Programming Languages and Compilers (CS 421)

Talia Ringer (they/them) 4218 SC, UIUC

https://courses.grainger.illinois.edu/cs421/fa2023/

Based heavily on slides by Elsa Gunter, which were based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

Logistics (Piazza Post)

Objectives for Today

- Last class, we started the final part of semantics, which is the last thing we are covering in this class!
- We began covering Axiomatic Semantics specifically, via Floyd-Hoare logic
- Today, we will continue with the while rule
- When we are done, we will have some time for review questions for the final

Objectives for Today

- Last class, we started the final part of semantics, which is the last thing we are covering in this class!
- We began covering Axiomatic Semantics specifically, via Floyd-Hoare logic
- Today, we will continue with the while rule
- When we are done, we will have some time for review questions for the final

Questions before we start?

- We need a rule to be able to make assertions about while loops.
 - Inference rule (not axiom) because we can only draw conclusions about the loop if we know something about its **body** C
 - Let's start with:

{ ?? } C { ?? }
while B do C od { ?? }

- We need a rule to be able to make assertions about while loops.
 - The loop body C may never execute (if the guard
 B is false), so if we want some P to hold after
 the loop, it must hold before.
 - Let's start with:

{ ?? } C { ?? }
while B do C od { ?? }

- We need a rule to be able to make assertions about while loops.
 - The loop body C may never execute (if the guard B is false), so if we want some P to hold after the loop, it must hold before.
 - So let's try:

- We need a rule to be able to make assertions about while loops.
 - If all we know is P when we enter the while loop, then all we know when we enter the body C is (P and B)
 - So let's try:

- We need a rule to be able to make assertions about while loops.
 - If all we know is P when we enter the while loop, then all we know when we enter the body C is (P and B)
 - So let's try:

{ **P** and **B** } C { **??** }

WHILE

{P} C {Q}

 $\{ \mathbf{P} \}$ while \mathbf{B} do $C \text{ od } \{ \mathbf{P} \}$

- We need a rule to be able to make assertions about while loops.
 - If we need to know P when we finish the while loop, we had better know it when we finish the loop body C
 - So let's try:

 $\{ \mathbf{P} \text{ and } \mathbf{B} \} \subset \{ \mathbf{??} \}$

 $\{ \mathbf{P} \}$ while **B** do C od $\{ \mathbf{P} \}$

- We need a rule to be able to make assertions about while loops.
 - If we need to know P when we finish the while loop, we had better know it when we finish the loop body C
 - So let's try:

 $\{ \mathbf{P} \text{ and } \mathbf{B} \} \subset \{ \mathbf{P} \}_{WHILE}$

{ **P** } while **B** do C od { **P** }

- We need a rule to be able to make assertions about while loops.
 - Finally, we can strengthen this rule because we also know that when the whole loop is **finished**, not B also holds
 - So let's try:

 $\{ \mathbf{P} \text{ and } \mathbf{B} \} \subset \{ \mathbf{P} \}$ $\{ \mathbf{P} \} \text{ while } \mathbf{B} \text{ do } \mathbf{C} \text{ od } \{ \mathbf{P} \}$

- We need a rule to be able to make assertions about while loops.
 - Finally, we can strengthen this rule because we also know that when the whole loop is **finished**, not B also holds
 - So let's try:

 $\{ \mathbf{P} \text{ and } \mathbf{B} \} \subset \{ \mathbf{P} \}$ while **B** do C od $\{ \mathbf{P} \text{ and } \mathbf{p} \}$

{ P } while B do C od { P and not B }

{ P and B } C { P } while B do C od { P and not B }

While

P satisfying this rule is called a **loop invariant** because it must hold before and after the each iteration of the loop. (Finding these invariants is a major part of the proof process!)

While

 $\{ \mathbf{P} \text{ and } \mathbf{B} \} \subset \{ \mathbf{P} \}$ $\{ \mathbf{P} \} \text{ while } \mathbf{B} \text{ do } \mathbf{C} \text{ od } \{ \mathbf{P} \text{ and not } \mathbf{B} \}$

Looping

P satisfying this rule is called a **loop invariant** because it must hold before and after the each iteration of the loop. (Finding these invariants is a major part of the proof process!)

While

{ P and B } C { P }
while B do C od { P and not B }

Looping

P satisfying this rule is called a **loop invariant** because it must hold before and after the each iteration of the loop. (Finding these invariants is a major part of the proof process!)

While

{ **P** and **B** } C { **P** }

WHILE

{P} C {Q}

{ **P** } while **B** do C od { **P** and not **B** }

So of course it's **undecidable** in general to find **P** for an arbitrary program and specification ...

While IRL

- We can still find loop invariants for specific programs, but doing this often involves program-specific reasoning and intuition
- Typically one of the hardest parts of writing proofs about programs this way
- In addition, the while rule typically needs to be used together with precondition strengthening and postcondition weakening

While IRL

- We can still find loop invariants for specific programs, but doing this often involves program-specific reasoning and intuition
- Typically one of the hardest parts of writing proofs about programs this way
- In addition, the while rule typically needs to be used together with precondition strengthening and postcondition weakening

We want to show that:

 ${x \ge 0 \text{ and } x = a}$ fact := 1; while x > 0 do (fact := fact * x; x := x -1) od {fact = a!}

We want to show that:

```
{x \ge 0 \text{ and } x = a}
fact := 1;
while x > 0 do (fact := fact * x; x := x -1) od
{fact = a!}
```

We need to find a condition **P** that is true both before and after the loop is executed, and such that: (**P** and not x > 0) \rightarrow (fact = a!)

We want to show that:

{x >= 0 and x = a}
fact := 1;
while x > 0 do (fact := fact * x; x := x -1) od
{fact = a!}

We need to find a condition **P** that is true both before and after the loop is executed, and such that: (**P** and not x > 0) \rightarrow (fact = a!)

We want to show that:

 ${x \ge 0 \text{ and } x = a}$ fact := 1; while x > 0 do (fact := fact * x; x := x -1) od {fact = a!}

First attempt: { a! = fact * (x!) }

Motivation: Want to compute a!, have computed fact, which is the sequential product of a down through (x + 1). What remains is to compute x!

We want to show that:

 ${x \ge 0 \text{ and } x = a}$ fact := 1; while x > 0 do (fact := fact * x; x := x -1) od {fact = a!}

First attempt: { a! = fact * (x!) }

Motivation: Want to compute a!, have computed fact, which is the sequential product of a down through (x + 1). What remains is to compute x!

We want to show that:

 ${x \ge 0 \text{ and } x = a}$ fact := 1; while x > 0 do (fact := fact * x; x := x -1) od {fact = a!}

Need: (a! = fact * (x!) and not x > 0) \rightarrow (fact = a!) Motivation: Weakening

We want to show that:

 ${x \ge 0 \text{ and } x = a}$ fact := 1; while x > 0 do (fact := fact * x; x := x -1) od {fact = a!}

Need: (a! = fact * (x!) and not x > 0) \rightarrow (fact = a!) Motivation: Weakening Problem 1: What if x < 0?

We want to show that:

 ${x \ge 0 \text{ and } x = a}$ fact := 1; while **x > 0** do (fact := fact * x; x := x -1) od {**fact = a!**}

Need: (a! = fact * (x!) and not x > 0) \rightarrow (fact = a!) Motivation: Weakening

Problem 1: What if **x** < **0**? Impossible, but our loop invariant doesn't tell us that, so we can't show the implication.

We want to show that:

{x >= 0 and x = a}
fact := 1;
while x > 0 do (fact := fact * x; x := x -1) od
{fact = a!}

Need: (a! = fact * (x!) and not x > 0) \rightarrow (fact = a!) Motivation: Weakening Problem 2: We need that x = 0 when loop is done.

We want to show that:

- {x >= 0 and x = a}
 fact := 1;
 while x > 0 do (fact := fact * x; x := x -1) od
 {fact = a!}
- Second attempt: { a! = fact * (x!) and x >=0 } Motivation: Same as before, but add x >= 0

We want to show that:

```
{x \ge 0 \text{ and } x = a}
fact := 1;
while x > 0 do (fact := fact * x; x := x -1) od
{fact = a!}
```

Need: (a! = fact * (x!) and $x \ge 0$ and not $x \ge 0$) \rightarrow (fact = a!)

Motivation: Weakening

Pure logic fragment

(a! = fact * (x!) and $\mathbf{x} \ge \mathbf{0}$ and $\mathbf{not} \mathbf{x} \ge \mathbf{0}$) \rightarrow (fact = a!)

Example By weakening, remains to show: ?? $\{x \ge 0 \text{ and } x = a\}$ fact := 1; while x > 0 do (fact := fact * x; x := x - 1) od $\{a! = fact * (x!) and x >= 0 and not x > 0\}$

40

Sequence rule applies a! = fact * (x!) and x >= 0while x > 0 do (fact := fact * x; x := x - 1) $\{x \ge 0 \text{ and } x = a\}$ OC fact := 1{a! = fact * (x!) ${a! = fact * (x!)}$ and $x \ge 0$ and $x \ge 0$ and not (x > 0)SEQ $\{x >= 0 \text{ and } x = a\}$ fact := 1;while x > 0 do (fact := fact * x; x := x -1) od $\{a! = fact * (x!) and x >= 0 and not x > 0\}$

Example ?? **Sequence rule applies** a! = fact * (x!) and x >= 0while x > 0 do ?? (fact := fact * x; x := x - 1) $\{x \ge 0 \text{ and } x = a\}$ OC fact := 1 ${a! = fact * (x!)}$ ${a! = fact * (x!)}$ and $x \ge 0$ and $x \ge 0$ and not (x > 0)SEO $\{x >= 0 \text{ and } x = a\}$ fact := 1;while x > 0 do (fact := fact * x; x := x -1) od $\{a! = fact * (x!) and x >= 0 and not x > 0\}$

42

Example ?? Move to new slide a! = fact * (x!) and x >= 0while x > 0 do (fact := fact * x; x := x - 1) $\{x \ge 0 \text{ and } x = a\}$ OC fact := 1 ${a! = fact * (x!)}$ ${a! = fact * (x!)}$ and x >= 0and $x \ge 0$ and not (x > 0)SEO $\{x >= 0 \text{ and } x = a\}$ fact := 1; while x > 0 do (fact := fact * x; x := x -1) od $\{a! = fact * (x!) and x >= 0 and not x > 0\}$

ExampleWe can do this by strengthening
$$(x \ge 0 \text{ and } x \ge 0) \rightarrow \{a! = 1 * (x!) \text{ and } x \ge 0\}$$
 $(a! = 1 * (x!) \text{ fact } := 1 \text{ and } x \ge 0) \{a! = \text{ fact } * (x!) \text{ and } x \ge 0\}$ $\{x \ge 0 \text{ and } x = a\}$ $\{x \ge 0 \text{ and } x = a\}$ $\{a! = \text{ fact } * (x!) \text{ and } x \ge 0\}$ Looping

And this in the pure logic fragment

 $x = a \rightarrow x! = a!$ $(x \ge 0 and$ ASSIGN $x = a) \rightarrow \{a! = 1 * (x!) and x >= 0\}$ fact := 1 (a! = 1 * (x!))and $x \ge 0$ {a! = fact * (x!) and $x \ge 0$ } ${x >= 0 and x = a}$ fact := 1 $\{a! = fact * (x!) and x >= 0\}$

$$x = a \rightarrow x! = a!$$

$$(x \ge 0 \text{ and } x = a) \rightarrow \{a! = 1 * (x!) \text{ and } x \ge 0\}$$

$$(a! = 1 * (x!) \text{ fact } := 1 \text{ fact } * (x!) \text{ and } x \ge 0\}$$

$$(a! = a x \ge 0) \{a! = a x \ge 0\} \quad \text{fact } x \ge 0\}$$

$$\{x \ge 0 \text{ and } x = a\}$$

$$fact := 1$$

$$\{a! = a x \ge 0\}$$
Looping

This means our loop invariant is strong Example enough. But is it actually a loop invariant? ``` a! = fact * (x!) and x >= 0while x > 0 do (fact := fact * x; x := x - 1) $\{x \ge 0 \text{ and } x = a\}$ OC fact := 1 ${a! = fact * (x!)}$ ${a! = fact * (x!)}$ and $x \ge 0$ and $x \ge 0$ and not (x > 0)SEO $\{x \ge 0 \text{ and } x = a\}$ fact := 1; while x > 0 do (fact := fact * x; x := x - 1) od $\{a! = fact * (x!) and x >= 0 and not x > 0\}$

Example Move to new slide · · · . a! = fact * (x!) and x >= 0while x > 0 do (fact := fact * x; x := x - 1) $\{x \ge 0 \text{ and } x = a\}$ OC fact := 1 ${a! = fact * (x!)}$ ${a! = fact * (x!)}$ and $x \ge 0$ and $x \ge 0$ and not (x > 0)SEO $\{x \ge 0 \text{ and } x = a\}$ fact := 1;while x > 0 do (fact := fact * x; x := x -1) od $\{a! = fact * (x!) and x >= 0 and not x > 0\}$

By this and the first Example weakening we did a! = fact * (x!) and x >= 0while x > 0 do (fact := fact * x; x := x - 1) $\{x \ge 0 \text{ and } x = a\}$ OC fact := 1 ${a! = fact * (x!)}$ ${a! = fact * (x!)}$ and x >= 0and $x \ge 0$ and not (x > 0)SEO $\{x \ge 0 \text{ and } x = a\}$ fact := 1;while x > 0 do (fact := fact * x; x := x -1) od $\{a! = fact * (x!) and x >= 0 and not x > 0\}$

We get that:

 ${x \ge 0 \text{ and } x = a}$ fact := 1; while x > 0 do (fact := fact * x; x := x -1) od {fact = a!}

Final Review: Ask Away

The End

- Great job!!!
- WA11 due Tomorrow
- Final is December 12th, 8:00 AM 11:00 AM
- All deadlines can be found on **course website**
- Use office hours and class forums for help