
Programming Languages and Compilers

(CS 421)

Sasa Misailovic

4110 SC, UIUC
https://courses.engr.illinois.edu/cs421/fa2024/CS421C

Based on slides by Elsa Gunter, which are based in part on previous

slides by Mattox Beckman and updated by Vikram Adve and Gul Agha

https://courses.engr.illinois.edu/cs421/fa2024/CS421C

9/10/2024 3

Structural Recursion

◼ Functions on recursive datatypes (eg lists)

tend to be recursive

◼ Recursion over recursive datatypes generally by

structural recursion

◼ Recursive calls made to components of structure of

the same recursive type

◼ Base cases of recursive types stop the recursion of

the function

9/10/2024 4

Structural Recursion : List Example

let rec length list = match list with

 [] -> 0 (* Nil case *)

 | x :: xs -> 1 + length xs;; (* Cons case *)

val length : 'a list -> int = <fun>

length [5; 4; 3; 2];;

- : int = 4

◼ Nil case [] is base case

◼ Cons case recurses on component list xs

9/10/2024 5

Forward Recursion

◼ In Structural Recursion, split input into

components and (eventually) recurse on

components

◼ Forward Recursion form of Structural Recursion

◼ In forward recursion, first call the function

recursively on all recursive components, and

then build the final result from partial results

◼ Wait until the whole structure has been traversed

to start building answer

Question

◼ How do you write length with forward

recursion?

let rec length l =

 match l with [] -> 0

 | (a :: bs) -> 1 + length bs

9/10/2024 6

Question

◼ How do you write length with forward

recursion?

let rec length l =

 match l with [] -> 0

 | (a :: bs) -> let t = length bs
 in 1 + t

9/10/2024 7

9/10/2024 8

Mapping Recursion

◼ One common form of structural recursion
applies a function to each element in the
structure

let rec doubleList list = match list with

 [] -> []

 | x::xs -> 2 * x :: doubleList xs;;

val doubleList : int list -> int list = <fun>

doubleList [2;3;4];;

- : int list = [4; 6; 8]

9/10/2024 9

Mapping Functions Over Lists

let rec map f list =

 match list with

 [] -> []

 | (h::t) -> (f h) :: (map f t);;

val map : ('a -> 'b)-> 'a list-> 'b list = <fun>

map plus_two fib5;;

- : int list = [10; 7; 5; 4; 3; 3]

map (fun x -> x - 1) fib6;;

: int list = [12; 7; 4; 2; 1; 0; 0]

9/10/2024 10

Mapping Recursion

let rec doubleList list = match list with

 [] -> []

 | x::xs -> 2 * x :: doubleList xs;;

◼ Can use the higher-order recursive map function
instead of direct recursion

let doubleList list =

 List.map (fun x -> 2 * x) list;;

val doubleList : int list -> int list = <fun>

◼ Same function, but no rec

Your turn now

Write a function

make_app : ((‘a -> ‘b) * ‘a) list -> ‘b list

that takes a list of function – input pairs and gives

the result of applying each function to its

argument. Use map, no explicit recursion.

let make_app lst =

9/10/2024 11

9/10/2024 12

Folding Recursion

◼ Another common form “folds” an operation
over the elements of the structure

let rec multList list = match list with

 [] -> 1

 | x::xs -> x * multList xs;;

val multList : int list -> int = <fun>

multList [2;4;6];;

- : int = 48

◼ Computes (2 * (4 * (6 * 1)))

9/10/2024 13

Folding Functions over Lists

How are the following functions similar?
let rec sumlist list = match list with
 [] -> 0
 | x::xs -> x + sumlist xs;;

sumlist [2;3;4];;
- : int = 9

let rec prodlist list = match list with
 [] -> 1
 | x::xs -> x * prodlist xs;;

prodlist [2;3;4];;
- : int = 24

9/10/2024 14

Folding Functions over Lists

How are the following functions similar?
let rec sumlist list = match list with
 [] -> 0
 | x::xs -> x + sumlist xs;;

sumlist [2;3;4];;
- : int = 9

let rec prodlist list = match list with
 [] -> 1
 | x::xs -> x * prodlist xs;;

prodlist [2;3;4];;
- : int = 24

Base Case

9/10/2024 15

Folding Functions over Lists

How are the following functions similar?
let rec sumlist list = match list with
 [] -> 0
 | x::xs -> x + sumlist xs;;

sumlist [2;3;4];;
- : int = 9

let rec prodlist list = match list with
 [] -> 1
 | x::xs -> x * prodlist xs;;

prodlist [2;3;4];;
- : int = 24

Recursive Call

9/10/2024 16

Folding Functions over Lists

How are the following functions similar?
let rec sumlist list = match list with
 [] -> 0
 | x::xs -> x + sumlist xs;;

sumlist [2;3;4];;
- : int = 9

let rec prodlist list = match list with
 [] -> 1
 | x::xs -> x * prodlist xs;;

prodlist [2;3;4];;
- : int = 24

Head Element

9/10/2024 17

Folding Functions over Lists

How are the following functions similar?
let rec sumlist list = match list with
 [] -> 0
 | x::xs -> x + sumlist xs;;

sumlist [2;3;4];;
- : int = 9

let rec prodlist list = match list with
 [] -> 1
 | x::xs -> x * prodlist xs;;

prodlist [2;3;4];;
- : int = 24

Combining Operator

Recursing over lists

let rec fold_right f list b =
 match list with
 [] -> b
 | (x :: xs) -> f x (fold_right f xs b);;

fold_right
 (fun val init -> val + init)
 [1; 2; 3]
 0;;
- : int = 6

 3rd 2nd 1st
Order: 1 + (2 + (3 + 0))
Watch for parentheses: deeper nested is evaluated first

9/10/2024 19

Recursing over lists

let rec fold_right f list b =
 match list with
 [] -> b
 | (x :: xs) -> f x (fold_right f xs b);;

fold_right
 (fun s -> fun () -> print_string s)
 ["hi"; "there"]
 ();;
therehi- : unit = ()

9/10/2024 20

Folding Recursion

◼ multList folds to the right

◼ Same as:

let multList list =

 List.fold_right

 (fun x -> fun p -> x * p)

 list 1;;

val multList : int list -> int = <fun>

multList [2;4;6];;

- : int = 48

9/10/2024 21

Encoding Recursion with Fold

let rec append list1 list2 = match list1 with

 [] -> list2 | x::xs -> x :: append xs list2;;

val append : 'a list -> 'a list -> 'a list = <fun>

let append list1 list2 =

 fold_right (fun x y -> x :: y) list1 list2;;

val append : 'a list -> 'a list -> 'a list = <fun>

append [1;2;3] [4;5;6];;

 - : int list = [1; 2; 3; 4; 5; 6]

Base Case Operation Recursive call

Question

let rec length l =

 match l with [] -> 0

 | (a :: bs) -> 1 + length bs

◼ How do you write length with fold_right, but no

explicit recursion?

9/10/2024 22

Question

let rec length l =

 match l with [] -> 0

 | (a :: bs) -> 1 + length bs

◼ How do you write length with fold_right, but no

explicit recursion?

let length list =

 List.fold_right (fun x -> fun n -> n + 1)
 list 0

9/10/2024 23

Question

let rec length l =

 match l with [] -> 0

 | (a :: bs) -> 1 + length bs

◼ How do you write length with fold_right, but no

explicit recursion?

let length list =

 List.fold_right (fun x -> fun n -> n + 1)
 list 0

Can you write fold_right (or fold_left) with just

map? How, or why not?
9/10/2024 24

9/10/2024 25

Iterating over lists

let rec fold_left f a list =
 match list with
 [] -> a
 | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list

-> 'a = <fun>

fold_left
 (fun () -> print_string)
 ()
 ["hi"; "there"];;
hithere- : unit = ()

Can you do this?

Recall:
let rec map f list =

 match list with

 [] -> []

 | (h::t) -> (f h) :: (map f t);;

How can you implement map via fold_right or
fold_left?

Back to Lists
(Data structures are immutable!)

let fib3 = [2;1;1];;

let fib4 = 3 :: fib3;;

let fib41 = 41 :: fib3;;

let fibI = 1 :: fib41

let fib0 = fib3 @ [0];;

2 1 1

3

41

2 1 1 0

1

9/12/2024 28

Data Structures are immutable

 mylist:

let doubleList list =

 List.map (fun x -> 2 * x) list;;

let res = doubleList mylist;;

 mylist:

 res:

2 1 1

2 1 1

4 2 2

Naïve Imperative Code Can
Hinder Parallelism

Recall:

 int X[], Y[], a[], t, i;

 for i = 1 to N

S1: t = a[i] + 2

S2: Y[i] = t + 1

 end

Every iteration depends on the update of the
index variable i

 Moving on…

9/12/2024 30

9/10/2024 31

Normal

call

h

g

f

…

An Important Optimization

◼ When a function call is made, the
return address needs to be saved
to the stack so we know to
where to return when the call is
finished

◼ What if f calls g and g calls h, but
calling h is the last thing g does
(a tail call)?
◼ let f x = (g x) + 1

◼ let g x = h (x+1)

◼ let h x = …

9/10/2024 32

Tail

call

h

f

…

An Important Optimization

◼ When a function call is made, the
return address needs to be saved
to the stack so we know to where
to return when the call is finished

◼ What if f calls g and g calls h, but
calling h is the last thing g does (a
tail call)?

◼ Then h can return directly to f
instead of g

9/10/2024 33

Tail Recursion

◼ A recursive program is tail recursive if all

recursive calls are tail calls

◼ Tail recursive programs may be optimized to be

implemented as loops, thus removing the

function call overhead for the recursive calls

◼ Tail recursion generally requires extra

“accumulator” arguments to pass partial results

◼ May require an auxiliary function

9/10/2024 34

Example of Tail Recursion

let rec prod l =

 match l with [] -> 1

 | (x :: rem) -> x * prod rem;;

val prod : int list -> int = <fun>

let prod list =

 let rec prod_aux l acc =

 match l with [] -> acc

 | (y :: rest) -> prod_aux rest (acc * y)

(* Uses associativity of multiplication *)

 in prod_aux list 1;;

 val prod : int list -> int = <fun>

Question

◼ How do you write length with tail recursion?

let length l =

9/10/2024 35

Question

◼ How do you write length with tail recursion?

let length l =

 let rec length_aux list n =

in

9/10/2024 36

Question

◼ How do you write length with tail recursion?

let length l =

 let rec length_aux list n =

 match list with [] ->

 | (a :: bs) ->

in

9/10/2024 37

Question

◼ How do you write length with tail recursion?

let length l =

 let rec length_aux list n =

 match list with [] -> n

 | (a :: bs) ->

in

9/10/2024 38

Question

◼ How do you write length with tail recursion?

let length l =

 let rec length_aux list n =

 match list with [] -> n

 | (a :: bs) -> length_aux

in

9/10/2024 39

Question

◼ How do you write length with tail recursion?

let length l =

 let rec length_aux list n =

 match list with [] -> n

 | (a :: bs) -> length_aux bs

in

9/10/2024 40

Question

◼ How do you write length with tail recursion?

let length l =

 let rec length_aux list n =

 match list with [] -> n

 | (a :: bs) -> length_aux bs (n + 1)

in

9/10/2024 41

Question

◼ How do you write length with tail recursion?

let length l =

 let rec length_aux list n =

 match list with [] -> n

 | (a :: bs) -> length_aux bs (n + 1)

in length_aux l 0

9/10/2024 42

Your Turn

9/10/2024 43

◼ Write a function odd_count_tr : int list -> int such

that it returns the number of odd integers found in

the input list. The function is required to use (only)

tail recursion (no other form of recursion).

let rec odd_count_tr l =

odd_count_tr [1;2;3];;

- : int = 2

9/10/2024 44

Encoding Tail Recursion with fold_left

let prod list = let rec prod_aux l acc =

 match l with

 [] -> acc

 | (y :: rest) -> prod_aux rest (acc * y)

 in prod_aux list 1;;

let prod list =

 List.fold_left (fun acc y -> acc * y) 1 list;;

prod [4;5;6];;

 - : int =120

Init Acc Value OperationRecursive Call

Question

let length l =

 let rec length_aux list n =

 match list with [] -> n

 | (a :: bs) -> length_aux bs (n + 1)

in length_aux l 0

◼ How do you write length with fold_left, but no

explicit recursion?

9/10/2024 45

Question

let length l =

 let rec length_aux list n =

 match list with [] -> n

 | (a :: bs) -> length_aux bs (n + 1)

in length_aux l 0

◼ How do you write length with fold_left, but no

explicit recursion?

let length list =

 List.fold_left (fun n -> fun x -> n + 1)
 0 list

9/10/2024 46

9/10/2024 47

Folding

let rec fold_left f a list = match list with
 [] -> a
 | (x :: xs) -> fold_left f (f a x) xs;;

fold_left f a [x1; x2;…;xn] = f(…(f (f a x1) x2)…)xn

let rec fold_right f’ list b = match list with
 [] -> b
 | (x :: xs) -> f’ x (fold_right f’ xs b);;

fold_right f [x1; x2;…;xn] b = f x1(f x2 (…(f xn b)…))

9/12/2024 48

Folding

let rec fold_left f a list = match list with
 [] -> a
 | (x :: xs) -> fold_left f (f a x) xs;;

fold_left f 0 [1; 2; 3] = f (f (f 0 1) 2) 3

let rec fold_right f’ list b = match list with
 [] -> b
 | (x :: xs) -> f’ x (fold_right f’ xs b);;

fold_right f’ [1; 2; 3] 0 = f’ x1 (f’ x2 (f 3 0))

9/10/2024 49

Recall

let rec poor_rev list = match list with
 [] -> []
 | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

◼ What is its running time?

9/10/2024 50

Quadratic Time

◼ Each step of the recursion takes time
proportional to input

◼ Each step of the recursion makes only one
recursive call.

◼ List example:

let rec poor_rev list = match list with
 [] -> []
 | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

9/10/2024 51

Comparison

◼ poor_rev [1,2,3] =

◼ (poor_rev [2,3]) @ [1] =

◼ ((poor_rev [3]) @ [2]) @ [1] =

◼ (((poor_rev []) @ [3]) @ [2]) @ [1] =

◼ (([] @ [3]) @ [2]) @ [1]) =

◼ ([3] @ [2]) @ [1] =

◼ (3:: ([] @ [2])) @ [1] =

◼ [3,2] @ [1] =

◼ 3 :: ([2] @ [1]) =

◼ 3 :: (2:: ([] @ [1])) = [3, 2, 1]

9/10/2024 52

Tail Recursion - Example

let rec rev_aux list revlist =

 match list with

 [] -> revlist

 | x :: xs -> rev_aux xs (x::revlist);;

val rev_aux : 'a list -> 'a list -> 'a list =
<fun>

let rev list = rev_aux list [];;

val rev : 'a list -> 'a list = <fun>

◼ What is its running time?

9/10/2024 53

Comparison

◼ rev [1,2,3] =

◼ rev_aux [1,2,3] [] =

◼ rev_aux [2,3] [1] =

◼ rev_aux [3] [2,1] =

◼ rev_aux [] [3,2,1] = [3,2,1]

9/10/2024 54

Folding - Tail Recursion

let rec rev_aux list revlist =

 match list with

 [] -> revlist

 | x :: xs -> rev_aux xs (x::revlist);;

let rev list = rev_aux list [];;

let rev list =

 fold_left
 (fun l -> fun x -> x :: l) (* comb op *)

 [] (* accumulator cell *)

 list

9/10/2024 55

Folding

◼ Can replace recursion by fold_right in any

forward primitive recursive definition

◼ Primitive recursive means it only recurses on

immediate subcomponents of recursive data

structure

◼ Can replace recursion by fold_left in any

tail primitive recursive definition

9/10/2024 56

Example of Tail Recursion

let rec app fl x =

 match fl with [] -> x

 | (f :: rem_fs) -> f (app rem_fs x);;

val app : ('a -> 'a) list -> 'a -> 'a = <fun>

let app fs x =

 let rec app_aux fl acc =

 match fl with [] -> acc
 | (f :: rem_fs) -> app_aux rem_fs
 (fun z -> acc (f z))
 in app_aux fs (fun y -> y) x;;

val app : ('a -> 'a) list -> 'a -> 'a = <fun>

Your turn now

Write a function

map_tail : (‘a -> ‘b) -> ‘a list -> ‘b list

that takes a function and a list of inputs and gives

the result of applying the function on each

argument, but in tail recursive form.

let make_app lst =

9/10/2024 57

9/10/2024 58

Continuation Passing Style

◼ A programming technique for all forms of

“non-local” control flow:

◼ non-local jumps

◼ exceptions

◼ general conversion of non-tail calls to tail calls

◼ Essentially it’s a higher-order function

version of GOTO

9/10/2024 59

Continuations

◼ Idea: Use functions to represent the control flow

of a program

◼ Method: Each procedure takes a function as an

argument to which to pass its result; outer

procedure “returns” no result

◼ Function receiving the result called a

continuation

◼ Continuation acts as “accumulator” for work

still to be done

9/10/2024 60

Continuation Passing Style

◼ Writing procedures so that they take a

continuation to which to give (pass) the

result, and return no result, is called

continuation passing style (CPS)

9/10/2024 61

Example

◼ Simple reporting continuation:

let report x = (print_int x;
 print_newline());;

val report : int -> unit = <fun>

◼ Simple function using a continuation:

let plusk a b k = k (a + b)

val plusk : int -> int -> (int -> ’a) -> ’a
= <fun>

plusk 20 22 report;;

42

- : unit = ()

9/10/2024 62

Example of Tail Recursion & CSP

let app fs x =

 let rec app_aux fl acc=

 match fl with

 [] -> acc
 | (f :: rem_fs) -> app_aux rem_fs
 (fun z -> acc (f z))
 in app_aux fs (fun y -> y) x;;

val app : ('a -> 'a) list -> 'a -> 'a = <fun>

let rec appk fl x k =

 match fl with

 [] -> k x

 | (f :: rem_fs) -> appk rem_fs x (fun z -> k (f z));;

hval appk : ('a -> 'a) list -> 'a -> ('a -> 'b) -> 'b

9/10/2024 63

Example of Tail Recursion & CSP

let rec appk fl x k =

 match fl with

 [] -> k x

 | (f :: rem_fs) -> appk rem_fs x (fun z -> k (f z));;

appk [(fun x->x+1); (fun x -> x*5)] 2 (fun x->x);;

- : int = 11

9/10/2024 64

Continuation Passing Style

◼ A compilation technique to implement non-local

control flow, especially useful in interpreters.

◼ A formalization of non-local control flow in

denotational semantics

◼ Possible intermediate state in compiling

functional code

Inputs:

◼ 1. matA – m x n matrix as row-major list of lists

◼ 2. matBT – transposed matrix (p x n before, n x p after
transpose) as column-major list of lists

Exist implementations of map, fold_right, map2 (do them!)

let dotprod vec1 vec2 = (* dot product of two vectors *)

 let prods = map2 (*.) vec1 vec2 in

 fold_right (+.) prods 0.0 ;;

let matmul matA matBT = (* multiply A with transposed B *)

 map (fun row -> map (fun col -> dotprod row col) matBT) matA

let checkdim matA matBT = true / false ;;

(* For you: ensure columns and rows > 0 for both and also that

 colsA = rowsB (because B is transposed) *)

Optional: Matrix Multiply in Ocaml

let inputs = [[0.1; 0.2; -0.3];

 [0.2; -0.1; 0.2]];;
 let weightsT = [[1.0; 0.1; -0.2];

 [-3.0; 1.1; -0.5];

 [-1.0; 0.1; 2.0]];;

let relu x = if x > 0.0 then x else 0.0 ;;

let activation func matrix =
 map (fun row -> map func row) matrix ;;

(* fully connected layer *)

let fc1 = activation relu (matmul inputs weightsT) ;;

(* then we can chain multiple layers – each with own weights *)

let fc2 = activation relu (matmul fc1 weights2T) ;; (* etc. *)

let fc3 = activation relu (matmul fc3 weights3T) ;;

Optional: Neural Network in Ocaml

– matrix of NN inputs

– transposed matrix of
weights for all neurons

	Slide 2: Programming Languages and Compilers (CS 421)
	Slide 3: Structural Recursion
	Slide 4: Structural Recursion : List Example
	Slide 5: Forward Recursion
	Slide 6: Question
	Slide 7: Question
	Slide 8: Mapping Recursion
	Slide 9: Mapping Functions Over Lists
	Slide 10: Mapping Recursion
	Slide 11: Your turn now
	Slide 12: Folding Recursion
	Slide 13: Folding Functions over Lists
	Slide 14: Folding Functions over Lists
	Slide 15: Folding Functions over Lists
	Slide 16: Folding Functions over Lists
	Slide 17: Folding Functions over Lists
	Slide 18: Recursing over lists
	Slide 19: Recursing over lists
	Slide 20: Folding Recursion
	Slide 21: Encoding Recursion with Fold
	Slide 22: Question
	Slide 23: Question
	Slide 24: Question
	Slide 25: Iterating over lists
	Slide 26: Can you do this?
	Slide 27: Back to Lists (Data structures are immutable!)
	Slide 28: Data Structures are immutable
	Slide 29: Naïve Imperative Code Can Hinder Parallelism
	Slide 30
	Slide 31: An Important Optimization
	Slide 32: An Important Optimization
	Slide 33: Tail Recursion
	Slide 34: Example of Tail Recursion
	Slide 35: Question
	Slide 36: Question
	Slide 37: Question
	Slide 38: Question
	Slide 39: Question
	Slide 40: Question
	Slide 41: Question
	Slide 42: Question
	Slide 43: Your Turn
	Slide 44: Encoding Tail Recursion with fold_left
	Slide 45: Question
	Slide 46: Question
	Slide 47: Folding
	Slide 48: Folding
	Slide 49: Recall
	Slide 50: Quadratic Time
	Slide 51: Comparison
	Slide 52: Tail Recursion - Example
	Slide 53: Comparison
	Slide 54: Folding - Tail Recursion
	Slide 55: Folding
	Slide 56: Example of Tail Recursion
	Slide 57: Your turn now
	Slide 58: Continuation Passing Style
	Slide 59: Continuations
	Slide 60: Continuation Passing Style
	Slide 61: Example
	Slide 62: Example of Tail Recursion & CSP
	Slide 63: Example of Tail Recursion & CSP
	Slide 64: Continuation Passing Style
	Slide 65: Optional: Matrix Multiply in Ocaml
	Slide 66: Optional: Neural Network in Ocaml

