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    Sign up for makeups!!!



3

    Questions before we start?
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Objectives for Today

■ We are starting the final part of semantics, which 
is the last thing we are covering in this class!

■ We will cover Axiomatic Semantics specifically
■ Needed for WA11, final
■ Useful IRL (and shows up on PL/FM quals)
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Axiomatic Semantics

■ Commonly Floyd-Hoare Logic
■ In practice, often extended

■ Based on formal logic (first order predicate calculus)
■ Axiomatic Semantics is a logical system built from 

axioms and inference rules
■ Mainly suited to simple imperative programming 

languages
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    Questions before we start?
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    Axiomatic Semantics
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Axiomatic Semantics

■ Used to formally prove property (post-condition) 
of values of program variables (state) after the 
execution of program, assuming another property 
(pre-condition) of the state holds before execution

■ Goal: Derive statements of form
{P} C {Q}

■ P, Q  logical statements about state
■ P precondition, Q postcondition, C program state

■ Example:  {x = 1} x := x + 1 {x = 2}

Axiomatic Semantics



9

Axiomatic Semantics

■ Used to formally prove property (post-condition) 
of values of program variables (state) after the 
execution of program, assuming another property 
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Axiomatic Semantics
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of values of program variables (state) after the 
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Axiomatic Semantics

■ Approach: For each type of language statement, 
give an axiom or inference rule stating how to 
derive assertions of form 

 {P} C {Q} 
   where C is a statement of that type
■ Compose axioms and inference rules to build 

proofs for complex programs

Axiomatic Semantics
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Axiomatic Semantics

■ An expression {P} C {Q} is a partial correctness 
statement

■ For total correctness must also prove that C 
terminates (i.e. doesn’t run forever)
■ Written:  [P] C [Q]

■ Will only consider partial correctness here

Axiomatic Semantics
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Language

We will give rules for simple imperative language:

 <command> ::=
  | <variable> := <term>
  |  <command>; … ;<command>
  |  if <statement> then <command> else <command> fi
  | while <statement> do <command> od

(Could add more features, like for-loops.)

Axiomatic Semantics
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Substitution

■ Notation: P[e / v] (sometimes P[v <- e])
■ Meaning: Replace every v in P by e
■ Example: (x + 2) [y - 1 / x] = ((y – 1) + 2)

Axiomatic Semantics
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The Assignment Rule

{P [e/x] } x := e {P}

Examples:

 {??} x := y {x = 2}

ASSIGN

{P} C {Q}

ASSIGN

Axiomatic Semantics
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The Assignment Rule

{P [e/x] } x := e {P}

Examples:

 {?? = 2} x := y {x = 2}

ASSIGN

{P} C {Q}

ASSIGN

Axiomatic Semantics
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The Assignment Rule

{P [e/x] } x := e {P}

Examples:

 {y = 2} x := y {x = 2}

ASSIGN

{P} C {Q}

ASSIGN

Axiomatic Semantics
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The Assignment Rule

{P [e/x] } x := e {P}

Examples:

 {y = 2} x := y {x = 2}

{y = 2} x := 2 {x = 2}

ASSIGN

{P} C {Q}

ASSIGN

True, but not by this rule

Axiomatic Semantics
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The Assignment Rule

{P [e/x] } x := e {P}

Examples:

 {y = 2} x := y {x = 2}

{2 = 2} x := 2 {x = 2}

ASSIGN

{P} C {Q}

ASSIGN

ASSIGN

True by this rule

Axiomatic Semantics
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The Assignment Rule

{P [e/x] } x := e {P}

Examples:

 {??} x := x + 1 {x = n + 1}

ASSIGN

{P} C {Q}

ASSIGN

Backwards Reasoning

Axiomatic Semantics
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The Assignment Rule

{P [e/x] } x := e {P}

Examples:

 {??} x := x + 1 {x = n + 1}

ASSIGN

{P} C {Q}

ASSIGN

Weakest Precondition

Axiomatic Semantics
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The Assignment Rule

{P [e/x] } x := e {P}

Examples:

 {(x = n + 1)[(x + 1)/x]} x := x + 1 {x = n + 1}

ASSIGN

{P} C {Q}

ASSIGN

Weakest Precondition

Axiomatic Semantics
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The Assignment Rule

{P [e/x] } x := e {P}

Examples:

 {x + 1 = n + 1} x := x + 1 {x = n + 1}

ASSIGN

{P} C {Q}

ASSIGN

Weakest Precondition

Axiomatic Semantics
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The Assignment Rule – Your Turn 

{P [e/x] } x := e {P}

What is the weakest precondition of
x := x + y {x + y = w – x}?

ASSIGN

{P} C {Q}

Axiomatic Semantics
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The Assignment Rule – Your Turn 

{P [e/x] } x := e {P}

{??} x := x + y {x + y = w – x}

ASSIGN

{P} C {Q}

ASSIGN

Axiomatic Semantics
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The Assignment Rule – Your Turn 

{P [e/x] } x := e {P}

{??} x := x + y {x + y = w – x}

ASSIGN

{P} C {Q}

ASSIGN

What is P?

Axiomatic Semantics
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The Assignment Rule – Your Turn 

{P [e/x] } x := e {P}

{(x + y = w – x)[??/??]} x := x + y {x + y = w – x}

ASSIGN

{P} C {Q}

ASSIGN

That is P

Axiomatic Semantics
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The Assignment Rule – Your Turn 

{P [e/x] } x := e {P}

{(x + y = w – x) [??/??]} x := x + y {x + y = w – x}

ASSIGN

{P} C {Q}

ASSIGN

What is e?

Axiomatic Semantics
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The Assignment Rule – Your Turn 

{P [e/x] } x := e {P}

{(x + y = w – x)[(x + y)/??]} x := x + y {x + y = w – x}

ASSIGN

{P} C {Q}

ASSIGN

That is e

Axiomatic Semantics
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The Assignment Rule – Your Turn 

{P [e/x] } x := e {P}

{(x + y = w – x)[(x + y)/??]} x := x + y {x + y = w – x}

{

ASSIGN

{P} C {Q}

ASSIGN

What is x?

Axiomatic Semantics
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The Assignment Rule – Your Turn 

{P [e/x] } x := e {P}

{(x + y = w – x)[(x + y)/x]} x := x + y {x + y = w – x}

ASSIGN

{P} C {Q}

ASSIGN

That is x

Axiomatic Semantics
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The Assignment Rule – Your Turn 

{P [e/x] } x := e {P}

{(x + y = w – x)[(x + y)/x]} x := x + y {x + y = w – x}

ASSIGN

{P} C {Q}

ASSIGN

Substitute

Axiomatic Semantics
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The Assignment Rule – Your Turn 

{P [e/x] } x := e {P}

{(x + y) + y = w – (x + y)} x := x + y {x + y = w – x}

ASSIGN

{P} C {Q}

ASSIGN

Substituted

Axiomatic Semantics
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The Assignment Rule – Your Turn 

{P [e/x] } x := e {P}

{(x + y) + y = w – (x + y)} x := x + y {x + y = w – x}

ASSIGN

{P} C {Q}

ASSIGN

Done

Axiomatic Semantics
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The Assignment Rule – Your Turn 

{P [e/x] } x := e {P}

{(x + y) + y = w – (x + y)} x := x + y {x + y = w – x}

ASSIGN

{P} C {Q}

ASSIGN

Weakest Precondition

Axiomatic Semantics
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     Questions so far?
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     Strengthening
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Precondition Strengthening

P→P’    {P’} C {Q}
{P} C {Q}

■ Meaning: If we can show that P implies P’  
(P→P’) and we can show that {P’} C {Q}, then 
we know that {P} C {Q}

■ P is stronger than P’ means P→P’ 

{P} C {Q}

STR

Strengthening
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Precondition Strengthening
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Precondition Strengthening

P→P’    {P’} C {Q}
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Precondition Strengthening

P→P’    {P’} C {Q}
{P} C {Q}

Examples:
x = 3→x < 7      {x < 7} x := x + 3 {x < 10}

{x = 3} x := x + 3 {x < 10}

{P} C {Q}

STR

STR

Strengthening
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Precondition Strengthening

P→P’    {P’} C {Q}
{P} C {Q}

Examples:
x = 3→x < 7     {x < 7} x := x + 3 {x < 10}
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Precondition Strengthening

P→P’    {P’} C {Q}
{P} C {Q}

Examples:
x = 3→x < 7     {x < 7} x := x + 3 {x < 10}

{x = 3} x := x + 3 {x < 10}

True → 2 = 2         {2 = 2} x := 2 {x = 2}
{True} x := 2 {x = 2}

{P} C {Q}

STR

STR

STR

Strengthening
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Precondition Strengthening

P→P’    {P’} C {Q}
{P} C {Q}

 Examples:
x = 3→x < 7     {x < 7} x := x + 3 {x < 10}

{x = 3} x := x + 3 {x < 10}

True → 2 = 2         {2 = 2} x := 2 {x = 2}
{True} x := 2 {x = 2}

x = n→x + 1 = n + 1 {x + 1 = n + 1} x := x + 1 {x = n + 1}
{x = n} x := x + 1 {x = n + 1}

{P} C {Q}

STR

STR

STR

STR

Strengthening
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     Questions so far?

Strengthening
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Which Inferences are Possible?

        ??   {x > 0 & x < 5} x := x * x {x < 25}
{x = 3} x := x * x {x < 25}

        ??                {x = 3} x := x * x {x < 25}
{x > 0 & x < 5} x := x * x {x < 25}

        ??         {x * x < 25} x := x * x {x < 25}
{x > 0 & x < 5} x := x * x {x < 25}

STR

STR

STR

Strengthening
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Which Inferences are Possible?
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        ??                {x = 3} x := x * x {x < 25}
{x > 0 & x < 5} x := x * x {x < 25}
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STR

STR

STR

Strengthening
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STR

STR

STR

✓

✓

Strengthening
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Which Inferences are Possible?

        ??  {x > 0 & x < 5} x := x * x {x < 25}
{x = 3} x := x * x {x < 25}
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✓
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     Questions so far?
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    Weakening
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Postcondition Weakening

                      {P} C {Q’}     Q’→Q
{P} C {Q}

WEAK

{P} C {Q}

Weakening
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Postcondition Weakening

                      {P} C {Q’}     Q’→Q
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Postcondition Weakening

                      {P} C {Q’}     Q’→Q
{P} C {Q}

Example:
{z = z & z = z} x := z; y := z {x = z & y = z}

(x = z & y = z) → (x = y)
{z = z & z = z} x := z; y := z {x = y}

WEAK

WEAK

{P} C {Q}

Weakening
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Postcondition Weakening

                      {P} C {Q’}     Q’→Q
{P} C {Q}

Example:
{z = z & z = z} x := z; y := z {x = z & y = z}

(x = z & y = z)→(x = y)
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WEAK

{P} C {Q}

Weakening
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Postcondition Weakening

                      {P} C {Q’}     Q’→Q
{P} C {Q}

Example:
{z = z & z = z} x := z; y := z {x = z & y = z}

(x = z & y = z)→(x = y)
{z = z & z = z} x := z; y := z {x = y}

WEAK

WEAK

{P} C {Q}

Weakening
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     Questions so far?



62

    Rule of Consequence
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Rule of Consequence

P→P’       {P’} C {Q’}      Q’→Q
{P} C {Q}

■ Logically equivalent to combination of Precondition 
Strengthening and Postcondition Weakening

■ Uses P→P’ and  Q’→Q

{P} C {Q}

RoC

Rule of Consequence
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Rule of Consequence

P→P’       {P’} C {Q’}      Q’→Q
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Rule of Consequence

P→P’       {P’} C {Q’}      Q’→Q
{P} C {Q}

■ Logically equivalent to combination of Precondition 
Strengthening and Postcondition Weakening

■ Uses P→P’ and  Q’→Q
■ Very useful IRL!

{P} C {Q}

RoC

Rule of Consequence
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     Questions so far?



67

    Sequencing
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Sequencing

{P} C1 {Q}     {Q} C2 {R}
{P} C1; C2 {R}

{P} C {Q}

SEQ

Sequencing
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Sequencing

{P} C1 {Q}     {Q} C2 {R}
{P} C1; C2 {R}

{P} C {Q}

SEQ

Sequencing
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Sequencing

{P} C1 {Q}     {Q} C2 {R}
{P} C1; C2 {R}

{P} C {Q}
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Sequencing
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Sequencing

{P} C1 {Q}     {Q} C2 {R}
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Sequencing
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Sequencing

{P} C1 {Q}     {Q} C2 {R}
{P} C1; C2 {R}

{P} C {Q}
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Sequencing



73

Sequencing

{P} C1 {Q}     {Q} C2 {R}
{P} C1; C2 {R}

Example:
{z = z & z = z} x := z {x = z & z = z}
{x = z & z = z} y := z {x = z & y = z}

{z = z & z = z} x := z; y := z {x = z & y = z}

{P} C {Q}

SEQ

SEQ

Sequencing
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Sequencing

{P} C1 {Q}     {Q} C2 {R}
{P} C1; C2 {R}

Example:
{z = z & z = z} x := z {x = z & z = z}
{x = z & z = z} y := z {x = z & y = z}

{z = z & z = z} x := z; y := z {x = z & y = z}

{P} C {Q}

SEQ

SEQ

Sequencing
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Sequencing

{P} C1 {Q}     {Q} C2 {R}
{P} C1; C2 {R}

Example:
{z = z & z = z} x := z {x = z & z = z}
{x = z & z = z} y := z {x = z & y = z}

{z = z & z = z} x := z; y := z {x = z & y = z}

{P} C {Q}

SEQ

SEQ

Sequencing
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     Questions so far?



77

     Branching
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If Then Else

{P and B} C1 {Q}   {P and (not B)} C2 {Q}
{P} if B then C1 else C2 fi {Q}

ITE

Branching

{P} C {Q}
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If Then Else

{P and B} C1 {Q}   {P and (not B)} C2 {Q}
{P} if B then C1 else C2 fi {Q}

ITE

{P} C {Q}

Branching
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If Then Else

{P and B} C1 {Q}   {P and (not B)} C2 {Q}
{P} if B then C1 else C2 fi {Q}

ITE

{P} C {Q}

Branching
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If Then Else

{P and B} C1 {Q}   {P and (not B)} C2 {Q}
{P} if B then C1 else C2 fi {Q}

ITE

True branch

{P} C {Q}

Branching
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If Then Else

{P and B} C1 {Q}   {P and (not B)} C2 {Q}
{P} if B then C1 else C2 fi {Q}

ITE

{P} C {Q}

False branch

Branching
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If Then Else

{P and B} C1 {Q}   {P and (not B)} C2 {Q}
{P} if B then C1 else C2 fi {Q}

ITE

{P} C {Q}

Example: 

  {y = a & x < 0}                   {y = a & not (x < 0)} 
               y := y - x                               y := y + x  

       {y = a + |x|}                       {y = a + |x|}
{y = a} if x < 0 then y := y - x else y := y + x fi {y = a + |x|}

ITE

Branching
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If Then Else

{P and B} C1 {Q}   {P and (not B)} C2 {Q}
{P} if B then C1 else C2 fi {Q}

ITE

{P} C {Q}

Example: 

  {y = a & x < 0}                   {y = a & not (x < 0)} 
               y := y - x                               y := y + x  

       {y = a + |x|}                       {y = a + |x|}
{y = a} if x < 0 then y := y - x else y := y + x fi {y = a + |x|}

ITE

Branching
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If Then Else

{P and B} C1 {Q}   {P and (not B)} C2 {Q}
{P} if B then C1 else C2 fi {Q}

ITE

{P} C {Q}

Example: 

  {y = a & x < 0}                   {y = a & not (x < 0)} 
               y := y - x                               y := y + x  

       {y = a + |x|}                       {y = a + |x|}
{y = a} if x < 0 then y := y - x else y := y + x fi {y = a + |x|}

ITE

Branching
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If Then Else

                   ??                                              ??
  {y = a & x < 0}                   {y = a & not (x < 0)} 

               y := y - x                               y := y + x  
         {y = a + |x|}                          {y = a + |x|}

{y = a} if x < 0 then y := y - x else y := y + x fi {y = a + |x|}
ITE

Branching
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If Then Else

                         {y - x = a + |x|}
   (y = a & x < 0)     y := y - x   
→ y - x = a + |x| {y = a + |x|}                   ??

  {y = a & x < 0}                   {y = a & not (x < 0)} 
               y := y - x                               y := y + x  

         {y = a + |x|}                          {y = a + |x|}
{y = a} if x < 0 then y := y - x else y := y + x fi {y = a + |x|}

ITE

Branching

STR
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If Then Else

           ??           {y - x = a + |x|}
    (y = a & x < 0)     y := y - x   
→ y - x = a + |x|    {y = a + |x|}                   ??

   {y = a & x < 0}                   {y = a & not (x < 0)} 
               y := y - x                               y := y + x  

         {y = a + |x|}                          {y = a + |x|}
{y = a} if x < 0 then y := y - x else y := y + x fi {y = a + |x|}

ITE

Branching

STR

 

                                   ??
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If Then Else

        x < 0  
    → |x| = -x       {y - x = a + |x|}
    (y = a & x < 0)     y := y - x   
→ y - x = a + |x|    {y = a + |x|}                   ??

   {y = a & x < 0}                   {y = a & not (x < 0)} 
               y := y - x                               y := y + x  

         {y = a + |x|}                          {y = a + |x|}
{y = a} if x < 0 then y := y - x else y := y + x fi {y = a + |x|}

ITE

Branching

STR

 

                                   ??

Pure math and 
logic fragment
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If Then Else

        x < 0  
    → |x| = -x       {y - x = a + |x|}
    (y = a & x < 0)     y := y - x   
→ y - x = a + |x|    {y = a + |x|}                   ??

   {y = a & x < 0}                   {y = a & not (x < 0)} 
               y := y - x                               y := y + x  

         {y = a + |x|}                          {y = a + |x|}
{y = a} if x < 0 then y := y - x else y := y + x fi {y = a + |x|}

ITE

Branching

STR

 

                                   ASSIGN
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If Then Else

        x < 0  
    → |x| = -x       {y - x = a + |x|}
    (y = a & x < 0)     y := y - x                           
→ y - x = a + |x|    {y = a + |x|}                       

   {y = a & x < 0}                   {y = a & not (x < 0)} 
               y := y - x                               y := y + x  

         {y = a + |x|}                          {y = a + |x|}
{y = a} if x < 0 then y := y - x else y := y + x fi {y = a + |x|}

ITE

Branching

STR

                      (y = a & not (x < 0)) 
                        → (y + x = a + |x|) 

                                   
ASSIGN

STR

 {y + x = a + |x|}
      y := y + x  
    {y = a + |x|}

not (x < 0)→ |x| = x
ASSIGN
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     Next Class: Looping
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     Next Class: Time for Review, Too
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    ICES: Course Evaluation!
    (Please be kind and constructive.    
     Please also consider gender biases.)

https://ices.citl.illinois.edu/ 

https://ices.citl.illinois.edu/


Next Class
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■ LAST CLASS
■ Please bring questions for review
■ Great job!!!
■ MP11 due Tuesday
■ WA11 due Wednesday
■ All deadlines can be found on course website
■ Use office hours and class forums for help


