Programming Languages and Compilers (CS 421)

Sasa Misailovic 4110 SC, UIUC

<https://courses.engr.illinois.edu/cs421/fa2024/CS421C>

Based on slides by Elsa Gunter, which are based in part on previous slides by Mattox Beckman and updated by Vikram Adve and Gul Agha

Structural Recursion

- Functions on recursive datatypes (eg lists) **tend to be recursive**
- Recursion over recursive datatypes generally by **structural recursion**
	- Recursive calls made to components of structure of the same recursive type
	- Base cases of recursive types stop the recursion of the function

Structural Recursion : List Example

- # let rec length list = match list with $\lceil \rceil \rightarrow \emptyset$ (* Nil case *) \vert x :: xs -> 1 + length xs;; (* Cons case *) val length : 'a list -> int = <fun>
- # length [5; 4; 3; 2];;
- $-$: int $= 4$
- Nil case [] is base case ■ Cons case recurses on component list xs

Forward Recursion

- In Structural Recursion, split input into components and (eventually) recurse on components
- Forward Recursion form of Structural Recursion
- In forward recursion, first call the function **recursively** on all recursive components, and then build the final result from partial results
- Wait until the whole structure has been traversed to start building answer

■ How do you write length with forward recursion?

let rec length l = match l with $l \rightarrow 0$ $(a :: bs) \rightarrow 1 + length bs$

■ How do you write length with forward recursion?

let rec length $l =$ match l with $l \rightarrow 0$ $(a :: bs) \rightarrow let t = length bs$ $in 1 + t$

Mapping Recursion

■ One common form of structural recursion applies a function to each element in the structure

- # let rec doubleList list = match list with \lceil \rceil -> \lceil \rceil $|$ x::xs -> 2 $*$ x :: doubleList xs;; val doubleList : int list -> int list = <fun>
- # doubleList [2;3;4];;
- $-$: int list = $[4; 6; 8]$

Mapping Functions Over Lists

```
# let rec map f list =
   match list with 
    \lceil -> \lceil | (h::t) -> (f h) :: (map f t);;
val map : ('a -&gt; 'b) -&gt; 'a list -&gt; 'b list = <fun</math>
```
map plus_two fib5;;

 $-$: int list = $\lceil 10; 7; 5; 4; 3; 3 \rceil$

map (fun $x \rightarrow x - 1$) fib6;;

: int list = [12; 7; 4; 2; 1; 0; 0]

Mapping Recursion

let rec doubleList list = match list with \lceil \rceil -> \lceil \rceil \vert x::xs -> 2 * x :: doubleList xs;;

■ Can use the higher-order recursive map function instead of direct recursion

let doubleList list = List.map (fun $x \rightarrow 2$ * x) list;; val doubleList : int list -> int list = <fun>

■ Same function, but no rec

9/10/2024 10

Your turn now

Write a function

make_app : $((a \rightarrow b) * a)$ list \rightarrow 'b list

that takes a list of function $-$ input pairs and gives the result of applying each function to its argument. Use map, no explicit recursion.

```
let make app lst =
```
Folding Recursion

- Another common form "folds" an operation over the elements of the structure
- # let rec multList list = match list with $\lceil \rceil \rightarrow 1$ \vert x::xs -> x $*$ multList xs;;
- val multList : int list \rightarrow int = \langle fun>
- # multList [2;4;6];; $-$: int = 48

1 Computers
$$
(2 * (4 * (6 * 1)))
$$

```
How are the following functions similar?
# let rec sumlist list = match list with
       [ ] -> 0 
    \vert x::xs -> x + sumlist xs;;
# sumlist [2;3;4];;
- : int = 9
# let rec prodlist list = match list with
      \lceil \rceil -> 1
    \vert x::xs -> x * prodlist xs;;
# prodlist [2;3;4];;
```

```
- : int = 24
```


9/10/2024 16

9/10/2024 17

Recursing over lists

let rec fold_right f list b = match list with $\lceil \rceil \rightarrow b$ $(x :: xs) \rightarrow f x (fold-right f xs b);$ # fold right (fun val init -> val + init) [1; 2; 3] 0;; $-$: int = 6

 3rd 2nd 1st Order: 1 + (2 + (3 + 0)) *Watch for parentheses: deeper nested is evaluated first*

Recursing over lists

```
# let rec fold_right f list b =
   match list with
    \lceil \rceil \rightarrow b(x :: xs) \rightarrow f x (fold\_right f xs);
# fold right
     (fun s \rightarrow fun () -> print string s)
      ["hi"; "there"]
     ();;
therehi- : unit = ()
```
Folding Recursion

- # multList [2;4;6];;
- : int = 48

Encoding Recursion with Fold

let rec length $l =$ match l with $l > 0$ $(a :: bs) \rightarrow 1 + length bs$

■ How do you write length with fold_right, but no explicit recursion?

let rec length $l =$ match l with $l > 0$ $(a :: bs) \rightarrow 1 + length bs$

■ How do you write length with fold right, but no explicit recursion?

let length list =

List.fold right (fun $x \rightarrow$ fun n \rightarrow n + 1) list 0

let rec length $l =$ match l with $l > 0$ $(a :: bs) \rightarrow 1 + length bs$

■ How do you write length with fold right, but no explicit recursion?

let length list =

List.fold right (fun $x \rightarrow$ fun n \rightarrow n + 1) list 0

Can you write fold_right (or fold_left) with just map? How, or why not? 9/10/2024 24

Iterating over lists

```
# let rec fold left f a list =
   match list with 
     \lceil \rceil \rightarrow a(x :: xs) \rightarrow fold left f (f a x) xs;val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list 
  \rightarrow 'a = \langlefun>
```

```
# fold_left
    (fun () -> print_string)
   \left( \ \right) ["hi"; "there"];;
hithere- : unit = ()
```


Can you do this?

```
Recall:
```

```
let rec map f list =
   match list with 
     [] -> []
  | (h::t) -> (f h) :: (map f t);;
```
How can you implement map via fold_right or fold left?

Back to Lists (Data structures are immutable!)

3

41

let fib3 = $[2;1;1];$

let fib4 = 3 :: fib3;;

let fib41 = 41 :: fib3;;

let $fibI = 1 :: fib41$ 1

let fib0 = fib3 $@ [0];$

2 | | 1 | | 1

Data Structures are immutable

$$
\text{mylist: } \begin{array}{|c|c|} \hline 2 & 1 \\ \hline \end{array}
$$

- # let doubleList list = List.map (fun $x \rightarrow 2$ * x) list;;
- # let res = doubleList mylist;;

mylist:

res:

Naïve Imperative Code Can Hinder Parallelism

Recall:

 int X[], Y[], a[], t, i; for $i = 1$ to N S1: $t = a[i] + 2$ S2: $Y[i] = t + 1$ end

Every iteration depends on the update of the index variable i

Moving on…

An Important Optimization

■ When a function call is made, the return address needs to be saved to the stack so we know to where to return when the call is finished

- What if *f* calls *g* and *g* calls *h*, but calling *h* is the last thing *g* does (a *tail call*)?
	- let f $x = (g x) + 1$
	- \blacksquare let $g \times = h \cdot (x+1)$
	- \blacksquare let h $x = ...$

An Important Optimization

- When a function call is made, the return address needs to be saved to the stack so we know to where to return when the call is finished
- What if *f* calls *g* and *g* calls *h*, but calling *h* is the last thing *g* does (a *tail call*)?
- Then *h* can return directly to *f* instead of *g*

Tail Recursion

- A recursive program is tail recursive if all recursive calls are tail calls
- Tail recursive programs may be optimized to be implemented as loops, thus removing the function call overhead for the recursive calls
- Tail recursion generally requires extra "accumulator" arguments to pass partial results ■ May require an auxiliary function

Example of Tail Recursion

```
# let rec prod 1 =match l with \lceil \rceil \rightarrow 1(x :: rem) \rightarrow x * prod rem;val prod : int list \rightarrow int = \langlefun>
# let prod list =
     let rec prod aux l acc =
         match l with [] \rightarrow acc(y :: rest) \rightarrow prod aux rest (acc * y)
(* Uses associativity of multiplication *)
     in prod aux list 1;;
 val prod : int list \rightarrow int = \langlefun>
```


■ How do you write length with tail recursion? let length l =

■ How do you write length with tail recursion? let length l = let rec length_aux list n =

in

■ How do you write length with tail recursion? let length l = let rec length_aux list n = match list with [] -> $|$ (a :: bs) -> in

■ How do you write length with tail recursion? let length l = let rec length_aux list n = match list with $[] \rightarrow n$ $|$ (a :: bs) -> in

■ How do you write length with tail recursion? let length l = let rec length_aux list n = match list with $\lceil \rceil \rightarrow n$ $|$ (a :: bs) -> length_aux in

■ How do you write length with tail recursion? let length l = let rec length_aux list n = match list with $\lceil \rceil \rightarrow n$ $(a :: bs) \rightarrow length_aux$ bs in

■ How do you write length with tail recursion? let length l = let rec length_aux list n = match list with $[] \rightarrow n$ $(a :: bs) \rightarrow length_aux bs (n + 1)$ in

■ How do you write length with tail recursion? let length l = let rec length aux list $n =$ match list with $[] \rightarrow n$ $(a :: bs) \rightarrow length_aux bs (n + 1)$ in length aux 10

Your Turn

- Write a function odd_count_tr : int list -> int such that it returns the number of odd integers found in the input list. The function is required to use (only) tail recursion (no other form of recursion).
- # let rec odd count tr l =

odd_count_tr [1;2;3];; $-$: int $= 2$

Encoding Tail Recursion with fold_left

let length l = let rec length aux list $n =$ match list with $[] \rightarrow n$ $(a :: bs) \rightarrow length$ aux bs $(n + 1)$ in length aux 10 \blacksquare How do you write length with fold left, but no

explicit recursion?

let length l = let rec length aux list $n =$ match list with $[] \rightarrow n$ $(a :: bs) \rightarrow length$ aux bs $(n + 1)$ in length aux 10

■ How do you write length with fold left, but no explicit recursion?

let length list = List.fold_left (fun $n \rightarrow$ fun $x \rightarrow n + 1$) 0 list

Folding

let rec fold_left f a list = match list with $\lceil \rceil$ -> a $(x :: xs) \rightarrow fold$ left f (f a x) xs;; fold_left f a $[x_1; x_2;...;x_n] = f(...(f (f a x_1) x_2)...)x_n$ # let rec fold_right f' list b = match list with \lceil -> b $(x :: xs) \rightarrow f' x (fold-right f' xs b);;$ fold_right f $[x_1; x_2;...;x_n]$ b = f $x_1(f x_2 (...(f x_n b)...))$

Folding

let rec fold_left f a list = match list with $\lceil \rceil$ -> a $(x :: xs) \rightarrow fold$ left f (f a x) xs;; fold_left f 0 $[1; 2; 3] = f (f (f 0 1) 2) 3$ # let rec fold right f' list b = match list with $\lceil \rceil$ -> b $(x :: xs) \rightarrow f' x (fold_right f' xs)$; fold_right f' [1; 2; 3] $\theta = f' \times_1 (f' \times_2 (f \cdot 3 \theta))$

Recall

let rec poor_rev list = match list with $[$] -> $[$] $|$ $(x::xs)$ -> poor_rev xs $@$ $[x];$; val poor rev : 'a list \rightarrow 'a list = \langle fun>

What is its running time?

Quadratic Time

- \blacksquare Each step of the recursion takes time proportional to input
- \blacksquare Each step of the recursion makes only one recursive call.
- List example:
- # let rec poor rev list = match list with \lceil -> \lceil | (x::xs) -> poor_rev xs @ [x];; val poor rev : 'a list \rightarrow 'a list = \langle fun>

9/10/2024 51

- \bullet 3 :: (2:: ([] @ [1])) = [3, 2, 1]
- \bullet 3 :: ([2] ω [1]) =
- $[3,2] \omega [1] =$
- $(3:: ([] @ [2])) @ [1] =$
- \bullet ([3] @ [2]) @ [1] =
- \bullet (([] \circledcirc [3]) \circledcirc [2]) \circledcirc [1]) =
- $((poor_rev [3]) @ [2]) @ [1] =$ \bullet (((poor_rev []) @ [3]) @ [2]) @ [1] =
- \blacksquare (poor_rev [2,3]) $@$ [1] =
- \blacksquare poor_rev $[1,2,3] =$

Comparison

Tail Recursion - Example

```
# let rec rev aux list revlist =
   match list with 
     [ ] -> revlist
  | x :: xs -> rev aux xs (x::revlist);;
val rev aux : 'a list \rightarrow 'a list \rightarrow 'a list =
  <fun>
```
let rev list = rev_aux list $\lceil \cdot \rceil$;; val rev : 'a list \rightarrow 'a list = \langle fun \rangle

■ What is its running time?

9/10/2024 53

 \blacksquare rev_aux [] [3,2,1] = [3,2,1]

 re rev $[1,2,3] =$

 \blacksquare rev_aux $[1,2,3]$ $[$ $] =$

 $rev_aux [2,3] [1] =$

 $rev_aux[3][2,1] =$

Comparison

Folding - Tail Recursion

```
# let rec rev_aux list revlist =
   match list with 
     [ ] -> revlist
  \vert x :: xs -> rev aux xs (x::revlist);;
# let rev list = rev aux list \lceil \cdot \rceil;;
# let rev list =
          fold_left
           (fun 1 \rightarrow fun x \rightarrow x :: 1) (* comb op *)
               [] (* accumulator cell *)
              list
```
Folding

- Can replace recursion by **fold_right** in any **forward primitive** recursive definition
	- Primitive recursive means it only recurses on immediate subcomponents of recursive data structure
- Can replace recursion by **fold_left** in any **tail primitive** recursive definition

Example of Tail Recursion

Your turn now

Write a function

map_tail : $('a -> 'b) -> 'a list -> 'b list$

that takes a function and a list of inputs and gives the result of applying the function on each argument, but in tail recursive form.

```
let make_app lst =
```
Continuation Passing Style

- A programming technique for all forms of " non-local" control flow:
	- non-local jumps
	- exceptions
	- general conversion of non-tail calls to tail calls
- Essentially it's a higher-order function version of GOTO

Continuations

- Idea: Use functions to represent the control flow of a program
- Method: Each procedure takes a function as an argument to which to pass its result; outer procedure " returns " no result
- Function receiving the result called a continuation
- Continuation acts as "accumulator" for work still to be done

Continuation Passing Style

■ Writing procedures so that they take a continuation to which to give (pass) the result, and return no result, is called continuation passing style (CPS)

Example

■ Simple reporting continuation:

let report $x = (print int x;$ print newline());;

val report : $int \rightarrow unit = \langle fun \rangle$

■ Simple function using a continuation:

- # let plusk a b k = k (a + b)
- val plusk : int -> int -> (int -> 'a) -> ' a $=$ \langle fun \rangle

plusk 20 22 report;;

42

 $\frac{1}{9}{10}\frac{1}{2024}$ unit = ()

Example of Tail Recursion & CSP

```
# let app fs x = let rec app_aux fl acc=
          match fl with 
            \lceil \rceil \rightarrow acc
          | (f :: rem fs) -> app_aux rem_fs
                                        (fun z \rightarrow acc (f z))in app_aux fs (fun y \rightarrow y) x;;
val app : ('a -> 'a) list -> 'a -> 'a =<fun># let rec appk f1 \times k = match fl with 
       \lceil \rceil \rightarrow k \times | (f :: rem_fs) -> appk rem_fs x (fun z -> k (f z));;
hval appk : ('a -> 'a) list -> 'a -> ('a -> 'b) -> 'b
```
Example of Tail Recursion & CSP

```
# let rec appk f1 \times k = match fl with 
       [] -> k x
    | (f :: rem_fs) -> appk rem_fs x (fun z -> k (f z));
```
- # appk [(fun x->x+1); (fun x -> x*5)] 2 (fun x->x);;
- $-$: int = 11

Continuation Passing Style

■ A compilation technique to implement non-local control flow, especially useful in interpreters.

■ A formalization of non-local control flow in denotational semantics

■ Possible intermediate state in compiling functional code

Optional: Matrix Multiply in Ocaml

Inputs:

- 1. matA m x n matrix as row-major list of lists
- 2. matBT transposed matrix (p x n before, n x p after transpose) as column-major list of lists

Exist implementations of map, fold right, map2 (do them!)

let dotprod vec1 vec2 = $(*$ dot product of two vectors $*)$ let prods = $map2$ ($*$.) vec1 vec2 in fold_right $(+)$ prods 0.0 ;

let matmul matA matBT = $(*$ multiply A with transposed B $*)$ map (fun row -> map (fun col -> dotprod row col) matBT) matA

```
let checkdim matA matBT = true / false \mathfrak{z};
(* For you: ensure columns and rows > 0 for both and also that
    colsA = rowsB (because B is transposed) *)
```
Optional: Neural Network in Ocaml

 let inputs = $[[0.1; 0.2; -0.3];$ $[0.2; -0.1; 0.2]$];; $let weightST =$ $[1.0; 0.1; -0.2];$ $[-3.0; 1.1; -0.5];$ $[-1.0; 0.1; 2.0]$];; – matrix of NN inputs – transposed matrix of weights for all neurons


```
(* fully connected layer *)
```
let fc1 = activation relu (matmul inputs weightsT) ;;

(* then we can chain multiple layers - each with own weights $*)$ let fc2 = activation relu (matmul fc1 weights2T) ;; $(* etc. *)$ let fc3 = activation relu (matmul fc3 weights3T) ;;