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Role of a backend

Intermediate 
Representation

Assembly
Language
sumcalc(int, int, int):             
    mov   ecx, edx
    lea   eax, [4*rdi]
    cdq
    idiv  esi
    test  ecx, ecx
    js   .LBB2_1
    lea   edx, [rax + 4]
    imul  edx, ecx
    add   eax, 5
    mov   esi, ecx
    lea   edi, [rcx - 1]
    imul  rdi, rsi
    add   ecx, -2
    imul  rcx, rdi
    shr   rdi
    imul  edi, eax
    add   edi, edx
    shr   rcx
    imul  eax, ecx, 1431655766
    add   eax, edi
    add   eax, 1
    ret

.LBB2_1:
    xor   eax, eax
    ret

Code

Code

Code

Binary
Code

000100011001

010011001010

101001010101

001010001011

110100101001

010100101010

010101001010

010101001010

010101001010

100010010101

001010000000

101011111110

001010010101

011110001100

000100011001

010011001010

101001010101

001010001011

110100101001

010100101010

010101001010

010101001010

010101001010

100010010101

001010000000

101011111110

001010010101

011110001100



Role of a backend

Intermediate 
Representation

Interpreter
Language

Code

Code

Code

Direct
Eval

result1

result2

result3

result4

result5

result6

result7

result8

result8

result10

result11

result12

result13

result14

result15

result16

result17

result18

result19

result20

result21

….

define i32 @sumcalc(int, int, int)
  (i32 noundef %0, i32 noundef %1, i32 noundef %2) {

 %6 = icmp slt i32 %2, 0 

 br i1 %6, label %27, label %7 

7:%8 = add i32 %5, 4,  

 %9 = mul i32 %8, %2,  

 %10 = add i32 %5, 5,  

 %11 = zext i32 %2 to i33,  

 %12 = add nsw i32 %2, -1,  

 %13 = zext i32 %12 to i33,  

 %14 = mul i33 %11, %13,  

 %15 = lshr i33 %14, 1,  

 %16 = trunc i33 %15 to i32,  

 br label %16,  

17:%18 = phi i32 [0, %3], [%16, %7]

 ret i32 %18,  

}

Runtime

System
Interpreter executes those 

intermediate commands



Compiler Overview

Program Front-end Optimizer Back-end

This class

This is in 

CS426



My Background

• Grew up writing code in C, C++ and Java

• Did my undergrad in ECE

• Explored full stack of programming systems in my PhD

• Interests: Programming systems for fast and accurate 

computing across the system stack, recently with a focus on 

ML/AI applications

• Courses taught: Basic and Advanced Compilers (in LLVM; cs 

426 and cs526), Formal methods (cs477),  Approximate and 

probabilistic programming systems (cs521), …
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Functional

Programming

I : New Programming Paradigm

Different discipline of programming from 

what you’re used to:

• Immutable Program State

• Yes!   x = y + 1

• NO!    x = x + 1

• Functions are first-class citizens

• Pass as arguments to other 

functions, manipulate as objects
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Environments 

and

Closures

I : New Programming Paradigm

Program state we are used to:

• Variables located on stack or heap

We will learn:

• Make the notion of program state 

more flexible
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Patterns of

Recursion

I : New Programming Paradigm

Iteration we are used to:

• for/while Loops

• iterators

We will learn:

• How to make functions calling 

themselves efficient

• Pattern matching
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Continuation 

Passing

Style

I : New Programming Paradigm

Program counter we are used to:

• The pointer to the next instruction to 

execute

• Function pointer or a label to make 

jumps

We will learn:

• How to abstract the notion of 

program counter and location where 

the execution continues
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Lexing and

Parsing

Type

Systems

Interpretation

II : Language Translation
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Lexing and

Parsing

II : Language Translation

From program text to a data 

structure we can manipulate:

y = f(x)

Assign

NAME(y) EQ Call

NAME(f)

LBR NAME(x) RBR

Arg
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Type

Systems

II : Language Translation

Is this a legal program:

int x = 3

int y = x * 2

int z = y + “one”

How to automatically check?
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Interpretation

II : Language Translation

How do we make this text run 

on the machine?

int x = 3

int y = x * 2

X: 0

Y: 0

X: 3

Y: 6
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Operational

Semantics

Lambda 

Calculus

Axiomatic 

Semantics

III : Language Semantics
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I

New 

Programming 

Paradigm

II

Language 

Translation

III

Language 

Semantics

Programming Languages & Compilers



Beyond Class

◼ Functional Programming is used in industry

Verse: Language for 

XR based on Haskell

Erlang: Language for 

High-reliability 

concurrent systems

OCaml: High-

Frequency Trading

https://blog.janestreet.com/why-ocaml/ 

https://wiki.haskell.org/Haskell_in_industry 

Haskell 

F#

https://github.com/fsprojects/fsharp-companies 

https://ocaml.org/industrial-users 

https://blog.janestreet.com/why-ocaml/
https://wiki.haskell.org/Haskell_in_industry
https://github.com/fsprojects/fsharp-companies
https://ocaml.org/industrial-users


Beyond Class

◼ Occasionally we will have several
slides that are not part of the exam, but give 
a broader context about programming
◼ Functional patterns in imperative languages

◼ Language design choices

◼ Practical use cases and advanced theory

◼ Our friend Zafar the Camel will lead us into 
these stories. (Zafar is made by Dall-E)



Example

◼ Most of today’s languages are
multi-paradigm
(Imperative, OOP, Functional, Concurrent…)

◼ You can write C/C++ programs in functional 
styles

◼ You can also write Ocaml in imperative style 
(but not in this class)
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Contact Information:
Sasa Misailovic

◼ Office: 4110 SC

◼ Office hours:

◼ Urbana: Tuesday 9:45am – 10:30am 

◼ Chicago: Thursday 1:45pm – 2:30pm

◼ Can attend on zoom

◼ Also by appointment

◼ Email: misailo@illinois.edu

◼ Use Campuswire 

mailto:misailo@illinois.edu


Course Sections

◼ Sasa’s section (CS421C): 12:30 – 1:45
◼ Tuesdays in Urbana and Zoom 

◼ Thursdays in Chicago and Zoom
◼ Urbana students can still use the classroom 

◼ Elsa’s section (CS421D): 
◼ Tuesday, Thursday in Urbana

◼ Both sections cover the same material for the 
exam, in the same order
◼ The midterms/exams are the same

◼ All lectures are recorder 
40
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◼ Discuss: Campuswire

◼ Exams: PrairieLearn 
and PrairieTest

◼ Autogenerated exams 
and autograding

◼ Big shout-out to Elsa!



Course TAs

42
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Course Website
◼ https://courses.engr.illinois.edu/cs421/fa2024/CS421C

◼ Main page - summary of news items

◼ Policy - rules governing course

◼ Lectures - syllabus and slides

◼ MPs - information about assignments

◼ Exams – Syllabi and review material for Midterms 
and finals 

◼ Unit Projects - for 4 credit students

◼ Resources - tools and helpful info

◼ FAQ

https://courses.engr.illinois.edu/cs421/fa2024/CS421C


Some Course References

◼ No required textbook

◼ Some suggested references

8/27/2024

44
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Some Course References

◼ No required textbook.

◼ Pictures of the books on previous slide

◼ Essentials of Programming Languages (2nd Edition) 
by Daniel P. Friedman, Mitchell Wand and 
Christopher T. Haynes, MIT Press 2001.

◼ Compilers: Principles, Techniques, and Tools, (also 
known as "The Dragon Book"); by Aho, Sethi, and 
Ullman. Published by Addison-Wesley. ISBN: 0-
201-10088-6.

◼ Modern Compiler Implementation in ML by Andrew 
W. Appel, Cambridge University Press 1998

◼ Additional ones for Ocaml given separately
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Course Grading

◼ Assignments  
◼ Web Assignments (WA)  

◼ MPs (in Ocaml)  

◼ All WAs and MPs Submitted by PrairieLearn

◼ Late submission penalty: capped at 80% of total

◼ Quizzes
◼ 3 quizzes (20min) done in class: same as MP

◼ Midterms
◼ 3 midterms: All done in CBTF (Urbana/Chicago)

◼ Final 
◼ Done in CBTF (Urbana/Chicago)



8/27/2024

47

Course Grading



Course Assingments – WA & MP

◼ You may discuss assignments and their solutions with 
others
◼ You may work in groups, but you must list members 

with whom you worked if you share solutions or 
solution outlines

◼ Each student must write up and turn in their own 
solution separately

◼ You may look at examples from class and other similar 
examples from any source – cite appropriately
◼ This includes LLMs! (although you shouldn’t use them)

◼ Note: University policy on plagiarism still holds - cite your 
sources if you are not the sole author of your solution

◼ Do not have to cite course notes or me
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OCAML

◼ Locally:
◼ Will use ocaml inside VSCode inside PrairieLearn 

problems this semester

◼ Globally:

◼ Main OCAML home: http://ocaml.org

◼ To install OCAML on your computer see:    
http://ocaml.org/docs/install.html

◼ For Windows: just install WSL and then do Linux 
https://learn.microsoft.com/en-us/windows/wsl/install 

◼ To try on the web: https://try.ocamlpro.com

http://ocaml.org
http://ocaml.org/docs/install.html
https://learn.microsoft.com/en-us/windows/wsl/install
https://try.ocamlpro.com/
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References for OCaml

◼ Supplemental texts (not required):

◼  The Objective Caml system release 4.05, by 
Xavier Leroy, online manual

◼ Introduction to the Objective Caml 
Programming Language, by Jason Hickey

◼ Developing Applications With Objective 
Caml, by Emmanuel Chailloux, Pascal 
Manoury, and Bruno Pagano, on O’Reilly
◼ Available online from course resources
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OCAML Background

◼ CAML is European descendant of original ML
◼ American/British version is SML

◼ O is for object-oriented extension

◼ ML stands for Meta-Language

◼ ML family designed for implementing 
theorem provers
◼ It was the meta-language for programming the 
“object” language of the theorem prover

◼ Despite obscure original application area, OCAML 
is a full general-purpose programming language
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Features of OCAML

◼ Higher order applicative language

◼ Call-by-value parameter passing

◼ Modern syntax for functional languages

◼ Parametric polymorphism

◼ Aka structural polymorphism

◼ Automatic garbage collection

◼ User-defined algebraic data types
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Session in OCAML

% ocaml

Objective Caml version 4.07.1

# (* Read-eval-print loop; expressions and 
declarations *)

   2 + 3;;     (* Expression *)

- : int = 5

# 3 < 2;;

- : bool = false



Declarations; Sequencing of Declarations

# let x = 2 + 3;;   (* declaration *)

val x : int = 5

# let test = 3 < 2;;

val test : bool = false

# let a = 1 let b = a + 4;; (* Sequence of dec *)

val a : int = 1

val b : int = 5

8/27/2024
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Functions

# let plus_two n = n + 2;;

val plus_two : int -> int = <fun>

# plus_two 17;;

- : int = 19
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Functions

let plus_two n = n + 2;;

plus_two 17;;

- : int = 19



Fun with Functions

# let plus_two n = n + 2;;

val plus_two : int -> int = <fun>

# plus_two 17;;

- : int = 19

# let just_plus n m = n + m;;

val just_plus : int -> int -> int = <fun>

# just_plus 17

- : int -> int = <fun>
What happens next?



Fun with Functions

# let just_plus n m = n + m;;

val just_plus : int -> int -> int = <fun>

# let plus17 = just_plus 17

val plus17 : int -> int = <fun>

# plus17 2

- : int = 19
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No Overloading for Basic Arithmetic Operations

# 15 * 2;;
- : int = 30

# 1.35 + 0.23;;  (* Wrong type of addition *)
Characters 0-4:
  1.35 + 0.23;;  (* Wrong type of addition *)
  ^^^^
Error: This expression has type float but an 

expression was expected of type
         int

# 1.35 +. 0.23;;
- : float = 1.58
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Sequencing Expressions

# "Hi there";;  (* has type string *)

- : string = "Hi there"

# print_string "Hello world\n";;  (* has type unit *)

Hello world

- : unit = ()

# (print_string "Bye\n"; 25);;  (* Sequence of exp *)

Bye

- : int = 25
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Recursive Functions

# let rec factorial n =

    if n = 0 then 1 

    else n * factorial (n - 1);;

  val factorial : int -> int = <fun>

# factorial 5;;

- : int = 120

“rec”  is needed for recursive function declarations



8/27/2024

70

Environments

◼ Environments record what value is associated 
with a given identifier

◼ Central to the semantics and implementation of a 
language

◼ Notation

 = {name1 → value1, name2→ value2, …}

Using set notation, but describes a partial function

◼ Often stored as list, or stack

◼ To find value start from left and take first match



Environments
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X ➔ 3

y ➔ 17

name ➔ “Steve”

b ➔ true

region ➔ (5.4, 3.7)

id ➔ {Name = “Paul”,

  Age = 23,

  SSN = 999888777}

. . .
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Global Variable Creation

# 2 + 3;;     (* Expression *)

// doesn’t affect the environment

# let test = 3 < 2;;       (* Declaration *)

val test : bool = false

//  1 = {test → false}

# let a = 1 let b = a + 4;; (* Seq of dec *)

//  2 = {b → 5, a → 1, test → false}



Environments
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b ➔ 5

test ➔ true

a ➔ 1



New Bindings Hide Old

//  2 = {b → 5, a → 1, test → false}

let test = 3.7;;

◼ What is the environment after this 
declaration?

8/27/2024
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New Bindings Hide Old

//  2 = {b → 5, a → 1, test → false}

let test = 3.7;;

◼ What is the environment after this 
declaration?

//  3 = {test → 3.7, a → 1, b → 5}

8/27/2024
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Environments
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b ➔ 5

test ➔ 3.7

a ➔ 1
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Local Variable Creation

// 3 = {test → 3.7, a → 1, b → 5}

# let b = 5 * 4

// 4 = {b → 20, test → 3.7, a → 1}

    in 2 * b;;

- : int = 40

// 5 = 3= {test → 3.7, a → 1, b → 5}

# b;;

- : int = 5

b ➔ 5

test ➔ 3.7

a ➔ 1

b ➔ 5

test ➔ 3.7

a ➔ 1
b ➔ 20

b ➔ 5

test ➔ 3.7

a ➔ 1



//  5 = {test → 3.7, a → 1, b → 5}

# let c =

    let b = a + a

 

 

    in b * b;;

 

 

# b;;

 

8/29/2024
78

Local let binding



//  5 = {test → 3.7, a → 1, b → 5}

# let c =

    let b = a + a

//  6 = {b → 2} + 5

//      = {b → 2, test → 3.7, a → 1}

    in b * b;;

val c : int = 4

//  7 = {c → 4, test → 3.7, a → 1, b → 5}

# b;;

- : int = 5

8/29/2024
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Local let binding

b ➔ 5

test ➔ 3.7a ➔ 1



//  5 = {test → 3.7, a → 1, b → 5}

# let c =

    let b = a + a

//  6 = {b → 2} + 5

//      = {b → 2, test → 3.7, a → 1}

    in b * b;;

val c : int = 4

//  7 = {c → 4, test → 3.7, a → 1, b → 5}

# b;;

- : int = 5

b ➔ 5

test ➔ 3.7a ➔ 1
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Local let binding

b ➔ 5

test ➔ 3.7a ➔ 1

b ➔ 2



//  5 = {test → 3.7, a → 1, b → 5}

# let c =

    let b = a + a

//  6 = {b → 2} + 5

//      = {b → 2, test → 3.7, a → 1}

    in b * b;;

val c : int = 4

//  7 = {c → 4, test → 3.7, a → 1, b → 5}

# b;;

- : int = 5

b ➔ 5

test ➔ 3.7a ➔ 1

8/29/2024
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Local let binding

b ➔ 5

test ➔ 3.7a ➔ 1

b ➔ 2

b ➔ 5

test ➔ 3.7a ➔ 1

c ➔ 4



Concrete Environments:
System Memory

◼ In systems programming, memory 
is often divided in different parts:



 
Stack Frame (reminder)

◼ In x86 stack frame contains: 

◼ At run-time, each procedure 
invocation has an associated 
local storage. 

◼ For many languages, this local 
storage can live on the stack, and 
then they are also called stack 
frames.

◼ Variable names map to the offsets 
from the frame pointer (FP)



Environment vs 
Stack Frame

◼ Environment is abstraction (language level)
Stack frame is implementation (system level)

◼ Semantics of Environment: copied after the 
statements; only updated variables changed

◼ Becomes more interesting when we need to 
think about functions

◼ Semantics of Stack frame: updated in-place 

Let’s think about high-level expressivity, not efficiency at the moment!



Now it’s your turn

You should be able to do WA1-IC 
Problem 1 , parts (* 1 *) - (* 3 *)

85



8/27/2024

86

Functions

# let plus_two n = n + 2;;

val plus_two : int -> int = <fun>

# plus_two 17;;

- : int = 19
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Functions

let plus_two n = n + 2;;

plus_two 17;;

- : int = 19
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Nameless Functions (aka Lambda Terms)

fun n -> n + 2;;

(fun n -> n + 2) 17;;

- : int = 19
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Functions
# let plus_two n = n + 2;;

val plus_two : int -> int = <fun>

# plus_two 17;;

- : int = 19

# let plus_two = fun n -> n + 2;;

val plus_two : int -> int = <fun>

# plus_two 14;;

- : int = 16

First definition syntactic sugar for second
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Using a nameless function

# (fun x -> x * 3) 5;;   (* An application *)
- : int = 15

# ((fun y -> y +. 2.0), (fun z -> z * 3));;      
(* As data *)

- : (float -> float) * (int -> int) = (<fun>, <fun>)

  Note: in fun v -> expression(v), the scope of 
variable is only the body expression(v)
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Values fixed at declaration time

# let x = 12;;

val x : int = 12

# let plus_x y = y + x;;

val plus_x : int -> int = <fun>

# plus_x 3;;

What is the result?

X  ➔ 12

     …
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Values fixed at declaration time

# let x = 12;;

val x : int = 12

# let plus_x y = y + x;;

val plus_x : int -> int = <fun>

# plus_x 3;;

- : int = 15
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Values fixed at declaration time

...

# let x = 7;;   
 (* New declaration, not an update *)

val x : int = 7

# plus_x 3;;

What is the result this time?
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Values fixed at declaration time

# let x = 7;;   (* New declaration, not an 
update *)

val x : int = 7

# plus_x 3;;

What is the result this time?

X  ➔ 12

    …

X  ➔ 7

     …
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Values fixed at declaration time

# let x = 7;;   (* New declaration, not an 
update *)

val x : int = 7

# plus_x 3;;

- : int = 15
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Question

◼ Observation: Functions are first-class values 
in this language

◼ Question: What value does the environment 
record for a function variable?

◼ Answer: a closure (let’s see!)
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Save the Environment!

◼ A closure is a pair of an environment and an 

association of a formal parameter (the input 

variables)* with an expression (the function 

body), written:

f → < (v1,…,vn) → exp, f >

◼ Where f is the environment in effect when f 

is defined (if f is a simple function)

* Will come back to the “formal parameter”



Recall: let plus_x = fun x => y + x
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X  ➔ 12

     …
let x = 12

let plus_x = fun y -> y + x

let x = 7

X  ➔ 12       …   

plus_x  ➔ 

X  ➔ 12
      …

y → y + x

plus_x  ➔ 

           …

    x ➔7

X  ➔ 12
      …

y → y + x
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Closure for plus_x

◼ When plus_x was defined, had environment:

plus_x = {…, x → 12, …}

◼ Recall: let plus_x y = y + x

   is really let plus_x = fun y -> y + x

◼ Closure for fun y -> y + x:

<y → y + x, plus_x >

◼ Environment just after plus_x defined:

 {plus_x → <y → y + x, plus_x >} + plus_x

Similar to set 

union!

(but subtle 

differences;

new decl. 

replaces old)



Now it’s your turn

You should be able complete ACT1
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Functions with more than one argument

# let add_three x y z = x + y + z;;

val add_three : int -> int -> int -> int = <fun>

# let t = add_three 6 3 2;; 

val t : int = 11

# let add_three =

   fun x -> (fun y -> (fun z -> x + y + z));;

val add_three : int -> int -> int -> int = <fun>

Again, first syntactic sugar for second
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Functions with more than one argument

# let add_three x y z = x + y + z;;

val add_three : int -> int -> int -> int = <fun>

◼ What is the value of add_three?  

◼ Let add_three be the environment before the 
declaration

◼ Remember:

let add_three =

 fun x -> (fun y -> (fun z -> x + y + z));;

Value: 

     <x ->fun y -> (fun z -> x + y + z), add_three > 

 



8/29/2024
103

Partial application of functions

let add_three x y z = x + y + z;;

# let h = add_three 5 4;;

val h : int -> int = <fun>

# h 3;;

- : int = 12

# h 7;;

- : int = 16

Partial application also called sectioning
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Functions as arguments

# let thrice f x = f (f (f x));;

val thrice : ('a -> 'a) -> 'a -> 'a = <fun>

# let g = thrice plus_two;;

val g : int -> int = <fun>

# g 4;;

- : int = 10

# thrice (fun s -> "Hi! " ^ s) "Good-bye!";;

- : string = "Hi! Hi! Hi! Good-bye!"
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150 minutes



Tuples as Values

//  0 = {c → 4, a → 1, b → 5}

# let s = (5,"hi",3.2);;

val s : int * string * float = (5, "hi", 3.2)

//   = {s → (5, "hi", 3.2), c → 4, a → 1, b → 5}
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Pattern Matching with Tuples

//   = {s → (5, "hi", 3.2), a → 1, b → 5, c → 4}

# let (a,b,c) = s;;       (* (a,b,c) is a pattern *)

val a : int = 5

val b : string = "hi"

val c : float = 3.2

# let (a, _, _) = s;;

val a : int = 5

# let x = 2, 9.3;;     (* tuples don't require parens in Ocaml *)

val x : int * float = (2, 9.3)
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Nested Tuples

#  (*Tuples can be nested *)

# let d = ((1,4,62),("bye",15),73.95);;

val d : (int * int * int) * (string * int) * float =

  ((1, 4, 62), ("bye", 15), 73.95)

#  (*Patterns can be nested *)

# let (p, (st,_), _) = d;; 
               (* _ matches all, binds nothing *)

val p : int * int * int = (1, 4, 62)

val st : string = "bye"
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150 minutes
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•Each clause: pattern 

on left, expression on 

right

•Each x, y has scope 

of only its clause

•Use first matching 

clause

Match Expressions

# let triple_to_pair triple =

  match triple

  with (0, x, y) -> (x, y)

  | (x, 0, y) -> (x, y)

  | (x, y, _) -> (x, y);;

val triple_to_pair : 

     int * int * int -> int * int = <fun>



Functions on tuples
# let plus_pair (n,m) = n + m;;

val plus_pair : int * int -> int = <fun>

# plus_pair (3,4);;

- : int = 7

# let twice x = (x,x);;

val twice : 'a -> 'a * 'a = <fun>

# twice 3;;

- : int * int = (3, 3)

# twice "hi";;

- : string * string = ("hi", "hi")
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Curried vs Uncurried

◼ Recall 
# let add_three u v w = u + v + w;;

val add_three : int -> int -> int -> int = <fun>

◼ How does it differ from
# let add_triple (u,v,w) = u + v + w;;

val add_triple : int * int * int -> int = <fun>

◼ add_three is curried;

◼ add_triple is uncurried
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Curried vs Uncurried
# add_three 6 3 2;;

- : int = 11

# add_triple (6,3,2);;

- : int = 11

# add_triple 5 4;;

Characters 0-10:  add_triple 5 4;;

                       ^^^^^^^^^^

This function is applied to too many arguments,

maybe you forgot a `;'

# fun x -> add_triple (5,4,x);;

: int -> int = <fun>
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Evaluating declarations

◼ Evaluation uses an environment 

◼ To evaluate a (simple) declaration let x = e

◼ Evaluate expression e in  to value v

◼ Update  with x v:  {x → v} + 

◼ Update: 1+ 2 has all the bindings in 1 and 
all those in 2  that are not rebound in 1

{x → 2, y → 3, a → “hi”} + {y → 100, b → 6}

= {x → 2, y → 3, a → “hi”, b → 6}
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Evaluating expressions in OCaml

◼ Evaluation uses an environment 

◼ A constant evaluates to itself, including 
primitive operators like + and =

◼ To evaluate a variable, look it up in : (v)

◼ To evaluate a tuple (e1,…,en), 

◼ Evaluate each ei to vi, right to left for Ocaml

◼ Then make value (v1,…,vn) 
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Evaluating expressions in OCaml

◼ To evaluate uses of +, _ , etc, eval args, 
then do operation

◼ Function expression evaluates to its closure

◼ To evaluate a local dec: let x = e1 in e2
◼ Eval e1 to v, then eval e2 using {x → v} + 

◼ To evaluate a conditional expression:          
if b then e1 else e2
◼ Evaluate b to a value v

◼ If v is True, evaluate e1

◼ If v is False, evaluate e2
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Evaluation of Application with Closures

◼ Given application expression f e 

◼  In Ocaml, evaluate e to value v

◼ In environment , evaluate left term to closure,                 
c = <(x1,…,xn) → b, ’>

◼ (x1,…,xn) variables in (first) argument 

◼ v must have form (v1,…,vn) 

◼ Update the environment ’ to

   ’’ = {x1 → v1,…, xn →vn}+ ’

◼ Evaluate body b in environment ’’
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