
Programming Languages
and Compilers (CS 421)

Sasa Misailovic

4110 SC, UIUC
https://courses.engr.illinois.edu/cs421/fa2024/CS421C

Based on slides by Elsa Gunter, which are based in part on previous

slides by Mattox Beckman and updated by Vikram Adve and Gul Agha

https://courses.engr.illinois.edu/cs421/fa2024/CS421C

How It’s Going

Program

g++ program.cpp –o executable.exe

Compiler Executable

Code

How It’s Going

Program

>>> from program import main

 >>> res = main(3);

Python Interpreter (REPL*)
Result

*REPL = Read, evaluate, print loop

How It’s Going

Program

>>> from program import main

 >>> res = main(3);

Python Interpreter (REPL*)
Result

*REPL = Read, evaluate, print loop

Our Journey:

What’s inside?

Compiler Overview

Program Front-end Optimizer Back-end

Intermediate

Code

Executable

Code

Intermediate

Code

Compiler Overview

Program Front-end Optimizer Back-end

Role of a frontend

Program

Lexical

Analysis Parsing
Semantic

Analysis

Tokens Parse

Tree

AST +

Sym Table

Role of a frontend

Program

Lexical

Analysis Parsing
Semantic

Analysis

Tokens Parse

Tree

AST +

Sym Tabley = f(x)

Role of a frontend

Program

Lexical

Analysis Parsing
Semantic

Analysis

Tokens Parse

Tree

AST +

Sym Tabley = f(x)
NAME(y),
EQ,
NAME(f),
LBR,
NAME(x),
RBR

Role of a frontend

Program

Lexical

Analysis Parsing
Semantic

Analysis

Tokens Parse

Tree

AST +

Sym Tabley = f(x)
NAME(y),
EQ,
NAME(f),
LBR,
NAME(x),
RBR

Assign

NAME(y) EQ Call

NAME(f)

LBR NAME(x) RBR

Arg

Role of a frontend

Program

Lexical

Analysis Parsing
Semantic

Analysis

Tokens Parse

Tree

AST +

Sym Tabley = f(x)
NAME(y),
EQ,
NAME(f),
LBR,
NAME(x),
RBR

Assign

NAME(y) EQ Call

NAME(f)

LBR NAME(x) RBR

Arg

Assign

Var(y) Call

Fun(f)

Var(x)

Arg

Compiler Overview

Program Front-end Optimizer Back-end

Role of a backend

Intermediate
Representation

Assembly
Language
sumcalc(int, int, int):
 mov ecx, edx
 lea eax, [4*rdi]
 cdq
 idiv esi
 test ecx, ecx
 js .LBB2_1
 lea edx, [rax + 4]
 imul edx, ecx
 add eax, 5
 mov esi, ecx
 lea edi, [rcx - 1]
 imul rdi, rsi
 add ecx, -2
 imul rcx, rdi
 shr rdi
 imul edi, eax
 add edi, edx
 shr rcx
 imul eax, ecx, 1431655766
 add eax, edi
 add eax, 1
 ret

.LBB2_1:
 xor eax, eax
 ret

Code

Code

Code

Binary
Code

000100011001

010011001010

101001010101

001010001011

110100101001

010100101010

010101001010

010101001010

010101001010

100010010101

001010000000

101011111110

001010010101

011110001100

000100011001

010011001010

101001010101

001010001011

110100101001

010100101010

010101001010

010101001010

010101001010

100010010101

001010000000

101011111110

001010010101

011110001100

Role of a backend

Intermediate
Representation

Interpreter
Language

Code

Code

Code

Direct
Eval

result1

result2

result3

result4

result5

result6

result7

result8

result8

result10

result11

result12

result13

result14

result15

result16

result17

result18

result19

result20

result21

….

define i32 @sumcalc(int, int, int)
 (i32 noundef %0, i32 noundef %1, i32 noundef %2) {

 %6 = icmp slt i32 %2, 0

 br i1 %6, label %27, label %7

7:%8 = add i32 %5, 4,

 %9 = mul i32 %8, %2,

 %10 = add i32 %5, 5,

 %11 = zext i32 %2 to i33,

 %12 = add nsw i32 %2, -1,

 %13 = zext i32 %12 to i33,

 %14 = mul i33 %11, %13,

 %15 = lshr i33 %14, 1,

 %16 = trunc i33 %15 to i32,

 br label %16,

17:%18 = phi i32 [0, %3], [%16, %7]

 ret i32 %18,

}

Runtime

System
Interpreter executes those

intermediate commands

Compiler Overview

Program Front-end Optimizer Back-end

This class

This is in

CS426

My Background

• Grew up writing code in C, C++ and Java

• Did my undergrad in ECE

• Explored full stack of programming systems in my PhD

• Interests: Programming systems for fast and accurate

computing across the system stack, recently with a focus on

ML/AI applications

• Courses taught: Basic and Advanced Compilers (in LLVM; cs

426 and cs526), Formal methods (cs477), Approximate and

probabilistic programming systems (cs521), …

Programming Languages & Compilers

8/27/2024

18

I

New

Programming

Paradigm

III

Language

Semantics

Three Main Topics of the Course

Programming Languages & Compilers

8/27/2024

19

Functional

Programming

Environments

and

Closures

Continuation

Passing

Style

Patterns of

Recursion

I : New Programming Paradigm

Programming Languages & Compilers

8/27/2024

20

Functional

Programming

I : New Programming Paradigm

Different discipline of programming from

what you’re used to:

• Immutable Program State

• Yes! x = y + 1

• NO! x = x + 1

• Functions are first-class citizens

• Pass as arguments to other

functions, manipulate as objects

Programming Languages & Compilers

8/27/2024

21

Environments

and

Closures

I : New Programming Paradigm

Program state we are used to:

• Variables located on stack or heap

We will learn:

• Make the notion of program state

more flexible

Programming Languages & Compilers

8/27/2024

22

Patterns of

Recursion

I : New Programming Paradigm

Iteration we are used to:

• for/while Loops

• iterators

We will learn:

• How to make functions calling

themselves efficient

• Pattern matching

Programming Languages & Compilers

8/27/2024

23

Continuation

Passing

Style

I : New Programming Paradigm

Program counter we are used to:

• The pointer to the next instruction to

execute

• Function pointer or a label to make

jumps

We will learn:

• How to abstract the notion of

program counter and location where

the execution continues

Programming Languages & Compilers

8/27/2024

25

Lexing and

Parsing

Type

Systems

Interpretation

II : Language Translation

Programming Languages & Compilers

8/27/2024

26

Lexing and

Parsing

II : Language Translation

From program text to a data

structure we can manipulate:

y = f(x)

Assign

NAME(y) EQ Call

NAME(f)

LBR NAME(x) RBR

Arg

Programming Languages & Compilers

8/27/2024

27

Type

Systems

II : Language Translation

Is this a legal program:

int x = 3

int y = x * 2

int z = y + “one”

How to automatically check?

Programming Languages & Compilers

8/27/2024

28

Interpretation

II : Language Translation

How do we make this text run

on the machine?

int x = 3

int y = x * 2

X: 0

Y: 0

X: 3

Y: 6

Programming Languages & Compilers

8/27/2024

31

Operational

Semantics

Lambda

Calculus

Axiomatic

Semantics

III : Language Semantics

8/27/2024

33

I

New

Programming

Paradigm

II

Language

Translation

III

Language

Semantics

Programming Languages & Compilers

Beyond Class

◼ Functional Programming is used in industry

Verse: Language for

XR based on Haskell

Erlang: Language for

High-reliability

concurrent systems

OCaml: High-

Frequency Trading

https://blog.janestreet.com/why-ocaml/

https://wiki.haskell.org/Haskell_in_industry

Haskell

F#

https://github.com/fsprojects/fsharp-companies

https://ocaml.org/industrial-users

https://blog.janestreet.com/why-ocaml/
https://wiki.haskell.org/Haskell_in_industry
https://github.com/fsprojects/fsharp-companies
https://ocaml.org/industrial-users

Beyond Class

◼ Occasionally we will have several
slides that are not part of the exam, but give
a broader context about programming
◼ Functional patterns in imperative languages

◼ Language design choices

◼ Practical use cases and advanced theory

◼ Our friend Zafar the Camel will lead us into
these stories. (Zafar is made by Dall-E)

Example

◼ Most of today’s languages are
multi-paradigm
(Imperative, OOP, Functional, Concurrent…)

◼ You can write C/C++ programs in functional
styles

◼ You can also write Ocaml in imperative style
(but not in this class)

8/27/2024

39

Contact Information:
Sasa Misailovic

◼ Office: 4110 SC

◼ Office hours:

◼ Urbana: Tuesday 9:45am – 10:30am

◼ Chicago: Thursday 1:45pm – 2:30pm

◼ Can attend on zoom

◼ Also by appointment

◼ Email: misailo@illinois.edu

◼ Use Campuswire

mailto:misailo@illinois.edu

Course Sections

◼ Sasa’s section (CS421C): 12:30 – 1:45
◼ Tuesdays in Urbana and Zoom

◼ Thursdays in Chicago and Zoom
◼ Urbana students can still use the classroom

◼ Elsa’s section (CS421D):
◼ Tuesday, Thursday in Urbana

◼ Both sections cover the same material for the
exam, in the same order
◼ The midterms/exams are the same

◼ All lectures are recorder
40

Course Infrastructure

41

◼ Discuss: Campuswire

◼ Exams: PrairieLearn
and PrairieTest

◼ Autogenerated exams
and autograding

◼ Big shout-out to Elsa!

Course TAs

42

8/27/2024

43

Course Website
◼ https://courses.engr.illinois.edu/cs421/fa2024/CS421C

◼ Main page - summary of news items

◼ Policy - rules governing course

◼ Lectures - syllabus and slides

◼ MPs - information about assignments

◼ Exams – Syllabi and review material for Midterms
and finals

◼ Unit Projects - for 4 credit students

◼ Resources - tools and helpful info

◼ FAQ

https://courses.engr.illinois.edu/cs421/fa2024/CS421C

Some Course References

◼ No required textbook

◼ Some suggested references

8/27/2024

44

8/27/2024

45

Some Course References

◼ No required textbook.

◼ Pictures of the books on previous slide

◼ Essentials of Programming Languages (2nd Edition)
by Daniel P. Friedman, Mitchell Wand and
Christopher T. Haynes, MIT Press 2001.

◼ Compilers: Principles, Techniques, and Tools, (also
known as "The Dragon Book"); by Aho, Sethi, and
Ullman. Published by Addison-Wesley. ISBN: 0-
201-10088-6.

◼ Modern Compiler Implementation in ML by Andrew
W. Appel, Cambridge University Press 1998

◼ Additional ones for Ocaml given separately

46

Course Grading

◼ Assignments
◼ Web Assignments (WA)

◼ MPs (in Ocaml)

◼ All WAs and MPs Submitted by PrairieLearn

◼ Late submission penalty: capped at 80% of total

◼ Quizzes
◼ 3 quizzes (20min) done in class: same as MP

◼ Midterms
◼ 3 midterms: All done in CBTF (Urbana/Chicago)

◼ Final
◼ Done in CBTF (Urbana/Chicago)

8/27/2024

47

Course Grading

Course Assingments – WA & MP

◼ You may discuss assignments and their solutions with
others
◼ You may work in groups, but you must list members

with whom you worked if you share solutions or
solution outlines

◼ Each student must write up and turn in their own
solution separately

◼ You may look at examples from class and other similar
examples from any source – cite appropriately
◼ This includes LLMs! (although you shouldn’t use them)

◼ Note: University policy on plagiarism still holds - cite your
sources if you are not the sole author of your solution

◼ Do not have to cite course notes or me

8/27/2024

49

OCAML

◼ Locally:
◼ Will use ocaml inside VSCode inside PrairieLearn

problems this semester

◼ Globally:

◼ Main OCAML home: http://ocaml.org

◼ To install OCAML on your computer see:
http://ocaml.org/docs/install.html

◼ For Windows: just install WSL and then do Linux
https://learn.microsoft.com/en-us/windows/wsl/install

◼ To try on the web: https://try.ocamlpro.com

http://ocaml.org
http://ocaml.org/docs/install.html
https://learn.microsoft.com/en-us/windows/wsl/install
https://try.ocamlpro.com/

8/27/2024

50

References for OCaml

◼ Supplemental texts (not required):

◼ The Objective Caml system release 4.05, by
Xavier Leroy, online manual

◼ Introduction to the Objective Caml
Programming Language, by Jason Hickey

◼ Developing Applications With Objective
Caml, by Emmanuel Chailloux, Pascal
Manoury, and Bruno Pagano, on O’Reilly
◼ Available online from course resources

8/27/2024

51

OCAML Background

◼ CAML is European descendant of original ML
◼ American/British version is SML

◼ O is for object-oriented extension

◼ ML stands for Meta-Language

◼ ML family designed for implementing
theorem provers
◼ It was the meta-language for programming the
“object” language of the theorem prover

◼ Despite obscure original application area, OCAML
is a full general-purpose programming language

8/27/2024

53

Features of OCAML

◼ Higher order applicative language

◼ Call-by-value parameter passing

◼ Modern syntax for functional languages

◼ Parametric polymorphism

◼ Aka structural polymorphism

◼ Automatic garbage collection

◼ User-defined algebraic data types

8/27/2024

55

Session in OCAML

% ocaml

Objective Caml version 4.07.1

(* Read-eval-print loop; expressions and
declarations *)

 2 + 3;; (* Expression *)

- : int = 5

3 < 2;;

- : bool = false

Declarations; Sequencing of Declarations

let x = 2 + 3;; (* declaration *)

val x : int = 5

let test = 3 < 2;;

val test : bool = false

let a = 1 let b = a + 4;; (* Sequence of dec *)

val a : int = 1

val b : int = 5

8/27/2024

56

Functions

let plus_two n = n + 2;;

val plus_two : int -> int = <fun>

plus_two 17;;

- : int = 19

8/27/2024

58

Functions

let plus_two n = n + 2;;

plus_two 17;;

- : int = 19

Fun with Functions

let plus_two n = n + 2;;

val plus_two : int -> int = <fun>

plus_two 17;;

- : int = 19

let just_plus n m = n + m;;

val just_plus : int -> int -> int = <fun>

just_plus 17

- : int -> int = <fun>
What happens next?

Fun with Functions

let just_plus n m = n + m;;

val just_plus : int -> int -> int = <fun>

let plus17 = just_plus 17

val plus17 : int -> int = <fun>

plus17 2

- : int = 19

63

No Overloading for Basic Arithmetic Operations

15 * 2;;
- : int = 30

1.35 + 0.23;; (* Wrong type of addition *)
Characters 0-4:
 1.35 + 0.23;; (* Wrong type of addition *)
 ^^^^
Error: This expression has type float but an

expression was expected of type
 int

1.35 +. 0.23;;
- : float = 1.58

8/27/2024

67

Sequencing Expressions

"Hi there";; (* has type string *)

- : string = "Hi there"

print_string "Hello world\n";; (* has type unit *)

Hello world

- : unit = ()

(print_string "Bye\n"; 25);; (* Sequence of exp *)

Bye

- : int = 25

68

Recursive Functions

let rec factorial n =

 if n = 0 then 1

 else n * factorial (n - 1);;

 val factorial : int -> int = <fun>

factorial 5;;

- : int = 120

“rec” is needed for recursive function declarations

8/27/2024

70

Environments

◼ Environments record what value is associated
with a given identifier

◼ Central to the semantics and implementation of a
language

◼ Notation

 = {name1 → value1, name2→ value2, …}

Using set notation, but describes a partial function

◼ Often stored as list, or stack

◼ To find value start from left and take first match

Environments

8/27/2024

71

X ➔ 3

y ➔ 17

name ➔ “Steve”

b ➔ true

region ➔ (5.4, 3.7)

id ➔ {Name = “Paul”,

 Age = 23,

 SSN = 999888777}

. . .

72

Global Variable Creation

2 + 3;; (* Expression *)

// doesn’t affect the environment

let test = 3 < 2;; (* Declaration *)

val test : bool = false

// 1 = {test → false}

let a = 1 let b = a + 4;; (* Seq of dec *)

// 2 = {b → 5, a → 1, test → false}

Environments

8/27/2024

73

b ➔ 5

test ➔ true

a ➔ 1

New Bindings Hide Old

// 2 = {b → 5, a → 1, test → false}

let test = 3.7;;

◼ What is the environment after this
declaration?

8/27/2024

74

New Bindings Hide Old

// 2 = {b → 5, a → 1, test → false}

let test = 3.7;;

◼ What is the environment after this
declaration?

// 3 = {test → 3.7, a → 1, b → 5}

8/27/2024

75

Environments

8/27/2024

76

b ➔ 5

test ➔ 3.7

a ➔ 1

8/29/2024
77

Local Variable Creation

// 3 = {test → 3.7, a → 1, b → 5}

let b = 5 * 4

// 4 = {b → 20, test → 3.7, a → 1}

 in 2 * b;;

- : int = 40

// 5 = 3= {test → 3.7, a → 1, b → 5}

b;;

- : int = 5

b ➔ 5

test ➔ 3.7

a ➔ 1

b ➔ 5

test ➔ 3.7

a ➔ 1
b ➔ 20

b ➔ 5

test ➔ 3.7

a ➔ 1

// 5 = {test → 3.7, a → 1, b → 5}

let c =

 let b = a + a

 in b * b;;

b;;

8/29/2024
78

Local let binding

// 5 = {test → 3.7, a → 1, b → 5}

let c =

 let b = a + a

// 6 = {b → 2} + 5

// = {b → 2, test → 3.7, a → 1}

 in b * b;;

val c : int = 4

// 7 = {c → 4, test → 3.7, a → 1, b → 5}

b;;

- : int = 5

8/29/2024
79

Local let binding

b ➔ 5

test ➔ 3.7a ➔ 1

// 5 = {test → 3.7, a → 1, b → 5}

let c =

 let b = a + a

// 6 = {b → 2} + 5

// = {b → 2, test → 3.7, a → 1}

 in b * b;;

val c : int = 4

// 7 = {c → 4, test → 3.7, a → 1, b → 5}

b;;

- : int = 5

b ➔ 5

test ➔ 3.7a ➔ 1

8/29/2024
80

Local let binding

b ➔ 5

test ➔ 3.7a ➔ 1

b ➔ 2

// 5 = {test → 3.7, a → 1, b → 5}

let c =

 let b = a + a

// 6 = {b → 2} + 5

// = {b → 2, test → 3.7, a → 1}

 in b * b;;

val c : int = 4

// 7 = {c → 4, test → 3.7, a → 1, b → 5}

b;;

- : int = 5

b ➔ 5

test ➔ 3.7a ➔ 1

8/29/2024
81

Local let binding

b ➔ 5

test ➔ 3.7a ➔ 1

b ➔ 2

b ➔ 5

test ➔ 3.7a ➔ 1

c ➔ 4

Concrete Environments:
System Memory

◼ In systems programming, memory
is often divided in different parts:

Stack Frame (reminder)

◼ In x86 stack frame contains:

◼ At run-time, each procedure
invocation has an associated
local storage.

◼ For many languages, this local
storage can live on the stack, and
then they are also called stack
frames.

◼ Variable names map to the offsets
from the frame pointer (FP)

Environment vs
Stack Frame

◼ Environment is abstraction (language level)
Stack frame is implementation (system level)

◼ Semantics of Environment: copied after the
statements; only updated variables changed

◼ Becomes more interesting when we need to
think about functions

◼ Semantics of Stack frame: updated in-place

Let’s think about high-level expressivity, not efficiency at the moment!

Now it’s your turn

You should be able to do WA1-IC
Problem 1 , parts (* 1 *) - (* 3 *)

85

8/27/2024

86

Functions

let plus_two n = n + 2;;

val plus_two : int -> int = <fun>

plus_two 17;;

- : int = 19

8/29/2024
87

Functions

let plus_two n = n + 2;;

plus_two 17;;

- : int = 19

8/29/2024
88

Nameless Functions (aka Lambda Terms)

fun n -> n + 2;;

(fun n -> n + 2) 17;;

- : int = 19

8/29/2024
89

Functions
let plus_two n = n + 2;;

val plus_two : int -> int = <fun>

plus_two 17;;

- : int = 19

let plus_two = fun n -> n + 2;;

val plus_two : int -> int = <fun>

plus_two 14;;

- : int = 16

First definition syntactic sugar for second

8/27/2024

90

Using a nameless function

(fun x -> x * 3) 5;; (* An application *)
- : int = 15

((fun y -> y +. 2.0), (fun z -> z * 3));;
(* As data *)

- : (float -> float) * (int -> int) = (<fun>, <fun>)

 Note: in fun v -> expression(v), the scope of
variable is only the body expression(v)

8/27/2024

91

Values fixed at declaration time

let x = 12;;

val x : int = 12

let plus_x y = y + x;;

val plus_x : int -> int = <fun>

plus_x 3;;

What is the result?

X ➔ 12

 …

8/27/2024

92

Values fixed at declaration time

let x = 12;;

val x : int = 12

let plus_x y = y + x;;

val plus_x : int -> int = <fun>

plus_x 3;;

- : int = 15

8/27/2024

93

Values fixed at declaration time

...

let x = 7;;
 (* New declaration, not an update *)

val x : int = 7

plus_x 3;;

What is the result this time?

8/27/2024

94

Values fixed at declaration time

let x = 7;; (* New declaration, not an
update *)

val x : int = 7

plus_x 3;;

What is the result this time?

X ➔ 12

 …

X ➔ 7

 …

8/27/2024

95

Values fixed at declaration time

let x = 7;; (* New declaration, not an
update *)

val x : int = 7

plus_x 3;;

- : int = 15

8/27/2024

96

Question

◼ Observation: Functions are first-class values
in this language

◼ Question: What value does the environment
record for a function variable?

◼ Answer: a closure (let’s see!)

8/27/2024

97

Save the Environment!

◼ A closure is a pair of an environment and an

association of a formal parameter (the input

variables)* with an expression (the function

body), written:

f → < (v1,…,vn) → exp, f >

◼ Where f is the environment in effect when f

is defined (if f is a simple function)

* Will come back to the “formal parameter”

Recall: let plus_x = fun x => y + x

8/29/2024
98

X ➔ 12

 …
let x = 12

let plus_x = fun y -> y + x

let x = 7

X ➔ 12 …

plus_x ➔

X ➔ 12
 …

y → y + x

plus_x ➔

 …

 x ➔7

X ➔ 12
 …

y → y + x

8/29/2024
99

Closure for plus_x

◼ When plus_x was defined, had environment:

plus_x = {…, x → 12, …}

◼ Recall: let plus_x y = y + x

 is really let plus_x = fun y -> y + x

◼ Closure for fun y -> y + x:

<y → y + x, plus_x >

◼ Environment just after plus_x defined:

 {plus_x → <y → y + x, plus_x >} + plus_x

Similar to set

union!

(but subtle

differences;

new decl.

replaces old)

Now it’s your turn

You should be able complete ACT1

8/29/2024

100

8/29/2024
101

Functions with more than one argument

let add_three x y z = x + y + z;;

val add_three : int -> int -> int -> int = <fun>

let t = add_three 6 3 2;;

val t : int = 11

let add_three =

 fun x -> (fun y -> (fun z -> x + y + z));;

val add_three : int -> int -> int -> int = <fun>

Again, first syntactic sugar for second

8/27/2024

102

Functions with more than one argument

let add_three x y z = x + y + z;;

val add_three : int -> int -> int -> int = <fun>

◼ What is the value of add_three?

◼ Let add_three be the environment before the
declaration

◼ Remember:

let add_three =

 fun x -> (fun y -> (fun z -> x + y + z));;

Value:

 <x ->fun y -> (fun z -> x + y + z), add_three >

8/29/2024
103

Partial application of functions

let add_three x y z = x + y + z;;

let h = add_three 5 4;;

val h : int -> int = <fun>

h 3;;

- : int = 12

h 7;;

- : int = 16

Partial application also called sectioning

8/27/2024

104

Functions as arguments

let thrice f x = f (f (f x));;

val thrice : ('a -> 'a) -> 'a -> 'a = <fun>

let g = thrice plus_two;;

val g : int -> int = <fun>

g 4;;

- : int = 10

thrice (fun s -> "Hi! " ^ s) "Good-bye!";;

- : string = "Hi! Hi! Hi! Good-bye!"

8/27/2024

105

150 minutes

Tuples as Values

// 0 = {c → 4, a → 1, b → 5}

let s = (5,"hi",3.2);;

val s : int * string * float = (5, "hi", 3.2)

// = {s → (5, "hi", 3.2), c → 4, a → 1, b → 5}

8/29/2024
106

Pattern Matching with Tuples

// = {s → (5, "hi", 3.2), a → 1, b → 5, c → 4}

let (a,b,c) = s;; (* (a,b,c) is a pattern *)

val a : int = 5

val b : string = "hi"

val c : float = 3.2

let (a, _, _) = s;;

val a : int = 5

let x = 2, 9.3;; (* tuples don't require parens in Ocaml *)

val x : int * float = (2, 9.3)

8/29/2024
107

Nested Tuples

(*Tuples can be nested *)

let d = ((1,4,62),("bye",15),73.95);;

val d : (int * int * int) * (string * int) * float =

 ((1, 4, 62), ("bye", 15), 73.95)

(*Patterns can be nested *)

let (p, (st,_), _) = d;;
 (* _ matches all, binds nothing *)

val p : int * int * int = (1, 4, 62)

val st : string = "bye"

8/29/2024
108

8/27/2024

109

150 minutes

8/27/2024

110

•Each clause: pattern

on left, expression on

right

•Each x, y has scope

of only its clause

•Use first matching

clause

Match Expressions

let triple_to_pair triple =

 match triple

 with (0, x, y) -> (x, y)

 | (x, 0, y) -> (x, y)

 | (x, y, _) -> (x, y);;

val triple_to_pair :

 int * int * int -> int * int = <fun>

Functions on tuples
let plus_pair (n,m) = n + m;;

val plus_pair : int * int -> int = <fun>

plus_pair (3,4);;

- : int = 7

let twice x = (x,x);;

val twice : 'a -> 'a * 'a = <fun>

twice 3;;

- : int * int = (3, 3)

twice "hi";;

- : string * string = ("hi", "hi")

8/29/2024
111

8/29/2024
112

Curried vs Uncurried

◼ Recall
let add_three u v w = u + v + w;;

val add_three : int -> int -> int -> int = <fun>

◼ How does it differ from
let add_triple (u,v,w) = u + v + w;;

val add_triple : int * int * int -> int = <fun>

◼ add_three is curried;

◼ add_triple is uncurried

8/29/2024 113

Curried vs Uncurried
add_three 6 3 2;;

- : int = 11

add_triple (6,3,2);;

- : int = 11

add_triple 5 4;;

Characters 0-10: add_triple 5 4;;

 ^^^^^^^^^^

This function is applied to too many arguments,

maybe you forgot a `;'

fun x -> add_triple (5,4,x);;

: int -> int = <fun>

Extras

114

Evaluating declarations

◼ Evaluation uses an environment

◼ To evaluate a (simple) declaration let x = e

◼ Evaluate expression e in to value v

◼ Update with x v: {x → v} +

◼ Update: 1+ 2 has all the bindings in 1 and
all those in 2 that are not rebound in 1

{x → 2, y → 3, a → “hi”} + {y → 100, b → 6}

= {x → 2, y → 3, a → “hi”, b → 6}

8/27/2024

115

Evaluating expressions in OCaml

◼ Evaluation uses an environment

◼ A constant evaluates to itself, including
primitive operators like + and =

◼ To evaluate a variable, look it up in : (v)

◼ To evaluate a tuple (e1,…,en),

◼ Evaluate each ei to vi, right to left for Ocaml

◼ Then make value (v1,…,vn)

8/27/2024

116

Evaluating expressions in OCaml

◼ To evaluate uses of +, _ , etc, eval args,
then do operation

◼ Function expression evaluates to its closure

◼ To evaluate a local dec: let x = e1 in e2
◼ Eval e1 to v, then eval e2 using {x → v} +

◼ To evaluate a conditional expression:
if b then e1 else e2
◼ Evaluate b to a value v

◼ If v is True, evaluate e1

◼ If v is False, evaluate e2

8/27/2024

117

8/27/2024

118

Evaluation of Application with Closures

◼ Given application expression f e

◼ In Ocaml, evaluate e to value v

◼ In environment , evaluate left term to closure,
c = <(x1,…,xn) → b, ’>

◼ (x1,…,xn) variables in (first) argument

◼ v must have form (v1,…,vn)

◼ Update the environment ’ to

 ’’ = {x1 → v1,…, xn →vn}+ ’

◼ Evaluate body b in environment ’’

	Slide 1: Programming Languages and Compilers (CS 421)
	Slide 2: How It’s Going
	Slide 3: How It’s Going
	Slide 4: How It’s Going
	Slide 5: Compiler Overview
	Slide 6: Compiler Overview
	Slide 7: Role of a frontend
	Slide 8: Role of a frontend
	Slide 9: Role of a frontend
	Slide 10: Role of a frontend
	Slide 11: Role of a frontend
	Slide 12: Compiler Overview
	Slide 13: Role of a backend
	Slide 14: Role of a backend
	Slide 16: Compiler Overview
	Slide 17: My Background
	Slide 18: Programming Languages & Compilers
	Slide 19: Programming Languages & Compilers
	Slide 20: Programming Languages & Compilers
	Slide 21: Programming Languages & Compilers
	Slide 22: Programming Languages & Compilers
	Slide 23: Programming Languages & Compilers
	Slide 25: Programming Languages & Compilers
	Slide 26: Programming Languages & Compilers
	Slide 27: Programming Languages & Compilers
	Slide 28: Programming Languages & Compilers
	Slide 31: Programming Languages & Compilers
	Slide 33: Programming Languages & Compilers
	Slide 34: Beyond Class
	Slide 35: Beyond Class
	Slide 36: Example
	Slide 39: Contact Information: Sasa Misailovic
	Slide 40: Course Sections
	Slide 41: Course Infrastructure
	Slide 42: Course TAs
	Slide 43: Course Website
	Slide 44: Some Course References
	Slide 45: Some Course References
	Slide 46: Course Grading
	Slide 47: Course Grading
	Slide 48: Course Assingments – WA & MP
	Slide 49: OCAML
	Slide 50: References for OCaml
	Slide 51: OCAML Background
	Slide 53: Features of OCAML
	Slide 55: Session in OCAML
	Slide 56: Declarations; Sequencing of Declarations
	Slide 57: Functions
	Slide 58: Functions
	Slide 59: Fun with Functions
	Slide 62: Fun with Functions
	Slide 63: No Overloading for Basic Arithmetic Operations
	Slide 67: Sequencing Expressions
	Slide 68: Recursive Functions
	Slide 70: Environments
	Slide 71: Environments
	Slide 72: Global Variable Creation
	Slide 73: Environments
	Slide 74: New Bindings Hide Old
	Slide 75: New Bindings Hide Old
	Slide 76: Environments
	Slide 77: Local Variable Creation
	Slide 78: Local let binding
	Slide 79: Local let binding
	Slide 80: Local let binding
	Slide 81: Local let binding
	Slide 82: Concrete Environments: System Memory
	Slide 83: Stack Frame (reminder)
	Slide 84: Environment vs Stack Frame
	Slide 85
	Slide 86: Functions
	Slide 87: Functions
	Slide 88: Nameless Functions (aka Lambda Terms)
	Slide 89: Functions
	Slide 90: Using a nameless function
	Slide 91: Values fixed at declaration time
	Slide 92: Values fixed at declaration time
	Slide 93: Values fixed at declaration time
	Slide 94: Values fixed at declaration time
	Slide 95: Values fixed at declaration time
	Slide 96: Question
	Slide 97: Save the Environment!
	Slide 98: Recall: let plus_x = fun x => y + x
	Slide 99: Closure for plus_x
	Slide 100
	Slide 101: Functions with more than one argument
	Slide 102: Functions with more than one argument
	Slide 103: Partial application of functions
	Slide 104: Functions as arguments
	Slide 105
	Slide 106: Tuples as Values
	Slide 107: Pattern Matching with Tuples
	Slide 108: Nested Tuples
	Slide 109
	Slide 110: Match Expressions
	Slide 111: Functions on tuples
	Slide 112: Curried vs Uncurried
	Slide 113: Curried vs Uncurried
	Slide 114: Extras
	Slide 115: Evaluating declarations
	Slide 116: Evaluating expressions in OCaml
	Slide 117: Evaluating expressions in OCaml
	Slide 118: Evaluation of Application with Closures

