Programming Languages and Compilers (CS 421)

Talia Ringer (they/them) 4218 SC, UIUC
https://courses.grainger.illinois.edu/cs421/fa2023/
Based heavily on slides by Elsa Gunter, which were based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

Sign up for makeups!!!

Questions before we start?

Objectives for Today

- We are starting the final part of semantics, which is the last thing we are covering in this class!
- We will cover Axiomatic Semantics specifically
- Needed for WA11, final
- Useful IRL (and shows up on PL/FM quals)

Axiomatic Semantics

■ Commonly Floyd-Hoare Logic
■ In practice, often extended
■ Based on formal logic (first order predicate calculus)

- Axiomatic Semantics is a logical system built from axioms and inference rules

■ Mainly suited to simple imperative programming languages

Questions before we start?

Axiomatic Semantics

Axiomatic Semantics

■ Used to formally prove property (post-condition) of values of program variables (state) after the execution of program, assuming another property (pre-condition) of the state holds before execution
Goal: Derive statements of form $\{P\} C\{Q\}$

- P, Q logical statements about state
- P precondition, Q postcondition, C program state

■ Example: $\{x=1\} x:=x+1\{x=2\}$

Axiomatic Semantics

Axiomatic Semantics

■ Used to formally prove property (post-condition) of values of program variables (state) after the execution of program, assuming another property (pre-condition) of the state holds before execution

- Goal: Derive statements of form

$$
\{P\} C\{Q\}
$$

- P, Q logical statements about state
- P precondition, Q postcondition, C program state
- Example: $\{x=1\} x:=x+1\{x=2\}$

Axiomatic Semantics

Axiomatic Semantics

■ Used to formally prove property (post-condition) of values of program variables (state) after the execution of program, assuming another property (pre-condition) of the state holds before execution

- Goal: Derive statements of form

$$
\{\mathrm{P}\} \mathrm{C}\{\mathrm{Q}\}
$$

- P, Q logical statements about state
- P precondition, Q postcondition, C program state
- Example: $\{x=1\} x:=x+1\{x=2\}$

Axiomatic Semantics

- Approach: For each type of language statement, give an axiom or inference rule stating how to derive assertions of form $\{P\} C\{Q\}$
where C is a statement of that type

■ Compose axioms and inference rules to build proofs for complex programs

Axiomatic Semantics

■ Approach: For each type of language statement, give an axiom or inference rule stating how to derive assertions of form

$$
\{P\} C\{Q\}
$$

where C is a statement of that type

- Compose axioms and inference rules to build proofs for complex programs

Axiomatic Semantics

■ An expression $\{P\} C\{Q\}$ is a partial correctness statement

■ For total correctness must also prove that C terminates (i.e. doesn't run forever)
■ Written: [P] C [Q]
■ Will only consider partial correctness here

Language

We will give rules for simple imperative language:
<command> ::=
<variable> := <term>
<command>; ... ;<command>
if <statement> then <command> else <command>
while <statement> do <command> od
(Could add more features, like for-loops.)

Substitution

Notation: $\mathrm{P}[\mathrm{e} / \mathrm{v}]$ (sometimes $\mathrm{P}[\mathrm{v}<-\mathrm{e}]$)

- Meaning: Replace every v in P by e
- Example: $(x+2)[y-1 / x]=((y-1)+2)$

The Assignment Rule

$$
\{P[e / x]\} x:=e\{P\}
$$

Examples:

$$
\{? ?\} x:=y\{x=2\}
$$

Axiomatic Semantics

The Assignment Rule

$$
\{P[P / X]\} x:=e\{P\}
$$

Examples:

$$
\frac{\text { assicn }}{\{? ?=2\} \mathrm{x}:=\mathrm{y}\{\mathrm{x}=2\}}
$$

The Assignment Rule

$$
\overbrace{}^{\text {Assign }}
$$

Examples:

$$
\longrightarrow^{2} \mathbf{y = 2 \} x : = y \{ x = 2 \} ^ { \text { assicn } }}
$$

The Assignment Rule

$$
\frac{\mathrm{ASSIGN}}{\{P[e / x]\} x:=e\{P\}}
$$

Examples:

$$
\begin{aligned}
& \hline\{\mathbf{y}=2\} \mathbf{x}:=\mathbf{y}\{\mathbf{x}=2\} \\
& \{\mathbf{y}=2\} \mathbf{x}:=\mathbf{2}\{\mathbf{x}=2\}
\end{aligned}
$$

True, but not by this rule

Axiomatic Semantics

The Assignment Rule

$$
\{P[e / x]\} x:=e\{P\}
$$

Examples:

$$
\begin{aligned}
& \{y=2\} x:=y\{x=2\} \\
& \{2=2\} x:=2\{x=2\}
\end{aligned}
$$

True by this rule

Axiomatic Semantics

The Assignment Rule

$$
\{\mathrm{P}[\mathrm{e} / \mathrm{x}]\} \mathrm{x}:=\mathrm{e}\{\mathrm{P}\}^{\mathrm{AssicN}}
$$

Examples:

$$
\{? ?\} \mathbf{x}:=\mathbf{x}+\mathbf{1}\{\mathbf{x}=\mathrm{n}+1\}
$$

Backwards Reasoning

Axiomatic Semantics

The Assignment Rule

$$
\{\mathrm{P}[\mathrm{e} / \mathrm{x}]\} \mathrm{x}:=\mathrm{e}\{\mathrm{P}\}^{\mathrm{AssicN}}
$$

Examples:

$$
\{? ?\} \mathbf{x}:=\mathbf{x}+\mathbf{1}\{\mathbf{x}=\mathrm{n}+1\}
$$

Weakest Precondition

Axiomatic Semantics

The Assignment Rule

$$
\{\mathrm{P}[\mathrm{e} / \mathrm{x}]\} \mathrm{x}:=\mathrm{e}\{\mathrm{P}\}
$$

Examples:

$$
\{(x=n+1)[(x+1) / x]\} x:=x+1\{x=n+1\}
$$

Weakest Precondition

Axiomatic Semantics

The Assignment Rule

$$
\{\mathrm{P}[\mathrm{e} / \mathrm{x}]\} \mathrm{x}:=\mathrm{e}\{\mathrm{P}\}
$$

Examples:

$$
\{\mathbf{x}+\mathbf{1}=\mathrm{n}+1\} \mathbf{x}:=\mathbf{x}+\mathbf{1}\{\mathbf{x}=\mathrm{n}+1\}
$$

Weakest Precondition

Axiomatic Semantics

The Assignment Rule - Your Turn

$$
\overbrace{}^{\{\mathrm{P}[\mathrm{e} / \mathrm{x}]\} \mathrm{x}:=\mathrm{e}\{\mathrm{P}\}}
$$

What is the weakest precondition of

$$
x:=x+y\{x+y=w-x\} ?
$$

Axiomatic Semantics

The Assignment Rule - Your Turn

 \{P\} C \{Q\}$$
\{P[e / x]\} x:=e\{P\}
$$

$$
\{? ?\} x:=x+y\{x+y=w-x\}
$$

The Assignment Rule - Your Turn

 \{P\} C \{Q\}$$
\{P[e / x]\} x:=e\{P\}
$$

$$
\{? ?\} x:=x+y\{x+y=w-x\}
$$

What is \mathbf{P} ?

Axiomatic Semantics

The Assignment Rule - Your Turn

 \{P\} C \{Q\}$$
\{D[e / X]\} X=A
$$

ASSIGN
 $\{(\mathbf{x}+\mathbf{y = w - x})[? ? / ? ?]\} \mathrm{x}:=\mathrm{x}+\mathrm{y}\{\mathbf{x}+\mathbf{y}=\mathbf{w}-\mathbf{x}\}$

That is \mathbf{P}

Axiomatic Semantics

The Assignment Rule - Your Turn

 \{P\} C \{Q\}$$
\{P[e / x]\} x:=e\{P\}
$$

$\{(x+y=w-x)[? ? / ? ?]\} x:=x+y\{x+y=w-x\}$
What is e ?

Axiomatic Semantics

The Assignment Rule - Your Turn

 \{P\} C \{Q\}ASSIGN
$\{(x+y=w-x)[(x+y) / ? ?]\} x:=\mathbf{x}+\mathbf{y}\{x+y=w-x\}$

That is \mathbf{e}

Axiomatic Semantics

The Assignment Rule - Your Turn

 \{P\} C \{Q\}$$
\overline{\{\mathrm{P}[\mathrm{e} / \mathbf{x}]\} \mathbf{x}:=\mathrm{e}\{\mathrm{P}\}}
$$

$$
\{(x+\overline{y=w-x)[(x+y) / ? ?]\} x:=x+y\{x+y=w}-x\}
$$

What is x ?

Axiomatic Semantics

The Assignment Rule - Your Turn

 \{P\} C \{Q\}$$
\overline{\{P[e / \mathbf{x}]\} \mathbf{x}:=\mathrm{e}\{\mathrm{P}\}}
$$

ASSIGN
$\{(x+y=w-x)[(x+y) / x]\} \mathbf{x}:=x+y\{x+y=w-x\}$

That is \mathbf{x}

Axiomatic Semantics

The Assignment Rule - Your Turn

 \{P\} C \{Q\}$$
\frac{\mathrm{ASSIGN}}{}
$$

$$
\{(x+\overline{y=w-x)[(x+y) / x]\} x:=x+y\{x+y=w}-x\}
$$

Substitute

Axiomatic Semantics

The Assignment Rule - Your Turn

 \{P\} C \{Q\}$$
\overline{f P}[\mathrm{e} / \mathrm{x}]\} \mathrm{x}:=\mathrm{e}\{\mathrm{P}\}_{\mathrm{ASIINN}}
$$

ASSIGN
$\{(\mathbf{x}+\bar{y})+y=w-(\mathbf{x}+\mathbf{y})\} x:=x+y\{x+y=w-x\}$

Substituted

Axiomatic Semantics

The Assignment Rule - Your Turn

 \{P\} C \{Q\}$$
\overbrace{\{\mathrm{P}[\mathrm{e} / \mathrm{x}]\} \mathrm{x}:=\mathrm{e}\{\mathrm{PS}\}}^{\text {Asicn }}
$$

$$
\{(x+y)+y=w-(x+y)\} x:=x+y\{x+y=w-x\}
$$

Done

Axiomatic Semantics

The Assignment Rule - Your Turn

 \{P\} C \{Q\}$$
\overline{f P}[\mathrm{e} / \mathrm{x}]\} \mathrm{x}:=\mathrm{e}\{\mathrm{P}\}_{\mathrm{ASIINN}}
$$

$$
\left\{\left(\mathbf{x}+\overline{\mathbf{y})+\mathbf{y}=\mathbf{w}-(\mathbf{x}+\mathbf{y})\} \times:=x+y\{x+y=w} \frac{\text { assicn }}{w}-x\right\}\right.
$$

Weakest Precondition

Axiomatic Semantics

Questions so far?

Strengthening

Precondition Strengthening

\{P\} C \{Q\}

■ Meaning: If we can show that P implies P^{\prime} $\left(P \rightarrow P^{\prime}\right)$ and we can show that $\left\{P^{\prime}\right\} C\{Q\}$, then we know that $\{P\} C\{Q\}$

- P is stronger than P^{\prime} means $P \rightarrow P^{\prime}$

Precondition Strengthening

\{P\} C \{Q\}

$$
\frac{\mathbf{P} \rightarrow \mathbf{P}^{\prime} \quad\left\{\mathrm{P}^{\prime}\right\} \mathrm{C}\{\mathrm{Q}\}_{\text {sTR }}}{\{\mathrm{P}\} \mathrm{C}\{\mathrm{Q}\}}
$$

■ Meaning: If we can show that P implies P^{\prime} $\left(\mathbf{P} \rightarrow \mathbf{P}^{\prime}\right)$ and we can show that $\left\{\mathrm{P}^{\prime}\right\} \mathrm{C}\{\mathrm{Q}\}$, then we know that $\{P\} C\{Q\}$

- P is stronger than P^{\prime} means $P \rightarrow P^{\prime}$

Precondition Strengthening

\{P\} C \{Q\}

$$
\frac{P \rightarrow P^{\prime} \quad\left\{P^{\prime}\right\} C\{Q\}_{\text {STR }}}{\{P\} C\{Q\}}
$$

■ Meaning: If we can show that P implies P^{\prime} $\left(P \rightarrow P^{\prime}\right)$ and we can show that $\left\{\mathbf{P}^{\prime}\right\} \mathbf{C}\{\mathbf{Q}\}$, then we know that $\{P\} \subset\{Q\}$

- P is stronger than P^{\prime} means $P \rightarrow P^{\prime}$

Strengthening

Precondition Strengthening

\{P\} C \{Q\}

$$
\frac{P \rightarrow P^{\prime} \quad\left\{P^{\prime}\right\} C\{Q\}}{\{P\} C\{Q\}}
$$

■ Meaning: If we can show that P implies P^{\prime} $\left(P \rightarrow P^{\prime}\right)$ and we can show that $\left\{P^{\prime}\right\} C\{Q\}$, then we know that $\{\mathbf{P}\} \mathbf{C}\{\mathbf{Q}\}$

- P is stronger than P^{\prime} means $P \rightarrow P^{\prime}$

Precondition Strengthening

\{P\} C \{Q\}

$$
\frac{\mathbf{P} \rightarrow \mathbf{P}^{\prime} \quad\left\{\mathrm{P}^{\prime}\right\} \mathrm{C}\{\mathrm{Q}\}_{\text {sTR }}}{\{\mathrm{P}\} \mathrm{C}\{\mathrm{Q}\}}
$$

■ Meaning: If we can show that P implies P^{\prime} $\left(P \rightarrow P^{\prime}\right)$ and we can show that $\left\{P^{\prime}\right\} C\{Q\}$, then we know that $\{P\} C\{Q\}$
$\square P$ is stronger than P^{\prime} means $\mathbf{P} \rightarrow \mathbf{P}^{\prime}$

Precondition Strengthening

\{P\} C \{Q\}

$$
\frac{\mathbf{P} \rightarrow \mathbf{P}^{\prime} \quad\left\{\mathbf{P}^{\prime}\right\} \subset\{Q\}}{\{\mathbf{P}\} \subset\{Q\}}
$$

Precondition Strengthening

$$
\frac{\mathbf{P} \rightarrow \mathbf{P}^{\prime} \quad\left\{\mathbf{P}^{\prime}\right\} \subset\{Q\}}{\{\mathbf{P}\} \subset\{Q\}}
$$

Examples:

$$
\frac{x=3 \rightarrow x<7 \quad\{x<7\} x:=x+3\{x<10\}_{\mathrm{sTR}}}{\{x=3\} x:=x+3\{x<10\}}
$$

Precondition Strengthening

$$
\frac{\mathbf{P} \rightarrow \mathbf{P}^{\prime} \quad\left\{\mathbf{P}^{\prime}\right\} \subset\{Q\}}{\{\mathbf{P}\} \subset\{Q\}}
$$

Examples:

$$
\frac{x=3 \rightarrow x<7 \quad\{x<7\} x:=x+3\{x<10\}_{\mathrm{sR}}}{\{x=3\} \times:=x+3\{x<10\}}
$$

Precondition Strengthening

$$
\frac{\mathbf{P} \rightarrow \mathbf{P}^{\prime} \quad\left\{\mathbf{P}^{\prime}\right\} \subset\{Q\}}{\{\mathbf{P}\} \subset\{Q\}}
$$

Examples:

$$
\begin{aligned}
& \frac{x=3 \rightarrow x<7 \quad\{x<7\} x:=x+3\{x<10\}_{\text {STR }}}{\{\mathbf{x}=\mathbf{3}\} x:=x+3\{x<10\}} \\
& \frac{\text { True } \rightarrow \mathbf{2}=\mathbf{2} \quad\{\mathbf{2}=\mathbf{2}\} x:=2\{x=2\}_{\text {srR }}}{\{\text { True }\} x}:=2\{x=2\}
\end{aligned}
$$

Precondition Strengthening

\{P\} C \{Q\}

$$
\frac{\mathbf{P} \rightarrow \mathbf{P}^{\prime} \quad\left\{\mathbf{P}^{\prime}\right\} \mathrm{C}\{\mathrm{Q}\}_{\text {st尺 }}}{\{\mathbf{P}\} \mathrm{C}\{\mathrm{Q}\}}
$$

Examples:

$$
\begin{gathered}
\frac{\mathbf{x}=\mathbf{3} \rightarrow \mathbf{x}<\mathbf{7} \quad\{\mathbf{x}<\mathbf{7}\} \mathrm{x}:=\mathrm{x}+3\{\mathrm{x}<10\}_{\mathrm{sR}}}{\{\mathrm{x}=3\} \mathrm{x}:=\mathrm{x}+3\{\mathrm{x}<10\}} \\
\frac{\text { True } \rightarrow \mathbf{2}=\mathbf{2} \quad\{\mathbf{2}=\mathbf{2}\} \mathrm{x}:=2\{\mathrm{x}=2\}_{\text {sTR }}}{\{\text { True }\} \mathrm{x}:=2\{\mathrm{x}=2\}} \\
\frac{\mathbf{x}=\mathbf{n} \rightarrow \mathbf{x}+\mathbf{1}=\mathbf{n}+\mathbf{1}\{\mathbf{x}+\mathbf{1}=\mathbf{n}+\mathbf{1}\} \mathrm{x}:=\mathrm{x}+1\{\mathrm{x}=\mathrm{n}+1\}_{\mathrm{sTR}}}{\{\mathbf{x}=\mathbf{n}\} \times:=\mathrm{x}+1\{\mathrm{x}=\mathrm{n}+1\}} \\
\text { Strengthening }
\end{gathered}
$$

Questions so far?

Which Inferences are Possible?

$$
\begin{gathered}
? ? \quad\{x>0 \& x<5\} x:=x^{*} x\{x<25\}_{\text {sTR }} \\
\{x=3\} x:=x^{*} x\{x<25\} \\
\frac{? ?}{\{x>0 \& x<5\} x:=x^{*} x\{x<25\}} \\
\frac{? ?}{\{x>0 \& x<5\} x:=x^{*} x\{x<25\}}
\end{gathered}
$$

Which Inferences are Possible?

$$
\begin{aligned}
& \frac{? ?\{x>0 \& x<5\} \times:=x * x\{x<25\}_{\text {sir }}}{\{x=3\} \times:=x^{*} \times\{x<25\}} \\
& \frac{? ?}{\{x>0 \& x<5\} \times:=x^{*} \times\{x<25\}} \\
& \frac{? ? \quad\left\{x^{*} x<25\right\} x:=x * x\{x<25\}_{\text {sir }}}{\{x>0 \& x<5\} \times:=x^{*} x\{x<25\}}
\end{aligned}
$$

Which Inferences are Possible?

$$
\begin{aligned}
& \frac{? ?\{x>0 \& x<5\} x:=x * x\{x<25\}_{\text {siR }}}{\{x=3\} x:=x^{*} x\{x<25\}} \\
& \frac{? ? \quad\{x=3\} x:=x^{*} x\{x<25\}_{\text {sri }}}{\{x>0 \& x<5\} x:=x^{*} x\{x<25\}} \\
& \frac{? ? \quad\left\{x^{*} x<25\right\} x:=x^{*} x\{x<25\}_{\text {sIR }}}{\{x>0 \& x<5\} \times:=x^{*} x\{x<25\}}
\end{aligned}
$$

Which Inferences are Possible?

$$
\begin{aligned}
& \frac{? ?\{x>0 \& x<5\} x:=x * x\{x<25\}_{\text {sIR }}}{\{x=3\} \times:=x^{*} \times\{x<25\}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{? ? \quad\left\{x^{*} x<25\right\} x:=x * x\{x<25\}_{\text {sR }}}{\{x>0 \& x<5\} x:=x^{*} x\{x<25\}}
\end{aligned}
$$

Questions so far?

Weakening

Postcondition Weakening

$$
\frac{\{P\} C\left\{\mathrm{Q}^{\prime}\right\} \quad \mathrm{Q}^{\prime} \rightarrow \mathrm{Q}_{\text {weak }}}{\{\mathrm{P}\} C\left\{\mathrm{Q}^{2}\right\}}
$$

Postcondition Weakening

$$
\frac{\{P\} C\left\{\mathbf{Q}^{\prime}\right\} \quad \mathbf{Q}^{\prime} \rightarrow \mathbf{Q}_{\text {wak }}}{\{P\} C\{\mathbf{Q}\}}
$$

Postcondition Weakening

$$
\frac{\{P\} C\left\{\mathbf{Q}^{\prime}\right\} \quad \mathbf{Q}^{\prime} \rightarrow \mathbf{Q}_{\text {weak }}}{\{P\} C\{\mathbf{Q}\}}
$$

Example:

$$
\begin{gathered}
\{z=z \& z=z\} x:=z ; y:=z\{x=z \& y=z\} \\
(x=z \& y=z) \rightarrow(x=y)
\end{gathered}
$$

Postcondition Weakening

$$
\frac{\{P\} C\left\{\mathbf{Q}^{\prime}\right\} \quad \mathbf{Q}^{\prime} \rightarrow \mathbf{Q}_{\text {weak }}}{\{P\} C\{\mathbf{Q}\}}
$$

Example:

$$
\begin{gathered}
\left\{\mathrm{z=z} \mathrm{\& z=z} \mathrm{\}} \begin{array}{c}
(x=z ; y:=z\{x=z \& y=z\} \\
\{z=z \& z=z\} x:=z ; y:=z\{x=y\}
\end{array}{ }_{\text {weak }}\right.
\end{gathered}
$$

Postcondition Weakening

$$
\frac{\{P\} C\left\{\mathbf{Q}^{\prime}\right\} \quad \mathbf{Q}^{\prime} \rightarrow \mathbf{Q}_{\text {weak }}}{\{P\} C\{\mathbf{Q}\}}
$$

Example:

$$
\begin{aligned}
& \{z=z \& z=z\} x:=z ; y:=z\{x=z \& y=z\} \\
& \frac{(x=z \& y=z) \rightarrow(x=y)}{\{z=z \& z=z\} x:=z ; y:=z\{x=y\}}
\end{aligned}
$$

Questions so far?

Rule of Consequence

Rule of Consequence

\{P\} C \{Q\}

- Logically equivalent to combination of Precondition Strengthening and Postcondition Weakening Uses $\mathrm{P} \rightarrow \mathrm{P}^{\prime}$ and $\mathrm{Q}^{\prime} \rightarrow \mathrm{Q}$

Rule of Consequence

- Logically equivalent to combination of Precondition Strengthening and Postcondition Weakening Uses $\mathbf{P} \rightarrow \mathbf{P}^{\prime}$ and $\mathbf{Q}^{\prime} \rightarrow \mathbf{Q}$

Rule of Consequence

- Logically equivalent to combination of Precondition Strengthening and Postcondition Weakening
- Uses $\mathbf{P} \rightarrow \mathbf{P}^{\prime}$ and $\mathbf{Q}^{\prime} \rightarrow \mathbf{Q}$
- Very useful IRL!

Questions so far?

Sequencing

Sequencing

$$
\frac{\{P\} C_{1}\{Q\} \quad\{Q\} C_{2}\{R\}{ }_{\text {seQ }}}{\{P\} C_{1} ; C_{2}\{R\}}
$$

Sequencing

Sequencing

$$
\frac{\{P\} C_{1}\{Q\} \quad\{Q\} C_{2}\{R\}{ }_{\text {seQ }}}{\{P\} C_{1} ; C_{2}\{R\}}
$$

Sequencing

Sequencing

$$
\frac{\{\mathbf{P}\} \mathbf{C}_{1}\{\mathbf{Q}\} \quad\{\mathbf{Q}\} \mathbf{C}_{2}\{\mathbf{R}\}{ }_{\text {sEQ }}}{\{P\} C_{1} ; C_{2}\{R\}}
$$

Sequencing

Sequencing

$$
\frac{\{\mathbf{P}\} \mathbf{C}_{1}\{\mathbf{Q}\} \quad\{\mathbf{Q}\} \mathbf{C}_{2}\{\mathbf{R}\}}{\{\mathbf{P}\} \mathbf{C}_{1} ; \mathbf{C}_{2}\{\mathbf{R}\}}
$$

Sequencing

Sequencing

$$
\frac{\{P\} C_{1}\{Q\} \quad\{Q\} C_{2}\{R\}{ }_{\text {sEQ }}}{\{P\} C_{1} ; C_{2}\{R\}}
$$

Sequencing

Sequencing

\{P\} C \{Q\}

$$
\frac{\{P\} C_{1}\{\mathbf{Q}\} \quad\{\mathbf{Q}\} C_{2}\{R\}{ }_{\text {sEQ }}}{\{P\} C_{1} ; C_{2}\{R\}}
$$

Example:

$$
\begin{gathered}
\{z=z \& z=z\} x:=z\{x=z \& z=z\} \\
\frac{\{x=z \& z=z\} y:=z\{x=z \& y=z\}}{\{z=z \& z=z\} x:=z ; y:=z\{x=z \& y=z\}}
\end{gathered}
$$

Sequencing

Sequencing

$$
\frac{\{P\} C_{1}\{Q\} \quad\{Q\} C_{2}\{R\}{ }_{\text {sEQ }}}{\{P\} C_{1} ; C_{2}\{R\}}
$$

Example:

$$
\begin{gathered}
\{z=z \& z=z\} x:=z\{x=z \& z=z\} \\
\frac{\{x=z \& z=z\} y:=z\{x=z \& y=z\}_{\text {seq }}}{\{z=z \& z=z\} x:=z ; y:=z\{x=z \& y=z\}}
\end{gathered}
$$

Sequencing

Sequencing

$$
\frac{\{P\} C_{1}\{Q\} \quad\{Q\} C_{2}\{R\}{ }_{\text {sEQ }}}{\{P\} C_{1} ; C_{2}\{R\}}
$$

Example:

$$
\begin{gathered}
\{z=z \& z=z\} x:=z\{x=z \& z=z\} \\
\{x=z \& z=z\} y:=z\{x=z \& y=z\}{ }_{\text {see }} \\
\{z=z \& z=z\} x:=z ; y:=z\{x=z \& y=z\}
\end{gathered}
$$

Sequencing

Questions so far?

Branching

If Then Else

\{P\} C \{Q\}
$\{P$ and $B\} C_{1}\{Q\} \quad\{P$ and (not $\left.B)\right\} C_{2}\{Q\}_{\text {me }}$ $\{P\}$ if B then C_{1} else C_{2} fi $\{Q\}$

If Then Else

$\{P$ and $B\} C_{1}\{Q\} \quad\{P$ and (not $\left.B)\right\} C_{2}\{Q\}_{\text {me }}$ $\{P\}$ if B then C_{1} else C_{2} fi $\{Q\}$

If Then Else

\{P\} C \{Q\}
$\{\mathbf{P}$ and $B\} C_{1}\{\mathbf{Q}\} \quad\{\mathbf{P}$ and (not $\left.B)\right\} \mathrm{C}_{2}\{\mathbf{Q}\}_{\text {me }}$ $\{P\}$ if B then C_{1} else C_{2} fi $\{\mathbf{Q}\}$

If Then Else

$\{\mathbf{P}$ and B$\} \mathrm{C}_{1}\{\mathbf{Q}\} \quad\{\mathbf{P}$ and (not B$\left.)\right\} \mathrm{C}_{2}\{\mathbf{Q}\}_{\text {re }}$ $\{P\}$ if B then C_{1} else C_{2} fi $\{\mathbf{Q}\}$

True branch

If Then Else

$\{\mathbf{P}$ and B$\} \mathrm{C}_{1}\{\mathbf{Q}\} \quad\{\mathbf{P}$ and $(\operatorname{not} B)\} \mathrm{C}_{2}\{\mathbf{Q}\}_{\text {re }}$ $\{P\}$ if B then C_{1} else C_{2} fi $\{Q\}$

False branch

If Then Else

$\{\mathbf{P}$ and $B\} C_{1}\{\mathbf{Q}\} \quad\{\mathbf{P}$ and (not $\left.B)\right\} C_{2}\{\mathbf{Q}\}_{\text {re }}$ $\{\mathbf{P}\}$ if B then C_{1} else C_{2} fi $\{\mathbf{Q}\}$

Example:

$$
\begin{array}{cc}
\{\mathbf{y}=\mathbf{a} \& x<0\} & \{\mathbf{y}=\mathbf{a} \& \operatorname{not}(x<0)\} \\
y:=y-x & y:=y+x \\
\{\mathbf{y}=\mathbf{a}+|\mathbf{x}|\} & \{\mathbf{y}=\mathbf{a}+|\mathbf{x}|\} \\
\{\mathbf{y}=\mathbf{a}\} \text { if } x<0 \text { then } y:=y-x \text { else } y:=y+x \text { пi }\{\mathbf{y}=\mathbf{a}+|\mathbf{x}|\}
\end{array}
$$

Branching

If Then Else

 $\{P\}$ if B then C_{1} else C_{2} fi $\{\mathbf{Q}\}$
Example:

$$
\begin{array}{cc}
\{\mathbf{y}=\mathbf{a} \& x<0\} & \{\mathbf{y}=\mathbf{a} \& \operatorname{not}(\mathrm{x}<0)\} \\
y:=y-x \\
\{\mathbf{y}=\mathbf{a}+|\mathbf{x}|\} & \{\mathbf{y}=\mathbf{a}+|\mathbf{x}|\} \\
\{\mathbf{y}=\mathbf{a}\} \text { if } \mathbf{x}<0 \text { then } y:=y-x \text { else } y:=y+x \text { if }\{\mathbf{y}=\mathbf{a}+|\mathbf{x}|\}
\end{array}
$$

Branching

If Then Else

 $\{P\}$ if B then C_{1} else C_{2} fi $\{\mathbf{Q}\}$
Example:

Branching

If Then Else

$$
\begin{array}{cc}
? ? & ? ? ? \\
\cline { 1 - 2 } & \{y=a \& \operatorname{not}(x<0)\} \\
y:=y-x & y:=y+x \\
\{y=a+|x|\} & \{y=a+|x|\} \\
\hline \text { a\} if } x<0 \text { then } y:=y-x \text { else } y:=y+x \text { fi }\{y=a+|x|\}
\end{array}
$$

If Then Else

$$
\begin{aligned}
& \{\mathbf{y - x}=\mathbf{a}+|\mathbf{x}|\} \\
& (y=a \& x<0) \quad y:=y-x \\
& \frac{\rightarrow \mathbf{y - x}=\mathbf{a}+|\mathbf{x}|\{\mathrm{y}=\mathrm{a}+|\mathrm{x}|\}_{\text {sTR }}}{\{\mathbf{y}=\mathbf{a} \& \mathbf{x}<0\}} \frac{? ?}{\{y=\mathrm{a} \& \operatorname{not}(\mathrm{x}<0)\}} \\
& y:=y-x \quad y:=y+x \\
& \{y=a+|x|\} \quad\{y=a+|x|\} \quad \text { if } x<0 \text { then } y:=y-x \text { else } y:=y+x \text { fi }\{y=a+|x|\}
\end{aligned}
$$

Branching

If Then Else

$$
\begin{aligned}
& \text { ?? } \\
& ? ? \quad \overline{\{y-x=a+|x|\}} \\
& \overline{(y=a \& x<0)} \quad y:=y-x \\
& \rightarrow \frac{y-x=a+|x| \quad\{y=a+|x|\}_{\text {STR }}}{\{y=a \& x<0\}} \frac{? ?}{\{y=a \& \operatorname{not}(x<0)\}} \\
& y:=y-x \\
& \{y=a+|x|\} \quad\{y=a+|x|\} \\
& \{y=a\} \text { if } x<0 \text { then } y:=y-x \text { else } y:=y+x \text { ff }\{y=a+|x|\}
\end{aligned}
$$

If Then Else

Pure math and logic fragment

$$
\begin{aligned}
& \left.\begin{array}{c}
x<0 \\
\rightarrow|x|=-x \\
(y=a \& x<0)
\end{array} \right\rvert\, \begin{array}{c}
? ? \\
\{y:=y=a+|x|\} \\
y:=y
\end{array} \\
& \rightarrow y-x=a+|x|\{y=a+|x|\}_{\text {sTR }} \\
& \{y=a \& x<0\} \\
& y:=y-x \\
& \left\{\frac{\{y=a+|x|\}}{\{y=a\} \text { if } x<0 \text { then } y:=y-x \text { else } y:=y+x \text { ff }\{y=a+|x|\}}\right. \\
& \overline{\{y=a \& n o t}(x<0)\} \\
& y:=y+x
\end{aligned}
$$

If Then Else

$$
\begin{aligned}
& x<0 \\
& \rightarrow|x|=-x \quad\{\overline{\{y-x=a+|x|\}} \\
& (y=a \& x<0) \quad y:=y-x \\
& \rightarrow \frac{y-x=a+|x| \quad\{y=a+|x|\}_{\text {sTR }}}{\{y=a \& x<0\}} \frac{? ?}{\{y=a \& \operatorname{not}(x<0)\}} \\
& y:=y-x \\
& \left\{\frac{\{y=a+|x|\}}{\{y=a\} \text { if } x<0 \text { then } y:=y-x \text { else } y:=y+x \text { fi }\{y=a+|x|\}}\right. \\
& y:=y+x
\end{aligned}
$$

If Then Else

$$
\begin{aligned}
& \operatorname{not}(x<0) \rightarrow|x|=x \quad\{y+x=a+|x|\} \\
& (y=a \& \operatorname{not}(x<0)) \quad y:=y+x \\
& \rightarrow(y+x=a+|x|) \quad \because \quad\{y=a+|x|\} \\
& x<0 \\
& \rightarrow|x|=-x \quad\{y-x=a+|x|\} \\
& (y=a \& x<0) \quad y:=y-x \\
& \frac{y-x=a+|x| \quad\{y=a+|x|\}_{\text {STR }}}{\{y=a \& x<0\}} \\
& \{y=a \& \operatorname{not}(x<0)\} \\
& y:=y-x \\
& y:=y+x \\
& \{y=a+|x|\} \quad\{y=a+|x|\} \quad \text { тت }
\end{aligned}
$$

Branching

Next Class: Looping

Next Class: Time for Review, Too

ICES: Course Evaluation!

 (Please be kind and constructive. Please also consider gender biases.)https://ices.citl.illinois.edu/

Next Class

■ LAST CLASS

- Please bring questions for review

■ Great job!!!

- MP11 due Tuesday
- WA11 due Wednesday
- All deadlines can be found on course website

Use office hours and class forums for help

