
Programming Languages and Compilers

(CS 421)

Sasa Misailovic

4110 SC, UIUC
https://courses.engr.illinois.edu/cs421/fa2024/CS421C

Based on slides by Elsa Gunter, which are based in part on previous

slides by Mattox Beckman and updated by Vikram Adve and Gul Agha

https://courses.engr.illinois.edu/cs421/fa2024/CS421C

9/19/2024 2

Structural Recursion

◼ Functions on recursive datatypes (eg lists)

tend to be recursive

◼ Recursion over recursive datatypes generally by

structural recursion

◼ Recursive calls made to components of structure of

the same recursive type

◼ Base cases of recursive types stop the recursion of

the function

9/19/2024 3

Tail Recursion

◼ A recursive program is tail recursive if all

recursive calls are tail calls

◼ Tail recursive programs may be optimized to be

implemented as loops, thus removing the

function call overhead for the recursive calls

◼ Tail recursion generally requires extra

“accumulator” arguments to pass partial results

◼ May require an auxiliary function

Tale of two lengths…

◼ Structural:

let rec length list = match list with

 [] -> 0

 | x :: xs -> 1 + length xs;;

◼ Tail:

let length l =

 let rec length_aux list n =

 match list with [] -> n

 | (a :: bs) -> length_aux bs (n + 1)

 in length_aux l 0
4

A bit of assembly

ocamlopt len.ml -S

Structural:
length_struct:
 subq $8, %rsp
 cmpq $1, %rax
 je .L101

 movq 8(%rax), %rax
 call length_struct@PLT
addq $2, %rax
 addq $8, %rsp
 ret
L101:
 movq $1, %rax
 addq $8, %rsp
 ret

Tail:
length_tail:
 cmpq $1, %rax
 je .L104
 movq $3, %rbx
 movq 8(%rax), %rax
 jmp length_aux_86@PLT
.L104: movq $1, %rax
 ret

length_aux_86:
.L108:
 cmpq $1, %rax
 je .L107
 addq $2, %rbx
 movq 8(%rax), %rax
 jmp .L108
.L107: movq %rbx, %rax
 ret

9/19/2024 6

Folding - Tail Recursion

let rec rev_aux list revlist =

 match list with

 [] -> revlist

 | x :: xs -> rev_aux xs (x::revlist);;

let rev list = rev_aux list [];;

let rev list =

 fold_left
 (fun l -> fun x -> x :: l) (* comb op *)

 [] (* accumulator cell *)

 list

9/19/2024 7

Folding

◼ Can replace recursion by fold_right in any

forward primitive recursive definition

◼ Primitive recursive means it only recurses on

immediate subcomponents of recursive data

structure

◼ Can replace recursion by fold_left in any

tail primitive recursive definition

9/19/2024 8

Example of Tail Recursion

let rec app fl x =

 match fl with [] -> x

 | (f :: rem_fs) -> f (app rem_fs x);;

val app : ('a -> 'a) list -> 'a -> 'a = <fun>

let app fs x =

 let rec app_aux fl acc =

 match fl with [] -> acc
 | (f :: rem_fs) -> app_aux rem_fs
 (fun z -> acc (f z))
 in app_aux fs (fun y -> y) x;;

val app : ('a -> 'a) list -> 'a -> 'a = <fun>

◼Let’s continue…

9/19/2024 9

9/19/2024 10

Continuation Passing Style

◼ A programming technique for all forms of

“non-local” control flow:

◼ non-local jumps

◼ exceptions

◼ general conversion of non-tail calls to tail calls

◼ Essentially, it is a higher-order function

version of GOTO

9/19/2024 11

Continuations

◼ Idea: Use functions to represent the control flow

of a program

◼ Method: Each procedure takes a function as an

argument to which to pass its result; outer

procedure “returns” no result

◼ Function receiving the result called a

continuation

◼ Continuation acts as “accumulator” for work

still to be done

9/19/2024 12

Continuation Passing Style

◼ Writing procedures so that they take a

continuation to which to give (pass) the

result, and return no result, is called

continuation passing style (CPS)

Simplest CPS Example

Identity function:

◼ let ident x = x

Identity function in CPS:

◼ let identk x ret = ret x

◼ Takes as arguments the value x
and the function ret to which the value
will be passed

9/19/2024 13

14

Example

◼ Simple reporting continuation:

let report x = (print_int x;
 print_newline());;

val report : int -> unit = <fun>

◼ Simple function using a continuation:

let plusk a b k = k (a + b)

val plusk : int -> int -> (int -> ’a) -> ’a
= <fun>

plusk 20 22 report;;

42

- : unit = ()

9/19/2024 17

Continuation Passing Style

◼ A compilation technique to implement non-local

control flow, especially useful in interpreters.

◼ A formalization of non-local control flow in

denotational semantics

◼ Possible intermediate state in compiling

functional code

Simple Functions Taking Continuations

◼ Given a primitive operation, can convert it

to pass its result forward to a continuation

◼ Examples:

let subk (x, y) k = k (x - y);;

val subk : int * int -> (int -> 'a) -> 'a = <fun>

let eqk (x, y) k = k (x = y);;

val eqk : 'a * 'a -> (bool -> 'b) -> 'b = <fun>

let timesk (x, y) k = k (x * y);;

val timesk : int * int -> (int -> 'a) -> 'a = <fun>

9/19/2024 18

Nesting Continuations

let add_triple (x, y, z) = (x + y) + z;;

val add_triple : int * int * int -> int = <fun>

let add_triple (x,y,z) = let p = x + y in p + z;;

val add_three : int -> int -> int -> int = <fun>

let add_triple_k (x, y, z) k =

 addk (x, y) (fun p -> addk (p, z) k);;

val add_triple_k: int * int * int -> (int -> 'a) ->
'a = <fun>

9/19/2024 19

add_three: a different order

let add_triple_k (x, y, z) k =

 addk (x, y) (fun p -> addk (p, z) k);;

◼ How do we write add_triple_k to use a different

order?

◼ # let add_triple (x, y, z) = x + (y + z);;

◼ let add_triple_k (x, y, z) k =

9/19/2024 20

add_three: a different order

let add_triple_k (x, y, z) k =

 addk (x, y) (fun p -> addk (p, z) k);;

◼ How do we write add_triple_k to use a different

order?

◼ # let add_triple (x, y, z) = x + (y + z);;

◼ let add_triple_k (x, y, z) k =
 addk (y,z) (fun r -> addk(x,r) k)

9/19/2024 21

9/19/2024 22

Recursive Functions

◼ Recall:

let rec factorial n =

 if n = 0 then 1 else n * factorial (n - 1);;

 val factorial : int -> int = <fun>

factorial 5;;

- : int = 120

9/19/2024 23

Terms

◼ A function is in Direct Style when it returns its result

back to the caller.

◼ A Tail Call occurs when a function returns the result of

another function call without any more computations

(eg tail recursion)

◼ A function is in Continuation Passing Style when it, and

every function call in it, passes its result to another

function.

◼ Instead of returning the result to the caller, we pass it

forward to another function.

9/19/2024 24

Terminology

◼ Tail Position: A subexpression s of

expressions e, such that if evaluated, will be

taken as the value of e

◼ if (x>3) then x + 2 else x - 4

◼ let x = 5 in x + 4

◼ Tail Call: A function call that occurs in tail

position

◼ if (h x) then f x else (x + g x)

9/19/2024 25

Recursive Functions

◼ Recall:
let rec factorial n =

 if n = 0 then 1 else n * factorial (n - 1);;

 val factorial : int -> int = <fun>

factorial 5;;

- : int = 120

9/19/2024 26

Recursive Functions

let rec factorial n =

 if n = 0 then 1 else n * factorial (n - 1);;

let rec factorial n =

 let b = (n = 0) in (* 1st computation *)

 if b then 1 (* Returned value *)

 else let s = n – 1 in (* 2nd computation *)

 let r = factorial s in (* 3rd computation *)

 n * r (* Returned value *) ;;

val factorial : int -> int = <fun>

factorial 5;;

- : int = 120

9/19/2024 27

Recursive Functions

let rec factorialk n k =
 eqk (n, 0)
 (fun b -> (* 1st computation *)
 if b then
 k 1 (* Passed val *)
 else
 subk (n,1) (* 2nd computation *)
 (fun s -> factorialk s (* 3rd computation*)
 (fun r -> timesk (n, r) k) (* Passed val*)
)
)
val factorialk : int -> (int -> 'a) -> ‘a = <fun>

factorialk 5 report;;
120

9/19/2024 28

Recursive Functions

◼ To make recursive call, must build

intermediate continuation to

◼ take recursive value: r

◼ build it to final result: n * r

◼ And pass it to final continuation:

◼ times (n, r) k = k (n * r)

Example: CPS for length

let rec length list = match list with

 [] -> 0

 | (a :: bs) -> 1 + length bs

What is the let-expanded version of this?

9/19/2024 29

Example: CPS for length

let rec length list = match list with

 [] -> 0

 | (a :: bs) -> 1 + length bs

What is the let-expanded version of this?

let rec length list = match list with

 [] -> 0

 | (a :: bs) -> let r1 = length bs in

 1 + r1

9/19/2024 30

Example: CPS for length

let rec length list = match list with

 [] -> 0

 | (a :: bs) -> 1 + length bs

What is the CPS version of this?

9/19/2024 31

Example: CPS for length

let rec length list = match list with

 [] -> 0

 | (a :: bs) -> 1 + length bs

What is the CPS version of this?

#let rec lengthk list k = match list with

 [] -> k 0

 | x :: xs -> lengthk xs

 (fun r -> addk (r,1) k);;

lengthk [2;4;6;8] report;;

4
32

9/19/2024 33

CPS for sum

let rec sum list = match list with
 [] -> 0

 | x :: xs -> x + sum xs ;;

val sum : int list -> int = <fun>

9/19/2024 34

CPS for sum

let rec sum list = match list with

 [] -> 0

 | x :: xs -> x + sum xs ;;

val sum : int list -> int = <fun>

let rec sum list = match list with

 [] -> 0

 | x :: xs -> let r1 = sum xs in x + r1;;

val sum : int list -> int = <fun>

9/19/2024 35

CPS for sum

let rec sum list = match list with

 [] -> 0

 | x :: xs -> x + sum xs ;;

let rec sum list = match list with

 [] -> 0

 | x :: xs -> let r1 = sum xs in x + r1;;

let rec sumk list k = match list with

 [] -> k 0

 | x :: xs -> sumk xs (fun r1 -> addk x r1 k);;

36

CPS for sum

let rec sum list = match list with

 [] -> 0

 | x :: xs -> x + sum xs ;;

let rec sum list = match list with

 [] -> 0

 | x :: xs -> let r1 = sum xs in x + r1;;

let rec sumk list k = match list with

 [] -> k 0

 | x :: xs -> sumk xs (fun r1 -> addk x r1 k);;

sumk [2;4;6;8] report;;

20

- : unit = ()

CPS for Higher Order Functions

◼ In CPS, every procedure / function takes a

continuation to receive its result

◼ Procedures passed as arguments take

continuations

◼ Procedures returned as results take

continuations

◼ CPS version of higher-order functions must

expect input procedures to take continuations

9/19/2024 39

Example: all

#let rec all (p, l) = match l with [] -> true

 | (x :: xs) -> let b = p x in

 if b then all (p, xs) else false

val all : ('a -> bool) -> 'a list -> bool = <fun>

◼ What is the CPS version of this?

9/19/2024 40

Example: all

#let rec all (p, l) = match l with [] -> true

 | (x :: xs) -> let b = p x in

 if b then all (p, xs) else false

◼ What is the CPS version of this?

#let rec allk (pk, l) k =

9/19/2024 41

Example: all

#let rec all (p, l) = match l with [] -> true

 | (x :: xs) -> let b = p x in

 if b then all (p, xs) else false

◼ What is the CPS version of this?

#let rec allk (pk, l) k = match l with

 [] -> true

9/19/2024 42

Example: all

#let rec all (p, l) = match l with [] -> true

 | (x :: xs) -> let b = p x in

 if b then all (p, xs) else false

◼ What is the CPS version of this?

#let rec allk (pk, l) k = match l with

 [] -> k true

9/19/2024 43

Example: all

#let rec all (p, l) = match l with [] -> true

 | (x :: xs) -> let b = p x in

 if b then all (p, xs) else false

◼ What is the CPS version of this?

#let rec allk (pk, l) k = match l with

 [] -> k true

 | (x :: xs) ->

9/19/2024 44

Example: all

#let rec all (p, l) = match l with [] -> true

 | (x :: xs) -> let b = p x in

 if b then all (p, xs) else false

◼ What is the CPS version of this?

#let rec allk (pk, l) k = match l with

 [] -> k true

 | (x :: xs) ->
 pk x

9/19/2024 45

Example: all

#let rec all (p, l) = match l with [] -> true

 | (x :: xs) -> let b = p x in

 if b then all (p, xs) else false

◼ What is the CPS version of this?

#let rec allk (pk, l) k = match l with

 [] -> k true

 | (x :: xs) ->

 pk x (fun b -> if b then allk pk xs
k else k false)

9/19/2024 46

Example: all

#let rec all (p, l) = match l with [] -> true

 | (x :: xs) -> let b = p x in

 if b then all (p, xs) else false

◼ What is the CPS version of this?

#let rec allk (pk, l) k = match l with

 [] -> k true

 | (x :: xs) ->

 pk x (fun b -> if b then allk (pk, xs) k
allk pk xs k else)

47

Example: all

#let rec all (p, l) = match l with [] -> true

 | (x :: xs) -> let b = p x in

 if b then all (p, xs) else false

◼ What is the CPS version of this?

#let rec allk (pk, l) k = match l with

 [] -> k true

 | (x :: xs) ->

 pk x (fun b -> if b then allk (pk, xs) k
allk pk xs k else k false)

val allk : ('a -> (bool -> 'b) -> 'b) * 'a list ->
(bool -> 'b) -> 'b = <fun>

48

9/19/2024 49

Terms

◼ A function is in Direct Style when it returns its result

back to the caller.

◼ A Tail Call occurs when a function returns the result of

another function call without any more computations

(eg tail recursion)

◼ A function is in Continuation Passing Style when it, and

every function call in it, passes its result to another

function.

◼ Instead of returning the result to the caller, we pass it

forward to another function.

9/19/2024 50

Terminology

◼ Tail Position: A subexpression s of

expressions e, such that if evaluated, will be

taken as the value of e

◼ if (x>3) then x + 2 else x - 4

◼ let x = 5 in x + 4

◼ Tail Call: A function call that occurs in tail

position

◼ if (h x) then f x else (x + g x)

9/19/2024 51

Terminology

◼ Available: A function call that can be executed

by the current expression

◼ The fastest way to be unavailable is to be

guarded by an abstraction (anonymous function,

lambda lifted).

◼ if (h x) then f x else (x + g x)

◼ if (h x) then (fun x -> f x) else (g (x + x))

Not available

9/19/2024 52

CPS Transformation

◼ Step 1: Add continuation argument to any function

definition:

◼ let f arg = e  let f arg k = e

◼ Idea: Every function takes an extra parameter saying

where the result goes

◼ Step 2: A simple expression in tail position should be

passed to a continuation instead of returned:

◼ return a  k a

◼ Assuming a is a constant or variable.

◼ “Simple” = “No available function calls.”

9/19/2024 53

CPS Transformation

◼ Step 3: Pass the current continuation to every function
call in tail position

◼ return f arg  f arg k

◼ The function “isn’t going to return,” so we need to
tell it where to put the result.

CPS Transformation

◼ Step 4: Each function call not in tail position needs to
be converted to take a new continuation (containing
the old continuation as appropriate)

◼ return op (f arg)  f arg (fun r -> k(op r))

◼ op represents a primitive operation

◼ return f(g arg)  g arg (fun r-> f r k)

9/19/2024 54

9/19/2024 55

Example

Before:
let rec add_list lst =

match lst with

 [] -> 0

| 0 :: xs -> add_list xs

| x :: xs -> (+) x
(add_list xs);;

After:
let rec add_listk lst k =

 (* rule 1 *)

match lst with

| [] -> k 0 (* rule 2 *)

| 0 :: xs -> add_listk xs k

 (* rule 3 *)

| x :: xs -> add_listk xs

 (fun r -> k ((+) x r));;

 (* rule 4 *)

Step 1: Add continuation argument to any function definition

Step 2: A simple expression in tail position should be passed to a continuation

 instead of returned

Step 3: Pass the current continuation to every function call in tail position

Step 4: Each function call not in tail position needs to be converted to take a

 new continuation (containing the old continuation as appropriate)

9/19/2024 56

CPS for sum

let rec sum list = match list with

 [] -> 0

 | x :: xs -> x + sum xs ;;

val sum : int list -> int = <fun>

9/19/2024 57

CPS for sum

let rec sum list = match list with

 [] -> 0

 | x :: xs -> x + sum xs ;;

let rec sum list = match list with

 [] -> 0

 | x :: xs -> let r1 = sum xs in x + r1;;

9/19/2024 58

CPS for sum

let rec sum list = match list with

 [] -> 0

 | x :: xs -> x + sum xs ;;

let rec sum list = match list with

 [] -> 0

 | x :: xs -> let r1 = sum xs in x + r1;;

let rec sumk list k = match list with

 [] -> k 0

 | x :: xs -> sumk xs (fun r1 -> addk x r1 k);;

59

CPS for sum

let rec sum list = match list with

 [] -> 0

 | x :: xs -> x + sum xs ;;

let rec sum list = match list with

 [] -> 0

 | x :: xs -> let r1 = sum xs in x + r1;;

let rec sumk list k = match list with

 [] -> k 0

 | x :: xs -> sumk xs (fun r1 -> addk x r1 k);;

sumk [2;4;6;8] report;;

20

Other Uses for Continuations

◼ CPS designed to preserve evaluation order

◼ Continuations used to express order of

evaluation

◼ Can also be used to change order of evaluation

◼ Implements:

◼ Exceptions and exception handling

◼ Co-routines

◼ (pseudo, aka green) threads

9/19/2024 60

9/19/2024 61

Exceptions - Example

exception Zero;;

exception Zero

let rec list_mult_aux list =

 match list with

 [] -> 1

 | x :: xs ->

 if x = 0 then raise Zero

 else x * list_mult_aux xs;;

val list_mult_aux : int list -> int = <fun>

9/19/2024 62

Exceptions - Example

let list_mult list =

 try list_mult_aux list with Zero -> 0;;

val list_mult : int list -> int = <fun>

list_mult [3;4;2];;

- : int = 24

list_mult [7;4;0];;

- : int = 0

list_mult_aux [7;4;0];;

Exception: Zero.

9/19/2024 63

Exceptions

◼ When an exception is raised

◼ The current computation is aborted

◼ Control is “thrown” back up the call

stack until a matching handler is found

◼ All the intermediate calls waiting for a

return values are thrown away

9/19/2024 64

Implementing Exceptions

let multkp (m, n) k =

 let r = m * n in

 (print_string "product result: ";

 print_int r; print_string "\n";

 k r);;

val multkp : int (int -> (int -> 'a) -> 'a =
<fun>

65

Implementing Exceptions

let rec list_multk_aux list k kexcp =

 match list with

 [] -> k 1

 | x :: xs -> if x = 0 then kexcp 0

 else

 list_multk_aux xs

 (fun r -> multkp (x, r) k)

 kexcp;;

let rec list_multk list k =

 list_multk_aux list k

 (fun x -> print_string "nil\n");;

9/19/2024 66

Implementing Exceptions

list_multk [3;4;2] report;;

product result: 2

product result: 8

product result: 24

24

- : unit = ()

list_multk [7;4;0] report;;

nil

- : unit = ()

Advanced: Using CPS as Compiler

Intermediate Representation

Ocaml compiler (latest version) uses CPS:

◼ Blog: https://discuss.ocaml.org/t/blog-the-flambda2-snippets-by-

ocamlpro/14331

◼ Tutorial: https://www.youtube.com/watch?v=eI5GBpT2Brs

Various discussions in research literature:

◼ With? https://www.microsoft.com/en-us/research/wp-

content/uploads/2007/10/compilingwithcontinuationscontinued.pdf

◼ Without? https://pauldownen.com/publications/pldi17.pdf

◼ Whatever? https://dl.acm.org/doi/10.1145/3341643

Intermediate representations CPS for functional vs SSA for imperative

◼ https://dl.acm.org/doi/10.1145/202530.202532

https://discuss.ocaml.org/t/blog-the-flambda2-snippets-by-ocamlpro/14331
https://discuss.ocaml.org/t/blog-the-flambda2-snippets-by-ocamlpro/14331
https://www.youtube.com/watch?v=eI5GBpT2Brs
https://www.microsoft.com/en-us/research/wp-content/uploads/2007/10/compilingwithcontinuationscontinued.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2007/10/compilingwithcontinuationscontinued.pdf
https://pauldownen.com/publications/pldi17.pdf
https://dl.acm.org/doi/10.1145/3341643
https://dl.acm.org/doi/10.1145/202530.202532

	Slide 1: Programming Languages and Compilers (CS 421)
	Slide 2: Structural Recursion
	Slide 3: Tail Recursion
	Slide 4: Tale of two lengths…
	Slide 5: A bit of assembly
	Slide 6: Folding - Tail Recursion
	Slide 7: Folding
	Slide 8: Example of Tail Recursion
	Slide 9
	Slide 10: Continuation Passing Style
	Slide 11: Continuations
	Slide 12: Continuation Passing Style
	Slide 13: Simplest CPS Example
	Slide 14: Example
	Slide 17: Continuation Passing Style
	Slide 18: Simple Functions Taking Continuations
	Slide 19: Nesting Continuations
	Slide 20: add_three: a different order
	Slide 21: add_three: a different order
	Slide 22: Recursive Functions
	Slide 23: Terms
	Slide 24: Terminology
	Slide 25: Recursive Functions
	Slide 26: Recursive Functions
	Slide 27: Recursive Functions
	Slide 28: Recursive Functions
	Slide 29: Example: CPS for length
	Slide 30: Example: CPS for length
	Slide 31: Example: CPS for length
	Slide 32: Example: CPS for length
	Slide 33: CPS for sum
	Slide 34: CPS for sum
	Slide 35: CPS for sum
	Slide 36: CPS for sum
	Slide 39: CPS for Higher Order Functions
	Slide 40: Example: all
	Slide 41: Example: all
	Slide 42: Example: all
	Slide 43: Example: all
	Slide 44: Example: all
	Slide 45: Example: all
	Slide 46: Example: all
	Slide 47: Example: all
	Slide 48: Example: all
	Slide 49: Terms
	Slide 50: Terminology
	Slide 51: Terminology
	Slide 52: CPS Transformation
	Slide 53: CPS Transformation
	Slide 54: CPS Transformation
	Slide 55: Example
	Slide 56: CPS for sum
	Slide 57: CPS for sum
	Slide 58: CPS for sum
	Slide 59: CPS for sum
	Slide 60: Other Uses for Continuations
	Slide 61: Exceptions - Example
	Slide 62: Exceptions - Example
	Slide 63: Exceptions
	Slide 64: Implementing Exceptions
	Slide 65: Implementing Exceptions
	Slide 66: Implementing Exceptions
	Slide 67: Advanced: Using CPS as Compiler Intermediate Representation

