
1

Programming Languages and
Compilers (CS 421)

Talia Ringer (they/them)
4218 SC, UIUC
https://courses.grainger.illinois.edu/cs421/fa2023/

Based heavily on slides by Elsa Gunter, which were
based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.grainger.illinois.edu/cs421/fa2023/

2

 Sign up for makeups!!!

3

 Questions before we start?

4

Objectives for Today

■ We are starting the final part of semantics, which
is the last thing we are covering in this class!

■ We will cover Axiomatic Semantics specifically
■ Needed for WA11, final
■ Useful IRL (and shows up on PL/FM quals)

5

Axiomatic Semantics

■ Commonly Floyd-Hoare Logic
■ In practice, often extended

■ Based on formal logic (first order predicate calculus)
■ Axiomatic Semantics is a logical system built from

axioms and inference rules
■ Mainly suited to simple imperative programming

languages

6

 Questions before we start?

7

 Axiomatic Semantics

8

Axiomatic Semantics

■ Used to formally prove property (post-condition)
of values of program variables (state) after the
execution of program, assuming another property
(pre-condition) of the state holds before execution

■ Goal: Derive statements of form
{P} C {Q}

■ P, Q logical statements about state
■ P precondition, Q postcondition, C program state

■ Example: {x = 1} x := x + 1 {x = 2}

Axiomatic Semantics

9

Axiomatic Semantics

■ Used to formally prove property (post-condition)
of values of program variables (state) after the
execution of program, assuming another property
(pre-condition) of the state holds before execution

■ Goal: Derive statements of form
{P} C {Q}

■ P, Q logical statements about state
■ P precondition, Q postcondition, C program state

■ Example: {x = 1} x := x + 1 {x = 2}

Axiomatic Semantics

10

Axiomatic Semantics

■ Used to formally prove property (post-condition)
of values of program variables (state) after the
execution of program, assuming another property
(pre-condition) of the state holds before execution

■ Goal: Derive statements of form
{P} C {Q}

■ P, Q logical statements about state
■ P precondition, Q postcondition, C program state

■ Example: {x = 1} x := x + 1 {x = 2}

Axiomatic Semantics

11

Axiomatic Semantics

■ Approach: For each type of language statement,
give an axiom or inference rule stating how to
derive assertions of form

 {P} C {Q}
 where C is a statement of that type
■ Compose axioms and inference rules to build

proofs for complex programs

Axiomatic Semantics

12

Axiomatic Semantics

■ Approach: For each type of language statement,
give an axiom or inference rule stating how to
derive assertions of form

 {P} C {Q}
 where C is a statement of that type
■ Compose axioms and inference rules to build

proofs for complex programs

Axiomatic Semantics

13

Axiomatic Semantics

■ An expression {P} C {Q} is a partial correctness
statement

■ For total correctness must also prove that C
terminates (i.e. doesn’t run forever)
■ Written: [P] C [Q]

■ Will only consider partial correctness here

Axiomatic Semantics

14

Language

We will give rules for simple imperative language:

 <command> ::=
 | <variable> := <term>
 | <command>; … ;<command>
 | if <statement> then <command> else <command> fi
 | while <statement> do <command> od

(Could add more features, like for-loops.)

Axiomatic Semantics

15

Substitution

■ Notation: P[e / v] (sometimes P[v <- e])
■ Meaning: Replace every v in P by e
■ Example: (x + 2) [y - 1 / x] = ((y – 1) + 2)

Axiomatic Semantics

16

The Assignment Rule

{P [e/x] } x := e {P}

Examples:

 {??} x := y {x = 2}

ASSIGN

{P} C {Q}

ASSIGN

Axiomatic Semantics

17

The Assignment Rule

{P [e/x] } x := e {P}

Examples:

 {?? = 2} x := y {x = 2}

ASSIGN

{P} C {Q}

ASSIGN

Axiomatic Semantics

18

The Assignment Rule

{P [e/x] } x := e {P}

Examples:

 {y = 2} x := y {x = 2}

ASSIGN

{P} C {Q}

ASSIGN

Axiomatic Semantics

19

The Assignment Rule

{P [e/x] } x := e {P}

Examples:

 {y = 2} x := y {x = 2}

{y = 2} x := 2 {x = 2}

ASSIGN

{P} C {Q}

ASSIGN

True, but not by this rule

Axiomatic Semantics

20

The Assignment Rule

{P [e/x] } x := e {P}

Examples:

 {y = 2} x := y {x = 2}

{2 = 2} x := 2 {x = 2}

ASSIGN

{P} C {Q}

ASSIGN

ASSIGN

True by this rule

Axiomatic Semantics

21

The Assignment Rule

{P [e/x] } x := e {P}

Examples:

 {??} x := x + 1 {x = n + 1}

ASSIGN

{P} C {Q}

ASSIGN

Backwards Reasoning

Axiomatic Semantics

22

The Assignment Rule

{P [e/x] } x := e {P}

Examples:

 {??} x := x + 1 {x = n + 1}

ASSIGN

{P} C {Q}

ASSIGN

Weakest Precondition

Axiomatic Semantics

23

The Assignment Rule

{P [e/x] } x := e {P}

Examples:

 {(x = n + 1)[(x + 1)/x]} x := x + 1 {x = n + 1}

ASSIGN

{P} C {Q}

ASSIGN

Weakest Precondition

Axiomatic Semantics

24

The Assignment Rule

{P [e/x] } x := e {P}

Examples:

 {x + 1 = n + 1} x := x + 1 {x = n + 1}

ASSIGN

{P} C {Q}

ASSIGN

Weakest Precondition

Axiomatic Semantics

25

The Assignment Rule – Your Turn

{P [e/x] } x := e {P}

What is the weakest precondition of
x := x + y {x + y = w – x}?

ASSIGN

{P} C {Q}

Axiomatic Semantics

26

The Assignment Rule – Your Turn

{P [e/x] } x := e {P}

{??} x := x + y {x + y = w – x}

ASSIGN

{P} C {Q}

ASSIGN

Axiomatic Semantics

27

The Assignment Rule – Your Turn

{P [e/x] } x := e {P}

{??} x := x + y {x + y = w – x}

ASSIGN

{P} C {Q}

ASSIGN

What is P?

Axiomatic Semantics

28

The Assignment Rule – Your Turn

{P [e/x] } x := e {P}

{(x + y = w – x)[??/??]} x := x + y {x + y = w – x}

ASSIGN

{P} C {Q}

ASSIGN

That is P

Axiomatic Semantics

29

The Assignment Rule – Your Turn

{P [e/x] } x := e {P}

{(x + y = w – x) [??/??]} x := x + y {x + y = w – x}

ASSIGN

{P} C {Q}

ASSIGN

What is e?

Axiomatic Semantics

30

The Assignment Rule – Your Turn

{P [e/x] } x := e {P}

{(x + y = w – x)[(x + y)/??]} x := x + y {x + y = w – x}

ASSIGN

{P} C {Q}

ASSIGN

That is e

Axiomatic Semantics

31

The Assignment Rule – Your Turn

{P [e/x] } x := e {P}

{(x + y = w – x)[(x + y)/??]} x := x + y {x + y = w – x}

{

ASSIGN

{P} C {Q}

ASSIGN

What is x?

Axiomatic Semantics

32

The Assignment Rule – Your Turn

{P [e/x] } x := e {P}

{(x + y = w – x)[(x + y)/x]} x := x + y {x + y = w – x}

ASSIGN

{P} C {Q}

ASSIGN

That is x

Axiomatic Semantics

33

The Assignment Rule – Your Turn

{P [e/x] } x := e {P}

{(x + y = w – x)[(x + y)/x]} x := x + y {x + y = w – x}

ASSIGN

{P} C {Q}

ASSIGN

Substitute

Axiomatic Semantics

34

The Assignment Rule – Your Turn

{P [e/x] } x := e {P}

{(x + y) + y = w – (x + y)} x := x + y {x + y = w – x}

ASSIGN

{P} C {Q}

ASSIGN

Substituted

Axiomatic Semantics

35

The Assignment Rule – Your Turn

{P [e/x] } x := e {P}

{(x + y) + y = w – (x + y)} x := x + y {x + y = w – x}

ASSIGN

{P} C {Q}

ASSIGN

Done

Axiomatic Semantics

36

The Assignment Rule – Your Turn

{P [e/x] } x := e {P}

{(x + y) + y = w – (x + y)} x := x + y {x + y = w – x}

ASSIGN

{P} C {Q}

ASSIGN

Weakest Precondition

Axiomatic Semantics

37

 Questions so far?

38

 Strengthening

39

Precondition Strengthening

P→P’ {P’} C {Q}
{P} C {Q}

■ Meaning: If we can show that P implies P’
(P→P’) and we can show that {P’} C {Q}, then
we know that {P} C {Q}

■ P is stronger than P’ means P→P’

{P} C {Q}

STR

Strengthening

40

Precondition Strengthening

P→P’ {P’} C {Q}
{P} C {Q}

■ Meaning: If we can show that P implies P’
(P→P’) and we can show that {P’} C {Q}, then
we know that {P} C {Q}

■ P is stronger than P’ means P→P’

{P} C {Q}

STR

Strengthening

41

Precondition Strengthening

P→P’ {P’} C {Q}
{P} C {Q}

■ Meaning: If we can show that P implies P’
(P→P’) and we can show that {P’} C {Q},
then we know that {P} C {Q}

■ P is stronger than P’ means P→P’

{P} C {Q}

STR

Strengthening

42

Precondition Strengthening

P→P’ {P’} C {Q}
{P} C {Q}

■ Meaning: If we can show that P implies P’
(P→P’) and we can show that {P’} C {Q}, then
we know that {P} C {Q}

■ P is stronger than P’ means P→P’

{P} C {Q}

STR

Strengthening

43

Precondition Strengthening

P→P’ {P’} C {Q}
{P} C {Q}

■ Meaning: If we can show that P implies P’
(P→P’) and we can show that {P’} C {Q}, then
we know that {P} C {Q}

■ P is stronger than P’ means P→P’

{P} C {Q}

STR

Strengthening

44

Precondition Strengthening

P→P’ {P’} C {Q}
{P} C {Q}

{P} C {Q}

STR

Strengthening

45

Precondition Strengthening

P→P’ {P’} C {Q}
{P} C {Q}

Examples:
x = 3→x < 7 {x < 7} x := x + 3 {x < 10}

{x = 3} x := x + 3 {x < 10}

{P} C {Q}

STR

STR

Strengthening

46

Precondition Strengthening

P→P’ {P’} C {Q}
{P} C {Q}

Examples:
x = 3→x < 7 {x < 7} x := x + 3 {x < 10}

{x = 3} x := x + 3 {x < 10}

{P} C {Q}

STR

STR

Strengthening

47

Precondition Strengthening

P→P’ {P’} C {Q}
{P} C {Q}

Examples:
x = 3→x < 7 {x < 7} x := x + 3 {x < 10}

{x = 3} x := x + 3 {x < 10}

True → 2 = 2 {2 = 2} x := 2 {x = 2}
{True} x := 2 {x = 2}

{P} C {Q}

STR

STR

STR

Strengthening

48

Precondition Strengthening

P→P’ {P’} C {Q}
{P} C {Q}

 Examples:
x = 3→x < 7 {x < 7} x := x + 3 {x < 10}

{x = 3} x := x + 3 {x < 10}

True → 2 = 2 {2 = 2} x := 2 {x = 2}
{True} x := 2 {x = 2}

x = n→x + 1 = n + 1 {x + 1 = n + 1} x := x + 1 {x = n + 1}
{x = n} x := x + 1 {x = n + 1}

{P} C {Q}

STR

STR

STR

STR

Strengthening

49

 Questions so far?

Strengthening

50

Which Inferences are Possible?

 ?? {x > 0 & x < 5} x := x * x {x < 25}
{x = 3} x := x * x {x < 25}

 ?? {x = 3} x := x * x {x < 25}
{x > 0 & x < 5} x := x * x {x < 25}

 ?? {x * x < 25} x := x * x {x < 25}
{x > 0 & x < 5} x := x * x {x < 25}

STR

STR

STR

Strengthening

51

Which Inferences are Possible?

 ?? {x > 0 & x < 5} x := x * x {x < 25}
{x = 3} x := x * x {x < 25}

 ?? {x = 3} x := x * x {x < 25}
{x > 0 & x < 5} x := x * x {x < 25}

 ?? {x * x < 25} x := x * x {x < 25}
{x > 0 & x < 5} x := x * x {x < 25}

STR

STR

STR

Strengthening

52

Which Inferences are Possible?

 ?? {x > 0 & x < 5} x := x * x {x < 25}
{x = 3} x := x * x {x < 25}

 ?? {x = 3} x := x * x {x < 25}
{x > 0 & x < 5} x := x * x {x < 25}

 ?? {x * x < 25} x := x * x {x < 25}
{x > 0 & x < 5} x := x * x {x < 25}

STR

STR

STR

✓

✓

Strengthening

53

Which Inferences are Possible?

 ?? {x > 0 & x < 5} x := x * x {x < 25}
{x = 3} x := x * x {x < 25}

 ?? {x = 3} x := x * x {x < 25}
{x > 0 & x < 5} x := x * x {x < 25}

 ?? {x * x < 25} x := x * x {x < 25}
{x > 0 & x < 5} x := x * x {x < 25}

STR

STR

STR

✓

✓

Strengthening

54

 Questions so far?

55

 Weakening

56

Postcondition Weakening

 {P} C {Q’} Q’→Q
{P} C {Q}

WEAK

{P} C {Q}

Weakening

57

Postcondition Weakening

 {P} C {Q’} Q’→Q
{P} C {Q}

WEAK

{P} C {Q}

Weakening

58

Postcondition Weakening

 {P} C {Q’} Q’→Q
{P} C {Q}

Example:
{z = z & z = z} x := z; y := z {x = z & y = z}

(x = z & y = z) → (x = y)
{z = z & z = z} x := z; y := z {x = y}

WEAK

WEAK

{P} C {Q}

Weakening

59

Postcondition Weakening

 {P} C {Q’} Q’→Q
{P} C {Q}

Example:
{z = z & z = z} x := z; y := z {x = z & y = z}

(x = z & y = z)→(x = y)
{z = z & z = z} x := z; y := z {x = y}

WEAK

WEAK

{P} C {Q}

Weakening

60

Postcondition Weakening

 {P} C {Q’} Q’→Q
{P} C {Q}

Example:
{z = z & z = z} x := z; y := z {x = z & y = z}

(x = z & y = z)→(x = y)
{z = z & z = z} x := z; y := z {x = y}

WEAK

WEAK

{P} C {Q}

Weakening

61

 Questions so far?

62

 Rule of Consequence

63

Rule of Consequence

P→P’ {P’} C {Q’} Q’→Q
{P} C {Q}

■ Logically equivalent to combination of Precondition
Strengthening and Postcondition Weakening

■ Uses P→P’ and Q’→Q

{P} C {Q}

RoC

Rule of Consequence

64

Rule of Consequence

P→P’ {P’} C {Q’} Q’→Q
{P} C {Q}

■ Logically equivalent to combination of Precondition
Strengthening and Postcondition Weakening

■ Uses P→P’ and Q’→Q

{P} C {Q}

RoC

Rule of Consequence

65

Rule of Consequence

P→P’ {P’} C {Q’} Q’→Q
{P} C {Q}

■ Logically equivalent to combination of Precondition
Strengthening and Postcondition Weakening

■ Uses P→P’ and Q’→Q
■ Very useful IRL!

{P} C {Q}

RoC

Rule of Consequence

66

 Questions so far?

67

 Sequencing

68

Sequencing

{P} C1 {Q} {Q} C2 {R}
{P} C1; C2 {R}

{P} C {Q}

SEQ

Sequencing

69

Sequencing

{P} C1 {Q} {Q} C2 {R}
{P} C1; C2 {R}

{P} C {Q}

SEQ

Sequencing

70

Sequencing

{P} C1 {Q} {Q} C2 {R}
{P} C1; C2 {R}

{P} C {Q}

SEQ

Sequencing

71

Sequencing

{P} C1 {Q} {Q} C2 {R}
{P} C1; C2 {R}

{P} C {Q}

SEQ

Sequencing

72

Sequencing

{P} C1 {Q} {Q} C2 {R}
{P} C1; C2 {R}

{P} C {Q}

SEQ

Sequencing

73

Sequencing

{P} C1 {Q} {Q} C2 {R}
{P} C1; C2 {R}

Example:
{z = z & z = z} x := z {x = z & z = z}
{x = z & z = z} y := z {x = z & y = z}

{z = z & z = z} x := z; y := z {x = z & y = z}

{P} C {Q}

SEQ

SEQ

Sequencing

74

Sequencing

{P} C1 {Q} {Q} C2 {R}
{P} C1; C2 {R}

Example:
{z = z & z = z} x := z {x = z & z = z}
{x = z & z = z} y := z {x = z & y = z}

{z = z & z = z} x := z; y := z {x = z & y = z}

{P} C {Q}

SEQ

SEQ

Sequencing

75

Sequencing

{P} C1 {Q} {Q} C2 {R}
{P} C1; C2 {R}

Example:
{z = z & z = z} x := z {x = z & z = z}
{x = z & z = z} y := z {x = z & y = z}

{z = z & z = z} x := z; y := z {x = z & y = z}

{P} C {Q}

SEQ

SEQ

Sequencing

76

 Questions so far?

77

 Branching

78

If Then Else

{P and B} C1 {Q} {P and (not B)} C2 {Q}
{P} if B then C1 else C2 fi {Q}

ITE

Branching

{P} C {Q}

79

If Then Else

{P and B} C1 {Q} {P and (not B)} C2 {Q}
{P} if B then C1 else C2 fi {Q}

ITE

{P} C {Q}

Branching

80

If Then Else

{P and B} C1 {Q} {P and (not B)} C2 {Q}
{P} if B then C1 else C2 fi {Q}

ITE

{P} C {Q}

Branching

81

If Then Else

{P and B} C1 {Q} {P and (not B)} C2 {Q}
{P} if B then C1 else C2 fi {Q}

ITE

True branch

{P} C {Q}

Branching

82

If Then Else

{P and B} C1 {Q} {P and (not B)} C2 {Q}
{P} if B then C1 else C2 fi {Q}

ITE

{P} C {Q}

False branch

Branching

83

If Then Else

{P and B} C1 {Q} {P and (not B)} C2 {Q}
{P} if B then C1 else C2 fi {Q}

ITE

{P} C {Q}

Example:

 {y = a & x < 0} {y = a & not (x < 0)}
 y := y - x y := y + x

 {y = a + |x|} {y = a + |x|}
{y = a} if x < 0 then y := y - x else y := y + x fi {y = a + |x|}

ITE

Branching

84

If Then Else

{P and B} C1 {Q} {P and (not B)} C2 {Q}
{P} if B then C1 else C2 fi {Q}

ITE

{P} C {Q}

Example:

 {y = a & x < 0} {y = a & not (x < 0)}
 y := y - x y := y + x

 {y = a + |x|} {y = a + |x|}
{y = a} if x < 0 then y := y - x else y := y + x fi {y = a + |x|}

ITE

Branching

85

If Then Else

{P and B} C1 {Q} {P and (not B)} C2 {Q}
{P} if B then C1 else C2 fi {Q}

ITE

{P} C {Q}

Example:

 {y = a & x < 0} {y = a & not (x < 0)}
 y := y - x y := y + x

 {y = a + |x|} {y = a + |x|}
{y = a} if x < 0 then y := y - x else y := y + x fi {y = a + |x|}

ITE

Branching

86

If Then Else

 ?? ??
 {y = a & x < 0} {y = a & not (x < 0)}

 y := y - x y := y + x
 {y = a + |x|} {y = a + |x|}

{y = a} if x < 0 then y := y - x else y := y + x fi {y = a + |x|}
ITE

Branching

87

If Then Else

 {y - x = a + |x|}
 (y = a & x < 0) y := y - x
→ y - x = a + |x| {y = a + |x|} ??

 {y = a & x < 0} {y = a & not (x < 0)}
 y := y - x y := y + x

 {y = a + |x|} {y = a + |x|}
{y = a} if x < 0 then y := y - x else y := y + x fi {y = a + |x|}

ITE

Branching

STR

88

If Then Else

 ?? {y - x = a + |x|}
 (y = a & x < 0) y := y - x
→ y - x = a + |x| {y = a + |x|} ??

 {y = a & x < 0} {y = a & not (x < 0)}
 y := y - x y := y + x

 {y = a + |x|} {y = a + |x|}
{y = a} if x < 0 then y := y - x else y := y + x fi {y = a + |x|}

ITE

Branching

STR

 ??

89

If Then Else

 x < 0
 → |x| = -x {y - x = a + |x|}
 (y = a & x < 0) y := y - x
→ y - x = a + |x| {y = a + |x|} ??

 {y = a & x < 0} {y = a & not (x < 0)}
 y := y - x y := y + x

 {y = a + |x|} {y = a + |x|}
{y = a} if x < 0 then y := y - x else y := y + x fi {y = a + |x|}

ITE

Branching

STR

 ??

Pure math and
logic fragment

90

If Then Else

 x < 0
 → |x| = -x {y - x = a + |x|}
 (y = a & x < 0) y := y - x
→ y - x = a + |x| {y = a + |x|} ??

 {y = a & x < 0} {y = a & not (x < 0)}
 y := y - x y := y + x

 {y = a + |x|} {y = a + |x|}
{y = a} if x < 0 then y := y - x else y := y + x fi {y = a + |x|}

ITE

Branching

STR

 ASSIGN

91

If Then Else

 x < 0
 → |x| = -x {y - x = a + |x|}
 (y = a & x < 0) y := y - x
→ y - x = a + |x| {y = a + |x|}

 {y = a & x < 0} {y = a & not (x < 0)}
 y := y - x y := y + x

 {y = a + |x|} {y = a + |x|}
{y = a} if x < 0 then y := y - x else y := y + x fi {y = a + |x|}

ITE

Branching

STR

 (y = a & not (x < 0))
 → (y + x = a + |x|)

ASSIGN

STR

 {y + x = a + |x|}
 y := y + x
 {y = a + |x|}

not (x < 0)→ |x| = x
ASSIGN

92

 Next Class: Looping

93

 Next Class: Time for Review, Too

94

 ICES: Course Evaluation!
 (Please be kind and constructive.
 Please also consider gender biases.)

https://ices.citl.illinois.edu/

https://ices.citl.illinois.edu/

Next Class

95

■ LAST CLASS
■ Please bring questions for review
■ Great job!!!
■ MP11 due Tuesday
■ WA11 due Wednesday
■ All deadlines can be found on course website
■ Use office hours and class forums for help

