeNode (3, []);

     TreeNode (2, [TreeNode (1, []);

                   TreeNode (7, [])]);

     TreeNode (5, [])]);;
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Nested Recursive Type Values

Ltree =  TreeNode(5)

          ::                ::                 ::           [ ]

TreeNode(3)   TreeNode(2)   TreeNode(5)

      [ ]             ::             ::    [ ]        [ ]   

                 TreeNode(1)  TreeNode(7)

                       [ ]              [ ]
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Nested Recursive Type Values

5

3           2           5

1           7
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Mutually Recursive Functions

# let rec flatten_tree labtree =

    match labtree with 

       TreeNode (x,treelist) ->               

            x::flatten_tree_list treelist

 and flatten_tree_list treelist =

     match treelist with 

       [] -> []

     | labtree::labtrees ->

         flatten_tree labtree

              @ (flatten_tree_list labtrees);;
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Mutually Recursive Functions

val flatten_tree : 'a labeled_tree -> 'a list = <fun>

val flatten_tree_list : 'a labeled_tree list -> 'a list = 
<fun>

# flatten_tree ltree;;

- : int list = [5; 3; 2; 1; 7; 5]

◼ Nested recursive types lead to mutually 
recursive functions
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