
Programming Languages and
Compilers (CS 421)

Sasa Misailovic

4110 SC, UIUC
https://courses.engr.illinois.edu/cs421/fa2024/CS421C

Based on slides by Elsa Gunter, which are based in part on previous

slides by Mattox Beckman and updated by Vikram Adve and Gul Agha

https://courses.engr.illinois.edu/cs421/fa2024/CS421C

9/23/2024 3

CPS Transformation

◼ Step 1: Add continuation argument to any function
definition:

◼ let f arg = e let f arg k = e

◼ Idea: Every function takes an extra parameter
saying where the result goes

◼ Step 2: A simple expression in tail position should
be passed to a continuation instead of returned:

◼ return a k a

◼ Assuming a is a constant or variable.

◼ “Simple” = “No available function calls.”

9/23/2024 4

CPS Transformation

◼ Step 3: Pass the current continuation to every
function call in tail position
◼ return f arg f arg k

◼ The function “isn’t going to return,” so we need
to tell it where to put the result.

CPS Transformation

◼ Step 4: Each function call not in tail position needs
to be converted to take a new continuation
(containing the old continuation as appropriate)

◼ return op (f arg) f arg (fun r -> k(op r))

◼ op represents a primitive operation

◼ return f(g arg) g arg (fun r-> f r k)

9/23/2024 5

9/23/2024 6

Example

Before:
let rec add_list lst =

match lst with

 [] -> 0

| 0 :: xs -> add_list xs

| x :: xs -> (+) x
(add_list xs);;

After:
let rec add_listk lst k =

 (* rule 1 *)

match lst with

| [] -> k 0 (* rule 2 *)

| 0 :: xs -> add_listk xs k

 (* rule 3 *)

| x :: xs -> add_listk xs

 (fun r -> k ((+) x r));;

 (* rule 4 *)

Step 1: Add continuation argument to any function definition

Step 2: A simple expression in tail position should be passed to a continuation

 instead of returned

Step 3: Pass the current continuation to every function call in tail position

Step 4: Each function call not in tail position needs to be converted to take a

 new continuation (containing the old continuation as appropriate)

Same as:

fun r -> addk x r k

9/23/2024 7

Example

Before:
let rec mem (y,lst) =

match lst with

 [] -> false

| x :: xs ->

 if (x = y)

 then true

 else mem(y,xs);;

After:
let rec memk (y,lst) k =

 (* rule 1 *)

match lst with

| [] -> k false (* rule 2 *)

| x :: xs ->

 eqk (x, y)

 (fun b ->if b (* rule 4 *)

then k true (* rule 2 *)

 else memk (y, xs) (* rule 3
*)

9/23/2024 8

Example

Before:
let rec mem (y,lst) =

match lst with

 [] -> false

| x :: xs ->

 if (x = y)

 then true

 else mem(y,xs);;

After:
let rec memk (y,lst) k =

 (* rule 1 *)

match lst with

| [] -> k false (* rule 2 *)

| x :: xs ->

 eqk (x, y)

 (fun b ->if b (* rule 4 *)

then k true (* rule 2 *)

 else memk (y, xs) (* rule
3 *)

9/23/2024 9

Example

Before:
let rec mem (y,lst) =

match lst with

 [] -> false

| x :: xs ->

 if (x = y)

 then true

 else mem(y,xs);;

After:
let rec memk (y,lst) k =

 (* rule 1 *)

match lst with

| [] -> k false (* rule 2 *)

| x :: xs ->

 eqk (x, y)

 (fun b ->if b (* rule 4 *)

then k true (* rule 2 *)

 else memk (y, xs) k (* rule 3 *)

9/23/2024 10

Example

Before:
let rec mem (y,lst) =

match lst with

 [] -> false

| x :: xs ->

 if (x = y)

 then true

 else mem(y,xs);;

After:
let rec memk (y,lst) k =

 (* rule 1 *)

match lst with

| [] -> k false (* rule 2 *)

| x :: xs ->

 eqk (x, y)

 (fun b ->if b (* rule 4 *)

then k true (* rule 2 *)

 else memk (y, xs) (* rule 3 *)

9/23/2024 11

Example

Before:
let rec mem (y,lst) =

match lst with

 [] -> false

| x :: xs ->

 if (x = y)

 then true

 else mem(y,xs);;

After:
let rec memk (y,lst) k =

 (* rule 1 *)

match lst with

| [] -> k false (* rule 2 *)

| x :: xs ->

 eqk (x, y)

 (fun b ->if b (* rule 4 *)

then k true (* rule 2 *)

 else memk (y, xs) (* rule 3 *)

9/23/2024 12

Example

Before:
let rec mem (y,lst) =

match lst with

 [] -> false

| x :: xs ->

 if (x = y)

 then true

 else mem(y,xs);;

After:
let rec memk (y,lst) k =

 (* rule 1 *)

match lst with

 [] -> k false (* rule 2 *)

| x :: xs ->

 eqk (x, y)

 (fun b ->if b (* rule 4 *)

then k true (* rule 2 *)

 else memk (y, xs) k (* rule 3 *)

Other Uses for Continuations

◼ CPS designed to preserve evaluation order

◼ Continuations used to express order of
evaluation

◼ Can also be used to change order of
evaluation

◼ Implements:

◼ Exceptions and exception handling

◼ Co-routines

◼ (pseudo, aka green) threads
17

9/23/2024 18

Exceptions - Example

exception Zero;;

exception Zero

let rec list_mult_aux list =

 match list with

 [] -> 1

 | x :: xs ->

 if x = 0 then raise Zero

 else x * list_mult_aux xs;;

val list_mult_aux : int list -> int = <fun>

9/23/2024 19

Exceptions - Example

let list_mult list =

 try list_mult_aux list with Zero -> 0;;

val list_mult : int list -> int = <fun>

list_mult [3;4;2];;

- : int = 24

list_mult [7;4;0];;

- : int = 0

list_mult_aux [7;4;0];;

Exception: Zero.

9/23/2024 20

Exceptions

◼ When an exception is raised

◼ The current computation is aborted

◼ Control is “thrown” back up the call
stack until a matching handler is
found

◼ All the intermediate calls waiting for a
return values are thrown away

9/23/2024 21

Implementing Exceptions

let multkp (m, n) k =

 let r = m * n in

 (print_string "product result: ";

 print_int r; print_string "\n";

 k r);;

val multkp : int (int -> (int -> 'a) -> 'a =
<fun>

22

Implementing Exceptions

let rec list_multk_aux list k kexcp =

 match list with

 [] -> k 1

 | x :: xs -> if x = 0 then kexcp 0

 else

 list_multk_aux xs

 (fun r -> multkp (x, r) k)

 kexcp;;

let rec list_multk list k =

 list_multk_aux list k

 (fun x -> print_string "nil\n");;

9/23/2024 23

Implementing Exceptions

list_multk [3;4;2] report;;

product result: 2

product result: 8

product result: 24

24

- : unit = ()

list_multk [7;4;0] report;;

nil

- : unit = ()

Advanced: Using CPS as Compiler
Intermediate Representation

Ocaml compiler (latest version) uses CPS:

◼ Blog: https://discuss.ocaml.org/t/blog-the-flambda2-snippets-by-
ocamlpro/14331

◼ Tutorial: https://www.youtube.com/watch?v=eI5GBpT2Brs

Various discussions in research literature:

◼ With? https://www.microsoft.com/en-us/research/wp-
content/uploads/2007/10/compilingwithcontinuationscontinued.pdf

◼ Without? https://pauldownen.com/publications/pldi17.pdf

◼ Whatever? https://dl.acm.org/doi/10.1145/3341643

Intermediate representations CPS for functional vs SSA for imperative

◼ https://dl.acm.org/doi/10.1145/202530.202532

https://discuss.ocaml.org/t/blog-the-flambda2-snippets-by-ocamlpro/14331
https://discuss.ocaml.org/t/blog-the-flambda2-snippets-by-ocamlpro/14331
https://www.youtube.com/watch?v=eI5GBpT2Brs
https://www.microsoft.com/en-us/research/wp-content/uploads/2007/10/compilingwithcontinuationscontinued.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2007/10/compilingwithcontinuationscontinued.pdf
https://pauldownen.com/publications/pldi17.pdf
https://dl.acm.org/doi/10.1145/3341643
https://dl.acm.org/doi/10.1145/202530.202532

Data type in Ocaml: lists

◼ Frequently used lists in recursive program

◼ Matched over two structural cases

◼ [] - the empty list

◼ (x :: xs) a non-empty list

◼ Covers all possible lists

◼ type ‘a list = [] | (::) of ‘a * ‘a list

◼ Not quite legitimate declaration because of
special syntax

9/23/2024 26

9/23/2024 27

Variants - Syntax (slightly simplified)

◼ type name = C1 [of ty1] | . . . | Cn [of tyn]

◼ Introduce a type called name

◼ (fun x -> Ci x) : ty1 -> name

◼ Ci is called a constructor; if the optional type
argument is omitted, it is called a constant

◼ Constructors are the basis of almost all
pattern matching

9/23/2024 28

Enumeration Types as Variants

An enumeration type is a collection of distinct
values

In C and Ocaml they have an order structure;
order by order of input

9/23/2024 29

Enumeration Types as Variants

type weekday = Monday | Tuesday | Wednesday

 | Thursday | Friday | Saturday | Sunday;;

type weekday =

 Monday

 | Tuesday

 | Wednesday

 | Thursday

 | Friday

 | Saturday

 | Sunday

9/23/2024 30

Functions over Enumerations

let day_after day = match day with

 Monday -> Tuesday

 | Tuesday -> Wednesday

 | Wednesday -> Thursday

 | Thursday -> Friday

 | Friday -> Saturday

 | Saturday -> Sunday

 | Sunday -> Monday;;

 val day_after : weekday -> weekday = <fun>

9/23/2024 31

Functions over
Enumerations

let rec days_later n day =

 match n with

 0 -> day

 | _ -> if n > 0

 then day_after (days_later (n - 1) day)

 else days_later (n + 7) day;;

val days_later : int -> weekday -> weekday=<fun>

Write a function days_later n day that computes a day

which is n days away from the day. Note that n can be

greater than 7 (more than one week) and also

negative (meaning a day before

type weekday = Monday | Tuesday |
 Wednesday | Thursday |
 Friday | Saturday | Sunday;;

9/23/2024 32

Functions over Enumerations

days_later 2 Tuesday;;

- : weekday = Thursday

days_later (-1) Wednesday;;

- : weekday = Tuesday

days_later (-4) Monday;;

- : weekday = Thursday

Problem:

type weekday = Monday | Tuesday | Wednesday

 | Thursday | Friday | Saturday | Sunday;;

◼ Write function is_weekend : weekday -> bool

9/23/2024 33

Problem:

type weekday = Monday | Tuesday | Wednesday

 | Thursday | Friday | Saturday | Sunday;;

◼ Write function is_weekend : weekday -> bool
let is_weekend day =

 match day with

 Saturday -> true

 | Sunday -> true

 | _ -> false

9/23/2024 34

9/23/2024 35

Example Enumeration Types

type bin_op = IntPlusOp | IntMinusOp

 | EqOp | CommaOp | ConsOp

type mon_op = HdOp | TlOp | FstOp

 | SndOp

9/23/2024 36

Disjoint Union Types

◼ Disjoint union of types, with some
possibly occurring more than once

◼ We can also add in some new singleton
elements

ty1 ty2 ty1

9/23/2024 37

Disjoint Union Types

type id = DriversLicense of int
| SocialSecurity of int | Name of string;;

type id = DriversLicense of int |
SocialSecurity of int | Name of string

let check_id id =
 match id with
 DriversLicense num ->
 not (List.mem num [13570; 99999])
 | SocialSecurity num -> num < 900000000
 | Name str -> not (str = "John Doe");;
 val check_id : id -> bool = <fun>

Problem

◼ Create a type to represent the currencies for
US, UK, Europe and Japan

◼ Hint: Dollar, Pound, Euro, Yen

9/23/2024 38

Problem

◼ Create a type to represent the currencies for
US, UK, Europe and Japan

 type currency =

 Dollar of int

 | Pound of int

 | Euro of int

 | Yen of int

9/23/2024 39

9/23/2024 40

Example Disjoint Union Type

type const =

 BoolConst of bool

 | IntConst of int

 | FloatConst of float

 | StringConst of string

 | NilConst

 | UnitConst

9/23/2024 41

Example Disjoint Union Type

type const = BoolConst of bool

 | IntConst of int | FloatConst of float

 | StringConst of string | NilConst

 | UnitConst

◼ How to represent 7 as a const?

◼ Answer: IntConst 7

9/23/2024 42

Polymorphism in Variants

◼ The type 'a option gives us something to
represent non-existence or failure

type 'a option = Some of 'a | None;;

type 'a option = Some of 'a | None

◼ Used to encode partial functions

◼ Often can replace the raising of an exception

9/23/2024 43

Functions producing option

let rec first p list =

 match list with [] -> None

 | (x::xs) -> if p x then Some x else first p xs;;

val first : ('a -> bool) -> 'a list -> 'a option =
<fun>

first (fun x -> x > 3) [1;3;4;2;5];;

- : int option = Some 4

first (fun x -> x > 5) [1;3;4;2;5];;

- : int option = None

type 'a option =
 Some of 'a
 | None;;

9/23/2024 44

Functions over option

let result_ok r =

 match r with None -> false

 | Some _ -> true;;

val result_ok : 'a option -> bool = <fun>

result_ok (first (fun x -> x > 3) [1;3;4;2;5]);;

- : bool = true

result_ok (first (fun x -> x > 5) [1;3;4;2;5]);;

- : bool = false

type 'a option =
 Some of 'a
 | None;;

Problem

◼ Write a hd and tl on lists that doesn’t raise
an exception and works at all types of lists.

9/23/2024 45

type 'a option =
 Some of 'a
 | None;;

Problem

◼ Write a hd and tl on lists that doesn’t raise
an exception and works at all types of lists.

◼ let hd list =

 match list with

 [] -> None

 | (x::xs) -> Some x

◼ let tl list =

 match list with

 [] -> None

 | (x::xs) -> Some xs
9/23/2024 46

type 'a option =
 Some of 'a
 | None;;

9/23/2024 47

Mapping over Variants

let optionMap f opt =

 match opt with

 None -> None

 | Some x -> Some (f x);;

val optionMap : ('a -> 'b) -> 'a option -> 'b
option = <fun>

optionMap

 (fun x -> x - 2)

 (first (fun x -> x > 3) [1;3;4;2;5]);;

- : int option = Some 2

9/23/2024 48

Folding over Variants

let optionFold someFun noneVal opt =
 match opt with
 None -> noneVal
 | Some x -> someFun x;;
val optionFold : ('a -> 'b) -> 'b -> 'a option
-> 'b = <fun>

let optionMap f opt =
 optionFold (fun x -> Some (f x)) None opt;;
val optionMap : ('a -> 'b) -> 'a option -> 'b
option = <fun>

9/23/2024 49

Recursive Types

◼ The type being defined may be a component
of itself

ty ty’ ty

9/23/2024 50

Recursive Data Types

type int_Bin_Tree =

 Leaf of int

 | Node of (int_Bin_Tree * int_Bin_Tree);;

type int_Bin_Tree = Leaf of int | Node of
(int_Bin_Tree * int_Bin_Tree)

9/23/2024 51

Recursive Data Type Values

let bin_tree =

 Node(Node(Leaf 3, Leaf 6),Leaf (-7));;

val bin_tree : int_Bin_Tree = Node (Node
(Leaf 3, Leaf 6), Leaf (-7))

9/24/2024 52

Recursive Data Type Values

 bin_tree = Node

 Node Leaf (-7)

Leaf 3 Leaf 6

let bin_tree =

 Node(Node(Leaf 3, Leaf 6),Leaf (-7));;

9/23/2024 53

Recursive Functions

let rec first_leaf_value tree =

 match tree with

 (Leaf n) -> n

 | Node (left_tree, right_tree) ->

 first_leaf_value left_tree;;

let left = first_leaf_value bin_tree;;

val left : int = 3

9/23/2024 55

Recursive Data Types

type exp =

 VarExp of string

 | ConstExp of const

 | MonOpAppExp of mon_op * exp

 | BinOpAppExp of bin_op * exp * exp

 | IfExp of exp* exp * exp
 | AppExp of exp * exp
 | FunExp of string * exp

9/23/2024 56

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp

 | EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int
| …

type exp = VarExp of string | ConstExp of const

 | BinOpAppExp of bin_op * exp * exp | …

◼How to represent 6 as an exp?

9/23/2024 57

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp

 | EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int
| …

type exp = VarExp of string | ConstExp of const

 | BinOpAppExp of bin_op * exp * exp | …

◼How to represent 6 as an exp?

◼Answer: ConstExp (IntConst 6)

9/23/2024 58

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp

 | EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int
| …

type exp = VarExp of string | ConstExp of const

 | BinOpAppExp of bin_op * exp * exp | …

◼How to represent (6, 3) as an exp?

9/23/2024 59

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp

 | EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int
| …

type exp = VarExp of string | ConstExp of const

 | BinOpAppExp of bin_op * exp * exp | …

◼How to represent (6, 3) as an exp?

◼BinOpAppExp (CommaOp, ConstExp (IntConst 6),

 ConstExp (IntConst 3))

9/23/2024 60

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp

 | EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int
| …

type exp = VarExp of string | ConstExp of const

 | BinOpAppExp of bin_op * exp * exp | …

◼ How to represent [(6, 3)] as an exp?

◼ BinOpAppExp (ConsOp, BinOpAppExp (CommaOp,
ConstExp (IntConst 6), ConstExp (IntConst 3)),
ConstExp NilConst))));;

Problem

type int_Bin_Tree =Leaf of int

| Node of (int_Bin_Tree * int_Bin_Tree);;

◼ Write sum_tree : int_Bin_Tree -> int

◼ Adds all ints in tree

let rec sum_tree t =

9/23/2024 62

Solution

type int_Bin_Tree =Leaf of int

| Node of (int_Bin_Tree * int_Bin_Tree);;

◼ Write sum_tree : int_Bin_Tree -> int

◼ Adds all ints in tree

let rec sum_tree t =

 match t with

 Leaf n -> n

 | Node(t1,t2) -> sum_tree t1 + sum_tree t2

9/23/2024 63

9/24/2024 64

Recursion over Recursive Data Types

type exp = VarExp of string

 | ConstExp of const

 | BinOpAppExp of bin_op * exp * exp

 | FunExp of string * exp

 | AppExp of exp * exp

◼ How to count the number of variables in an exp?

65

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const

 | BinOpAppExp of bin_op * exp * exp

 | FunExp of string * exp | AppExp of exp * exp

◼ How to count the number of variables in an exp?

let rec varCnt exp =

 match exp with

 VarExp x ->

 | ConstExp c ->

 | BinOpAppExp (b, e1, e2) ->

 | FunExp (x,e) ->

 | AppExp (e1, e2) ->

66

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const

 | BinOpAppExp of bin_op * exp * exp

 | FunExp of string * exp | AppExp of exp * exp

◼ How to count the number of variables in an exp?

let rec varCnt exp =

 match exp with

 VarExp x -> 1

 | ConstExp c -> 0

 | BinOpAppExp (b, e1, e2) -> varCnt e1 +varCnt e2

 | FunExp (x,e) -> 1 + varCnt e

 | AppExp (e1, e2) -> varCnt e1 + varCnt e2

9/24/2024 67

Mapping over Recursive Types

let rec ibtreeMap f tree =

 match tree with

 (Leaf n) ->

 | Node (left_tree, right_tree) ->

9/24/2024 68

Mapping over Recursive Types

let rec ibtreeMap f tree =

 match tree with

 (Leaf n) -> Leaf (f n)

 | Node (left_tree, right_tree) ->

 Node (ibtreeMap f left_tree,

 IbtreeMap f right_tree);;

val ibtreeMap : (int -> int) -> int_Bin_Tree ->
int_Bin_Tree = <fun>

9/24/2024 69

Mapping over Recursive Types

let bin_tree =

 Node(Node(Leaf 3, Leaf 6),Leaf (-7));;

ibtreeMap ((+) 2) bin_tree;;

- : int_Bin_Tree = Node (Node (Leaf 5, Leaf
8), Leaf (-5))

9/24/2024 70

Summing up Elements of a Tree

let rec tree_sum_0 tree =

 match tree with

 Leaf n ->

 | Node (left_tree, right_tree) ->

9/24/2024 71

Folding over Recursive Types

let rec ibtreeFoldRight leafFun nodeFun tree =

 match tree with

 Leaf n ->

 | Node (left_tree, right_tree) ->

val ibtreeFoldRight : (int -> 'a) -> ('a -> 'a -> 'a) ->
int_Bin_Tree -> 'a = <fun>

9/24/2024 72

Folding over Recursive Types

let rec ibtreeFoldRight leafFun nodeFun tree =

 match tree with

 Leaf n -> leafFun n

 | Node (left_tree, right_tree) ->

 nodeFun

 (ibtreeFoldRight leafFun nodeFun left_tree)

 (ibtreeFoldRight leafFun nodeFun right_tree);;

val ibtreeFoldRight : (int -> 'a) -> ('a -> 'a -> 'a) ->
int_Bin_Tree -> 'a = <fun>

9/24/2024 73

Folding over Recursive Types

let tree_sum =

 ibtreeFoldRight (fun x -> x) (+);;

val tree_sum : int_Bin_Tree -> int = <fun>

tree_sum bin_tree;;

- : int = 2

74

Mutually Recursive Types

type 'a tree =

 TreeLeaf of 'a

 | TreeNode of 'a treeList

and

 'a treeList =

 Last of 'a tree

 | More of ('a tree * 'a treeList);;

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a
treeList)

9/24/2024 75

Mutually Recursive Types - Values

let tree =

 TreeNode

 (More (TreeLeaf 5,

 (More (TreeNode

 (More (TreeLeaf 3,

 Last (TreeLeaf 2))),

 Last (TreeLeaf 7)))));;

9/24/2024 76

Mutually Recursive Types - Values

val tree : int tree =

 TreeNode

 (More

 (TreeLeaf 5,

 More

 (TreeNode (More (TreeLeaf 3,
 Last (TreeLeaf 2))),
 Last (TreeLeaf 7))))

9/24/2024 77

Mutually Recursive Types - Values

TreeNode

More More Last

TreeLeaf TreeNode TreeLeaf

 5 More Last 7

 TreeLeaf TreeLeaf

 3 2

9/24/2024 78

Mutually Recursive Types - Values

A more conventional picture

 5 7

 3 2

79

Mutually Recursive Functions

let rec fringe tree =
 match tree with
 (TreeLeaf x) -> [x]
 | (TreeNode list) -> list_fringe list
and list_fringe tree_list =
 match tree_list with
 (Last tree) -> fringe tree
 | (More (tree,list)) ->
 (fringe tree) @ (list_fringe list);;

val fringe : 'a tree -> 'a list = <fun>
val list_fringe : 'a treeList -> 'a list = <fun>

9/23/2024 80

Mutually Recursive Functions

fringe tree;;

- : int list = [5; 3; 2; 7]

9/23/2024 81

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

◼ Define tree_size

9/24/2024 82

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

◼ Define tree_size

let rec tree_size t =

 match t with TreeLeaf _ ->

 | TreeNode ts ->

9/24/2024 83

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

◼ Define tree_size

let rec tree_size t =

 match t with TreeLeaf _ -> 1

 | TreeNode ts -> treeList_size ts

9/24/2024 84

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

◼ Define tree_size and treeList_size

let rec tree_size t =

 match t with TreeLeaf _ -> 1

 | TreeNode ts -> treeList_size ts

and treeList_size ts =

9/24/2024 85

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

◼ Define tree_size and treeList_size

let rec tree_size t =

 match t with TreeLeaf _ -> 1

 | TreeNode ts -> treeList_size ts

and treeList_size ts =

 match ts with Last t ->

 | More t ts’ ->

9/24/2024 86

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

◼ Define tree_size and treeList_size

let rec tree_size t =

 match t with TreeLeaf _ -> 1

 | TreeNode ts -> treeList_size ts

and treeList_size ts =

 match ts with Last t -> tree_size t

 | More t ts’ -> tree_size t + treeList_size ts’

9/24/2024 87

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

◼ Define tree_size and treeList_size

let rec tree_size t =

 match t with TreeLeaf _ -> 1

 | TreeNode ts -> treeList_size ts

and treeList_size ts =

 match ts with Last t -> tree_size t

 | More t ts’ -> tree_size t + treeList_size ts’

9/24/2024 89

Nested Recursive Types

type 'a labeled_tree =

 TreeNode of ('a * 'a labeled_tree list);;

type 'a labeled_tree = TreeNode of ('a * 'a
labeled_tree list)

Compare:

type 'a tree =

 TreeLeaf of 'a

 | TreeNode of 'a treeList

and 'a treeList =

 Last of 'a tree

 | More of ('a tree * 'a treeList);;

9/24/2024 90

Nested Recursive Type Values

let ltree =

 TreeNode(5,

 [TreeNode (3, []);

 TreeNode (2, [TreeNode (1, []);

 TreeNode (7, [])]);

 TreeNode (5, [])]);;

9/23/2024 91

Nested Recursive Type Values

Ltree = TreeNode(5)

 :: :: :: []

TreeNode(3) TreeNode(2) TreeNode(5)

 [] :: :: [] []

 TreeNode(1) TreeNode(7)

 [] []

9/23/2024 92

Nested Recursive Type Values

5

3 2 5

1 7

9/24/2024 93

Mutually Recursive Functions

let rec flatten_tree labtree =

 match labtree with

 TreeNode (x,treelist) ->

 x::flatten_tree_list treelist

 and flatten_tree_list treelist =

 match treelist with

 [] -> []

 | labtree::labtrees ->

 flatten_tree labtree

 @ (flatten_tree_list labtrees);;

9/24/2024 94

Mutually Recursive Functions

val flatten_tree : 'a labeled_tree -> 'a list = <fun>

val flatten_tree_list : 'a labeled_tree list -> 'a list =
<fun>

flatten_tree ltree;;

- : int list = [5; 3; 2; 1; 7; 5]

◼ Nested recursive types lead to mutually
recursive functions

	Slide 1: Programming Languages and Compilers (CS 421)
	Slide 3: CPS Transformation
	Slide 4: CPS Transformation
	Slide 5: CPS Transformation
	Slide 6: Example
	Slide 7: Example
	Slide 8: Example
	Slide 9: Example
	Slide 10: Example
	Slide 11: Example
	Slide 12: Example
	Slide 17: Other Uses for Continuations
	Slide 18: Exceptions - Example
	Slide 19: Exceptions - Example
	Slide 20: Exceptions
	Slide 21: Implementing Exceptions
	Slide 22: Implementing Exceptions
	Slide 23: Implementing Exceptions
	Slide 24: Advanced: Using CPS as Compiler Intermediate Representation
	Slide 26: Data type in Ocaml: lists
	Slide 27: Variants - Syntax (slightly simplified)
	Slide 28: Enumeration Types as Variants
	Slide 29: Enumeration Types as Variants
	Slide 30: Functions over Enumerations
	Slide 31: Functions over Enumerations
	Slide 32: Functions over Enumerations
	Slide 33: Problem:
	Slide 34: Problem:
	Slide 35: Example Enumeration Types
	Slide 36: Disjoint Union Types
	Slide 37: Disjoint Union Types
	Slide 38: Problem
	Slide 39: Problem
	Slide 40: Example Disjoint Union Type
	Slide 41: Example Disjoint Union Type
	Slide 42: Polymorphism in Variants
	Slide 43: Functions producing option
	Slide 44: Functions over option
	Slide 45: Problem
	Slide 46: Problem
	Slide 47: Mapping over Variants
	Slide 48: Folding over Variants
	Slide 49: Recursive Types
	Slide 50: Recursive Data Types
	Slide 51: Recursive Data Type Values
	Slide 52: Recursive Data Type Values
	Slide 53: Recursive Functions
	Slide 55: Recursive Data Types
	Slide 56: Recursive Data Types
	Slide 57: Recursive Data Types
	Slide 58: Recursive Data Types
	Slide 59: Recursive Data Types
	Slide 60: Recursive Data Types
	Slide 62: Problem
	Slide 63: Solution
	Slide 64: Recursion over Recursive Data Types
	Slide 65: Recursion over Recursive Data Types
	Slide 66: Recursion over Recursive Data Types
	Slide 67: Mapping over Recursive Types
	Slide 68: Mapping over Recursive Types
	Slide 69: Mapping over Recursive Types
	Slide 70: Summing up Elements of a Tree
	Slide 71: Folding over Recursive Types
	Slide 72: Folding over Recursive Types
	Slide 73: Folding over Recursive Types
	Slide 74: Mutually Recursive Types
	Slide 75: Mutually Recursive Types - Values
	Slide 76: Mutually Recursive Types - Values
	Slide 77: Mutually Recursive Types - Values
	Slide 78: Mutually Recursive Types - Values
	Slide 79: Mutually Recursive Functions
	Slide 80: Mutually Recursive Functions
	Slide 81: Problem
	Slide 82: Problem
	Slide 83: Problem
	Slide 84: Problem
	Slide 85: Problem
	Slide 86: Problem
	Slide 87: Problem
	Slide 89: Nested Recursive Types
	Slide 90: Nested Recursive Type Values
	Slide 91: Nested Recursive Type Values
	Slide 92: Nested Recursive Type Values
	Slide 93: Mutually Recursive Functions
	Slide 94: Mutually Recursive Functions

