Programming Languages and Compilers (CS 421)

Talia Ringer (they/them) 4218 SC, UIUC
https://courses.grainger.illinois.edu/cs421/fa2023/
Based heavily on slides by Elsa Gunter, which were based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

Midterm Study Guide

Objectives for Today

Three Main Topics of the Course

Language
 Semantics

Objectives for Today

Three Main Topics of the Course

III

Language
Semantics

Objectives for Today

III : Language Semantics

Axiomatic Semantics

Objectives for Today

Order of Evaluation

Operational

 SemanticsCS426
CS477
Specification to Implementation

Questions before we start?

Semantics

Semantics

Expresses the meaning of syntax

Static semantics:
■ Meaning based only on the form of the expression without executing it
■ Usually restricted to type checking / type inference

Dynamic semantics:

- Describes meaning of executing a program

■ Kinds: operational, axiomatic, denotational

Semantics

Semantics

Expresses the meaning of syntax
Static semantics:

- Meaning based only on the form of the expression without executing it
- Usually restricted to type checking / type inference
Dynamic semantics:
v Describes meaning of executing a program
- Kinds: operational, axiomatic, denotational

Semantics

Semantics

- Expresses the meaning of syntax

Static semantics:

- Meaning based only on the form of the expression without executing it
■ Usually restricted to type checking / type inference
Dynamic semantics:
- Describes meaning of executing a program

■ Kinds: operational, axiomatic, denotational

Semantics

- Expresses the meaning of syntax

Static semantics:

- Meaning based only on the form of the expression without executing it
■ Usually restricted to type checking / type inference

Dynamic semantics:

- Describes meaning of executing a program

■ Kinds: operational, axiomatic, denotational

Dynamic Semantics

- Why so many kinds of dynamic semantics?
- Different languages better suited to different kinds of semantics
- Different kinds serve different purposes
- Common to have multiple kinds and show how they relate to each other

Dynamic semantics:

- Describes meaning of executing a program
- Kinds: operational, axiomatic, denotational

Operational Semantics

■ What it is:

- Describe how to execute (implement) programs of language on a virtual machine, by describing how to execute each program statement (i.e., following the structure of the program)
- Meaning of program is how its execution changes the state of the machine
Tradeoffs:
- Easy to implement Hard to reason about abstractly (without thinking about implementation details)

Operational Semantics

■ What it is:
■ Describe how to execute (implement) programs of language on a virtual machine, by describing how to execute each program statement (i.e., following the structure of the program)

- Meaning of program is how its execution changes the state of the machine
■ Tradeoffs:
■ Easy to implement
- Hard to reason about abstractly (without thinking about implementation details)

Axiomatic Semantics

■ What it is:

- Also called a Program Logic
- Commonly Floyd-Hoare Iogic
- These days, also separation logic
- Logical system built from axioms and inference rules
- Often written as pre-conditions and post-conditions on programs
Tradeoffs:
■ Mainly suited to iimperative languages
■ Good for external reasoning

Axiomatic Semantics

■ What it is:

- Also called a Program Logic
- Commonly Floyd-Hoare logic
- These days, also separation logic

■ Logical system built from axioms and inference rules

- Often written as pre-conditions and post-conditions on programs
■ Tradeoffs:
■ Mainly suited to imperative languages
- Good for external reasoning

Axiomatic Semantics

■ What it is:
■ Also called a Program Logic - Commonly Floyd-Hoare Iogic These days, also separation logic

- Logical system built from axioms and inference rules
- Often written as pre-conditions and post-conditions on programs
Tradeoffs:
■ Mainly suited to imperative languages
- Good for external reasoning

Axiomatic Semantics

■ Used to formally prove a post-condition (property) of the state (the values of the program variables) after the execution of program, assuming a pre-condition (another property) holds before execution
\{Precondition\} Program \{Postcondition\}

- Source of idea of loop invariant

Axiomatic Semantics

■ Used to formally prove a post-condition (property) of the state (the values of the program variables) after the execution of program, assuming a pre-condition (another property) holds before execution

- Written :
\{Precondition\} Program \{Postcondition\}
- Source of idea of loop invariant

Axiomatic Semantics

■ Used to formally prove a post-condition (property) of the state (the values of the program variables) after the execution of program, assuming a pre-condition (another property) holds before execution
■ Written :
\{Precondition\} Program \{Postcondition\}
■ Source of idea of loop invariant

Denotational Semantics

■ What it is:
■ Construct function \mathcal{M} assigning mathematical meaning to each program construct

- via category theory, algebra, probability theory, topology, lambda calculus, ...
- Meaning function is compositional: meaning of construct built from meaning of parts
Tradeoffs:
■ Useful for proving properties of programs Doesn't help much with implementation

Denotational Semantics

■ What it is:
■ Construct function \mathcal{M} assigning mathematical meaning to each program construct

- via category theory, algebra, probability theory, topology, lambda calculus, ...
■ Meaning function is compositional: meaning of construct built from meaning of parts
■ Tradeoffs:
■ Useful for proving properties of programs
- Doesn't help much with implementation

Operational Semantics

■ What it is:
■ Describe how to execute (implement) programs of language on a virtual machine, by describing how to execute each program statement (i.e., following the structure of the program)

- Meaning of program is how its execution changes the state of the machine
■ Tradeoffs:
■ Easy to implement
- Hard to reason about abstractly (without thinking about implementation details)

Operational Semantics

- Can be small step or big step

■ Small step: define meaning of one step of execution of a program statement at a time

- Big step: define meaning in terms of value of execution of whole program statement
- Common to have both and relate them

Operational Semantics

- Can be small step or big step

■ Small step: define meaning of one step of execution of a program statement at a time
■ Big step: define meaning in terms of value of execution of whole program statement
Common to have both and relate them

Natural (Big Step) Semantics

Natural Semantics

- Also known as Structural Operational Semantics or Big Step Semantics
■ Provide value for a program by rules and derivations, similar to type derivations
■ Rule conclusions look like:

$$
\begin{gathered}
(C, m) \Downarrow m^{\prime} \\
\text { or } \\
(E, m) \Downarrow v
\end{gathered}
$$

Natural Semantics

Natural Semantics

- Also known as Structural Operational Semantics or Big Step Semantics
■ Provide value for a program by rules and derivations, similar to type derivations
■ Rule conclusions look like:

$$
\begin{gathered}
(C, m) \Downarrow m^{\prime} \\
\text { or } \\
(E, m) \Downarrow v
\end{gathered}
$$

Simple Imperative Language Syntax

$\mathrm{I} \in$ Identifiers
$\mathrm{N} \in$ Numerals
B ::= true | false | B \& B | B or B | not $\mathbf{B}|\mathbf{E}<\mathbf{E}| \mathbf{E}=\mathbf{E}$
$\mathbf{E}::=\mathrm{N}|\mathrm{I}| \mathbf{E}+\mathbf{E}|\mathbf{E} * \mathbf{E}| \mathbf{E}-\mathbf{E}|-\mathbf{E}|(\mathbf{E})$
C ::= skip | C; C | I := E | if \mathbf{B} then \mathbf{C} else \mathbf{C} fi \| while \mathbf{B} do \mathbf{C} od

Natural Semantics

Simple Imperative Language Syntax

$\mathrm{I} \in$ Identifiers
$\mathrm{N} \in$ Numerals
\mathbf{B} ::= true | false | \mathbf{B} \& $\mathbf{B} \mid \mathbf{B}$ or $\mathbf{B} \mid$ not $\mathbf{B}|\mathbf{E}<\mathbf{E}| \mathbf{E}=\mathbf{E}$
E::=N|I|E+E|E*E|E-E|-E|(E)
C ::= skip | C; C | I := E |
if \mathbf{B} then \mathbf{C} else \mathbf{C} fi \mid while \mathbf{B} do \mathbf{C} od

Natural Semantics

Simple Imperative Language Syntax

$\mathrm{I} \in$ Identifiers
$\mathrm{N} \in$ Numerals
\mathbf{B} ::= true | false | \mathbf{B} \& $\mathbf{B} \mid \mathbf{B}$ or $\mathbf{B} \mid$ not $\mathbf{B}|\mathbf{E}<\mathbf{E}| \mathbf{E}=\mathbf{E}$
$\mathbf{E}::=\mathrm{N}|\mathrm{I}| \mathbf{E}+\mathbf{E}|\mathbf{E} * \mathbf{E}| \mathbf{E}-\mathbf{E}|-\mathbf{E}| \mathbf{(E)}$
C ::= skip | C; C | I := E |
if \mathbf{B} then \mathbf{C} else \mathbf{C} fi | while \mathbf{B} do \mathbf{C} od

Natural Semantics

Simple Imperative Language Syntax

$\mathrm{I} \in$ Identifiers
$\mathrm{N} \in$ Numerals
\mathbf{B} ::= true | false | \mathbf{B} \& $\mathbf{B} \mid \mathbf{B}$ or $\mathbf{B} \mid$ not $\mathbf{B}|\mathbf{E}<\mathbf{E}| \mathbf{E}=\mathbf{E}$
$\mathbf{E}::=\mathrm{N}|\mathrm{I}| \mathbf{E}+\mathbf{E} \mid \mathbf{E}$ * $\mathbf{E}|\mathbf{E}-\mathbf{E}|-\mathbf{E} \mid(\mathbf{E})$
C ::= skip | C; C | I := E |
if \mathbf{B} then \mathbf{C} else \mathbf{C} fi \| while \mathbf{B} do \mathbf{C} od

Natural Semantics

Simple Imperative Language Semantics

Look up identifiers

Id $(E, m) \Downarrow v$
$(\mathrm{I}, \mathrm{m}) \Downarrow \mathrm{m}(\mathrm{I})$

Simple Imperative Language Semantics

$$
(\mathrm{I}, \mathrm{~m}) \Downarrow \mathrm{m}(\mathrm{I})
$$

Numerals are literals

$(N, m) \Downarrow N$
Num
num

Simple Imperative Language Semantics

$(E, m) \Downarrow v$
 (I, m) $\Downarrow \mathrm{m}(\mathrm{I})$

Num
$(N, m) \Downarrow N$

$(B, m) \Downarrow v$

True
(true, m) \Downarrow true
$\frac{(B, m) \Downarrow v}{(\text { false }, m) \Downarrow \text { false }}$

Boolean atoms are literals too

Natural Semantics

Questions so far?

Natural Semantics

Simple Imperative Language Semantics

$$
(B, m) \Downarrow v
$$

$\frac{(B, m) \Downarrow \text { false }_{\text {And-F }}}{\left(B \& B^{\prime}, m\right) \Downarrow \text { false }} \frac{(B) \Downarrow \text { true }\left(B^{\prime}, m\right) \Downarrow b \quad \text { And-T }}{\left(B \& B^{\prime}, m\right) \Downarrow b}$
$\frac{(B, m) \Downarrow \text { true }}{\left.B \text { or } B^{\prime}, m\right) \Downarrow \text { true }} \quad{ }_{\text {or- }-T} \frac{(B, m) \Downarrow \text { false }\left(B^{\prime}, m\right) \Downarrow b{ }_{\text {or- }}}{\left(B \text { or } B^{\prime}, m\right) \Downarrow b}$
$\frac{(B, m) \Downarrow \text { true }{ }_{\text {Not-T }}}{(\text { not } B, m) \Downarrow \text { false }}$

Boolean combinators have the standard meaning

Simple Imperative Language Semantics

$$
(B, m) \Downarrow v
$$

$\frac{(B, m) \Downarrow \text { false }_{\text {and-F }}}{\left(B \& B^{\prime}, m\right) \Downarrow \text { false }^{(B, m) \Downarrow \text { true }\left(B^{\prime}, m\right) \Downarrow b{ }_{\text {And-T }}}\left(B \& B^{\prime}, m\right) \Downarrow b}$
$\frac{(B, m) \Downarrow \text { true } \quad \text { or- }}{\left(B \text { or } B^{\prime}, m\right) \Downarrow \text { true }} \frac{(B, m) \Downarrow \text { false }\left(B^{\prime}, m\right) \Downarrow b \text { or-F }^{\left(B \text { or } B^{\prime}, m\right) \Downarrow b}}{\text { b }}$

Boolean combinators have the standard meaning

Simple Imperative Language Semantics

$$
(B, m) \Downarrow v
$$

$\frac{(B, m) \Downarrow \text { false }_{\text {and-F }}}{\left(B \& B^{\prime}, m\right) \Downarrow \text { false }^{(B, m) \Downarrow \text { true }\left(B^{\prime}, m\right) \Downarrow b{ }_{\text {And-T }}}\left(B \& B^{\prime}, m\right) \Downarrow b}$
$\frac{(B, m) \Downarrow \text { true } \quad \text { or-t }}{\left(B \text { or } B^{\prime}, m\right) \Downarrow \text { true }} \frac{(B, m) \Downarrow \text { false }\left(B^{\prime}, m\right) \Downarrow b{ }_{\text {or-F }}}{\left(B \text { or } B^{\prime}, m\right) \Downarrow b}$

$$
\frac{(B, m) \Downarrow \text { true }{ }_{\text {Not-T }}}{(\text { not } B, m) \Downarrow \text { false }} \quad \frac{(B, m) \Downarrow \text { false } \quad{ }_{\text {Not-F }}}{(\text { not } B, m) \Downarrow \text { true }}
$$

Boolean combinators have the standard meaning

Simple Imperative Language Semantics

 $(E, m) \Downarrow v$$$
\frac{(E, m) \Downarrow U \quad\left(E^{\prime}, m\right) \Downarrow V \quad U \sim V=b}{\left(E \sim E^{\prime}, m\right) \Downarrow b}
$$

■ By $\mathbf{U} \sim \mathbf{V}=\mathbf{b}$, we mean: does (the meaning of) the relation \sim hold on the meaning of U and V ?

- May be specified by a mathematical expression/equation or rules matching U and V

Relations like <, >, and = are defined in terms of their primitive meanings

Simple Imperative Language Semantics

$$
\frac{(E, m) \Downarrow U \quad\left(E^{\prime}, m\right) \Downarrow V \quad \mathbf{U} \sim \mathbf{V}=\mathbf{b}_{\text {Rel }}}{\left(E \sim E^{\prime}, m\right) \Downarrow b}
$$

- By $\mathbf{U} \sim \mathbf{V}=\mathbf{b}$, we mean: does (the meaning of) the relation $\boldsymbol{\sim}$ hold on the meaning of \mathbf{U} and \mathbf{V} ? May be specified by a mathematical expression/equation or rules matching \mathbf{U} and \mathbf{V}

Relations like $<,>$, and $=$ are defined in terms of their primitive meanings

Simple Imperative Language Semantics

$(E, m) \Downarrow v$

$$
\frac{(E, m) \Downarrow \mathbf{U} \quad\left(E^{\prime}, m\right) \Downarrow V \quad \mathbf{U} \sim \mathbf{V}=\mathbf{b}_{\text {Rel }}}{\left(E \sim E^{\prime}, m\right) \Downarrow b}
$$

■ By $\mathbf{U} \sim \mathbf{V}=\mathbf{b}$, we mean: does (the meaning of) the relation $\boldsymbol{\sim}$ hold on the meaning of \mathbf{U} and \mathbf{V} ? May be specified by a mathematical expression/equation or rules matching \mathbf{U} and \mathbf{V}

Relations like $<,>$, and $=$ are defined in terms of their primitive meanings

Simple Imperative Language Semantics

$$
\frac{\left(E_{1}, \mathbf{m}\right) \Downarrow \mathbf{U}\left(\mathbf{E}^{\prime}, \mathbf{m}\right) \Downarrow \mathbf{V} \mathbf{U} \sim \mathbf{V}=\mathbf{b}_{\text {Rel }}}{\left(\mathbf{E} \sim E^{\prime}, m\right) \Downarrow b}
$$

- By $\mathbf{U} \sim \mathbf{V}=\mathbf{b}$, we mean: does (the meaning of) the relation $\boldsymbol{\sim}$ hold on the meaning of \mathbf{U} and \mathbf{V} ? May be specified by a mathematical expression/equation or rules matching \mathbf{U} and \mathbf{V}

Relations like $<$, $>$, and $=$ are defined in terms of their primitive meanings

Simple Imperative Language Semantics

$$
\frac{(E, m) \Downarrow U \quad\left(E^{\prime}, m\right) \Downarrow V \quad \mathbf{U} \sim \mathbf{V}=\mathbf{b}_{\text {Rel }}}{\left(E \sim E^{\prime}, m\right) \Downarrow b}
$$

■ By $\mathbf{U} \sim \mathbf{V}=\mathbf{b}$, we mean: does (the meaning of) the relation $\boldsymbol{\sim}$ hold on the meaning of \mathbf{U} and \mathbf{V} ?

- May be specified by a mathematical expression/equation or rules matching \mathbf{U} and \mathbf{V}

Relations like <, >, and = are defined in terms of their primitive meanings

Natural Semantics

Simple Imperative Language Semantics

$(E, m) \Downarrow v$

$$
\frac{(E, m) \Downarrow U\left(E^{\prime}, m\right) \Downarrow V \quad U \text { op } V=N{ }_{\text {arith }}}{\left(E \text { op } E^{\prime}, m\right) \Downarrow N}
$$

where \mathbf{N} is the specified value for \mathbf{U} op \mathbf{V}

Arithmetic expressions are defined similarly

Simple Imperative Language Semantics

$(E, m) \Downarrow v$

$$
\frac{(E, m) \Downarrow U\left(E^{\prime}, m\right) \Downarrow V \mathbf{U} \text { op } \mathbf{V}=\mathbf{N}{ }_{\text {Arith }}}{\left(E \text { op } E^{\prime}, m\right) \Downarrow N}
$$

where \mathbf{N} is the specified value for $\mathbf{U} \mathbf{o p} \mathbf{V}$

Arithmetic expressions are defined similarly

Natural Semantics

Questions so far?

Natural Semantics

Simple Imperative Language Semantics

(C, m) $\Downarrow \mathbf{m}^{\prime}$

Skip

(skip, m) $\Downarrow \|$ Commands evaluate to maps of variables
 (environments or stacks) rather than to values

Natural Semantics

Simple Imperative Language Semantics

$(C, m) \Downarrow m^{\prime}$
Skip
Skip doesn't
$\overline{(s k i p, ~ m)} \Downarrow m$ change the state

Natural Semantics

Simple Imperative Language Semantics

$(C, m) \Downarrow m^{\prime}$
Skip
$\overline{(s k i p, m)} \Downarrow m$
Assign updates the state with a new mapping of identifier I to value v

$$
\frac{(\mathrm{E}, \mathrm{~m}) \Downarrow v}{(\mathrm{I}:=\mathrm{E}, \mathrm{~m}) \Downarrow \mathrm{m}[\mathrm{I}<-\mathrm{V}]}
$$

Natural Semantics

Simple Imperative Language Semantics

$(C, m) \Downarrow m^{\prime}$
Skip
$\overline{(s k i p, m)} \Downarrow m$
Assign updates the state with a new mapping of identifier I to value v

$$
\frac{(E, m) \Downarrow v}{(\mathrm{I}:=E, \mathrm{~m}) \Downarrow \mathrm{m}[\mathrm{I}<-\mathbf{v}]}
$$

Natural Semantics

Simple Imperative Language Semantics

$(C, m) \Downarrow m^{\prime}$
Skip
$\overline{(s k i p, m)} \Downarrow m$

$$
\frac{(\mathrm{E}, \mathrm{~m}) \Downarrow \mathrm{v} \quad \text { Assign }}{(\mathrm{I}:=\mathrm{E}, \mathrm{~m}) \Downarrow \mathrm{m}[\mathrm{I}<-\mathrm{v}]}
$$

Sequencing has the usual meaning

$$
\frac{(C, m) \Downarrow m^{\prime} \quad\left(C^{\prime}, m^{\prime}\right) \Downarrow m^{\prime \prime} \quad \text { seq }}{\left(C ; C^{\prime}, m\right) \Downarrow m^{\prime \prime}}
$$

Natural Semantics

Simple Imperative Language Semantics

$(C, m) \Downarrow m^{\prime}$
Skip
$\overline{(s k i p, m)} \Downarrow m$

$$
\frac{(\mathrm{E}, \mathrm{~m}) \Downarrow \mathrm{v} \quad \text { Assign }}{(\mathrm{I}:=\mathrm{E}, \mathrm{~m}) \Downarrow \mathrm{m}[\mathrm{I}<-\mathrm{V}]}
$$

Sequencing has the usual meaning

$$
\frac{(\mathbf{C}, \mathbf{m}) \Downarrow \mathbf{m}^{\prime} \quad\left(\mathrm{C}^{\prime}, \mathrm{m}^{\prime}\right) \Downarrow \mathrm{m}^{\prime \prime}{ }_{\text {seq }}}{\left(\mathbf{C} ; \mathrm{C}^{\prime}, \mathbf{m}\right) \Downarrow \mathrm{m}^{\prime \prime}}
$$

Natural Semantics

Simple Imperative Language Semantics

$(C, m) \Downarrow m^{\prime}$
Skip
$\overline{(s k i p, m)} \Downarrow m$

$$
\frac{(\mathrm{E}, \mathrm{~m}) \Downarrow \mathrm{v} \quad \text { Assign }}{(\mathrm{I}:=\mathrm{E}, \mathrm{~m}) \Downarrow \mathrm{m}[\mathrm{I}<-\mathrm{V}]}
$$

Sequencing has the usual meaning

$$
\frac{(\mathrm{C}, \mathrm{~m}) \Downarrow \mathbf{m}^{\prime} \quad\left(\mathbf{C}^{\prime}, \mathbf{m}^{\prime}\right) \Downarrow \mathbf{m}^{\prime \prime}{ }_{\text {seq }}}{\left(\mathrm{C} ; \mathbf{C}^{\prime}, \mathrm{m}\right) \Downarrow \mathrm{m}^{\prime \prime}}
$$

Natural Semantics

Simple Imperative Language Semantics

$(C, m) \Downarrow m^{\prime}$
Skip
$\overline{(s k i p, m)} \Downarrow m$

$$
\frac{(\mathrm{E}, \mathrm{~m}) \Downarrow \mathrm{v} \quad \text { Assign }}{(\mathrm{I}:=\mathrm{E}, \mathrm{~m}) \Downarrow \mathrm{m}[\mathrm{I}<-\mathrm{V}]}
$$

Sequencing has the usual meaning

$$
\frac{(C, m) \Downarrow m^{\prime} \quad\left(C^{\prime}, m^{\prime}\right) \Downarrow \mathbf{m}^{\prime \prime}{ }_{\text {seq }}}{\left(C_{;} ; \mathbf{C}^{\prime}, \mathbf{m}\right) \Downarrow \mathbf{m}^{\prime \prime}}
$$

Natural Semantics

Simple Imperative Language Semantics

If then else is split into two cases, $(C, m) \Downarrow m^{\prime}$ one for true and one for false
$(B, m) \Downarrow$ true $\quad(C, m) \Downarrow m^{\prime}$
(if B then C else C' fi, m) $\Downarrow \mathrm{m}^{\prime}$
$\frac{(B, m) \Downarrow \text { false } \quad\left(C^{\prime}, m\right) \Downarrow m^{\prime}{ }_{\text {If-F }}}{\text { (if B then C else } C^{\prime} \text { fi, m) } \Downarrow \mathrm{m}^{\prime}}$

Natural Semantics

Simple Imperative Language Semantics

If then else is split into two cases, one for true and one for false
$(B, m) \Downarrow$ true $(C, m) \Downarrow m^{\prime}$
$(\mathrm{C}, \mathrm{m}) \Downarrow \mathrm{m}^{\prime}$
(if B then C else C^{\prime} fi, m) $\Downarrow \mathrm{m}^{\prime}$
$\frac{(B, m) \Downarrow \text { false } \quad\left(C^{\prime}, m\right) \Downarrow m^{\prime}{ }_{\text {If-F }}}{\text { (if B then C else } C^{\prime} \text { fi, m) } \Downarrow \mathrm{m}^{\prime}}$

Natural Semantics

Simple Imperative Language Semantics

If then else is split into two cases, one for true and one for false
$(B, m) \Downarrow$ true $(C, m) \Downarrow m^{\prime}$
$(C, m) \Downarrow m^{\prime}$
(if B then C else C^{\prime} fi, m) $\Downarrow \mathrm{m}^{\prime}$
$\frac{(B, m) \Downarrow \text { false }\left(C^{\prime}, m\right) \Downarrow m^{\prime}{ }_{\text {If-F }}}{\text { (if B then C else } C^{\prime} \text { fi, } m \text {) } \Downarrow \mathrm{m}^{\prime}}$

Natural Semantics

Simple Imperative Language Semantics

$(\mathrm{C}, \mathrm{m}) \Downarrow \mathrm{m}^{\prime}$

(B, m) \Downarrow false \quad while-F

(while B do C od, m) $\Downarrow \mathrm{m}$

While is likewise split into two cases, one for true and one for false

Natural Semantics

Simple Imperative Language Semantics

(C, m) $\Downarrow \mathrm{m}^{\prime}$

(B, m) \Downarrow false
 (while B do C od, m) $\downarrow \mathrm{m}$

While-F

While is likewise split into two cases, one for true and one for false

Natural Semantics

Simple Imperative Language Semantics

(C, m) $\Downarrow \mathrm{m}^{\prime}$

$\frac{(\mathbf{B}, \mathbf{m}) \Downarrow \text { false }}{(\text { while } \mathbf{B} \text { do C od, } \mathbf{m}) \Downarrow \mathbf{m}}$

While is likewise split into two cases, one for true and one for false

Natural Semantics

Simple Imperative Language Semantics

$(C, m) \Downarrow m^{\prime}$

(B, m) \Downarrow false
 While-F
 (while B do C od, m) $\downarrow m$

$(B, m) \Downarrow$ true
$(C, m) \Downarrow m^{\prime}$
$\frac{\left(\text { while B do Cod, } \mathrm{m}^{\prime}\right) \Downarrow \mathrm{m}^{\prime \prime}{ }_{\text {while-t }}}{\text { (while B do Cod, m}) \Downarrow \mathrm{m}^{\prime \prime}}$
While is likewise split into two cases, one for true and one for false

Natural Semantics

Simple Imperative Language Semantics

$(C, m) \Downarrow m^{\prime}$

(B, m) \Downarrow false
 While-F
 (while B do C od, m) $\Downarrow \mathrm{m}$

$(B, m) \Downarrow$ true
$(C, m) \Downarrow m^{\prime}$
$\frac{\left(\text { while B do Cod, } \mathrm{m}^{\prime} \text {) } \Downarrow \mathrm{m}^{\prime \prime}{ }_{\text {while-t }}\right.}{\text { (while B do C od, } \mathbf{m} \text {) } \Downarrow \mathrm{m}^{\prime \prime}}$
While is likewise split into two cases, one for true and one for false

Natural Semantics

Simple Imperative Language Semantics

$(C, m) \Downarrow m^{\prime}$

(B, m) \Downarrow false
 While-F
 (while B do C od, m) $\Downarrow \mathrm{m}$

$(B, m) \Downarrow$ true
$(C, m) \Downarrow \mathbf{m}^{\prime}$
(while B do Cod, \mathbf{m}^{\prime}) $\mathrm{m}^{\prime \prime}{ }_{\text {while-T }}$
(while B do C od, m) $\downarrow \mathrm{m}^{\prime \prime}$

While is likewise split into two cases, one for true and one for false

Natural Semantics

Simple Imperative Language Semantics

$(C, m) \Downarrow m^{\prime}$

$(B, m) \Downarrow$ false while-F
 (while B do C od, m) $\downarrow m$

$(B, m) \Downarrow$ true
$(C, m) \Downarrow m^{\prime}$
$\frac{\left(\text { while B do C od, } \mathrm{m}^{\prime}\right) \Downarrow \mathbf{m}^{\prime \prime}{ }_{\text {while-T }}}{\left(\text { while B do C od, m) } \Downarrow \mathbf{m}^{\prime \prime}\right.}$
While is likewise split into two cases, one for true and one for false

Natural Semantics

Questions so far?

Example Derivation

Example

Want to determine the semantics of this command, using the natural semantics for the language that we just defined.

(if $x>5$ then $y:=2+3$ else $y:=3+4$ fi, $\{x->7\}) \Downarrow ? ?$

Example

First, if-then-else rule, but we don't know if the guard is true or false yet.
(if $x>5$ then $y:=2+3$ else $y:=3+4$ fi,
$\{x->7\}) \Downarrow ? ?$

Example Derivation

Example

First, if-then-else rule, but we don't know if the guard is true or false yet.
$(x>5,\{x->7\}) \Downarrow ? ?$
If-??
(if $x>5$ then $y:=2+3$ else $y:=3+4$ fi, $\{x->7\}) \Downarrow$??

Example Derivation

Example

The guard is a relation.

$(x>5,\{x->7\}) \Downarrow ? ?$
(if $x>5$ then $y:=2+3$ else $y:=3+4$ fi,
$\{x->7\}) \Downarrow ? ?$

Example

The guard is a relation.

$(x,\{x->7\}) \Downarrow ? ? \quad(5,\{x->7\}) \Downarrow ? ? \quad ? ?>? ?=? ?$ Rel
$(x>5,\{x->7\}) \Downarrow ? ?$
(if $x>5$ then $y:=2+3$ else $y:=3+4$ fi,
$\{x->7\}) \Downarrow ? ?$

Example Derivation

Example

So we determine the meaning of each side of the relation ...

$\overline{(x,\{x->7\}) \Downarrow ? ?}(\overline{5,\{x->7\}) \Downarrow ? ?} \quad ? ?>? ?=? ?$ Rel
$(x>5,\{x->7\}) \Downarrow ? ?$
If-??
(if $x>5$ then $y:=2+3$ else $y:=3+4$ fi,
$\{x->7\}) \Downarrow ? ?$

Example Derivation

Example

So we determine the meaning of each side of the relation ...

Id
$\overline{(x,\{x->7\}) \Downarrow 7}(\overline{5,\{x->7\}) \Downarrow ? ?} 7>? ?=? ? \quad$ Rel
$(x>5,\{x->7\}) \Downarrow ? ?$
(if $x>5$ then $y:=2+3$ else $y:=3+4$ fi,
$\{x->7\}) \Downarrow ? ?$

Example Derivation

Example

So we determine the meaning of each side of the relation ...

Example Derivation

Example

Then we use the primitive meaning of the $>$ relation

Example Derivation

Example

Then we use the primitive meaning of the $>$ relation

Example Derivation

Example

Now, for the if-then-else rule, we know that the guard is true.
$\frac{\text { Id }}{(x,\{x->7\}) \Downarrow 7}\left(\overline{5,\{x->7\}) \Downarrow 5} 7>5=\right.$ true $\quad{ }_{\text {Rel }}^{\text {Num }}$
$\frac{(x>5,\{x->7\}) \Downarrow ? ?}{(\text { if } x>5 \text { then } y:=2+3 \text { else } y:=3+4 \text { fi, }}$
$\{x->7\}) \Downarrow ? ?$

Example Derivation

Example

Now, for the if-then-else rule, we know that the guard is true.

Id
Rum
$\overline{(x,\{x->7\}) \Downarrow 7}(\overline{5,\{x->7\}) \Downarrow 5} \quad 7>5=$ true Rel
($x>5,\{x->7\}) \Downarrow$ true
(if $x>5$ then $y:=2+3$ else $y:=3+4$ ii,
$\{x->7\}) \Downarrow ? ?$

Example Derivation

Example

We are low on slide room, so let's squish what we're done with
$\frac{\text { Id }}{(x,\{x->7\}) \Downarrow 7}\left(\overline{5,\{x->7\}) \Downarrow 5} 7>5=\right.$ true $\quad{ }_{\text {Rel }}$
$\frac{(x>5,\{x->7\}) \Downarrow \text { true }}{\text { (if } x>5 \text { then } y:=2+3 \text { else } y:=3+4 \text { fi, }}$
$\{x->7\}) \Downarrow ? ?$

Example Derivation

Example

We are low on slide room, so let's squish what we're done with

(if $x>5$ then $y:=2+3$ else $y:=3+4$ fi,
$\{x->7\}) \Downarrow ? ?$

Example Derivation

Example

Now what?

$\frac{\cdots}{(x>5,\{x->7\}) \Downarrow \text { true }}$
$($ if $x>5$ then $y:=2+3$ else $y:=3+4$ fi,
$\{x->7\}) \Downarrow ?$?

Example Derivation

Example

Now what?

$\frac{\text { Rel }}{(x>5,\{x->7\}) \Downarrow \text { true }}$
(if $x>5$ then $y:=2+3$ else $y:=3+4$ fi,
$\{x->7\}) \Downarrow ? ?$

Example Derivation

Example

We need the meaning of the
 if branch, not the else branch

Rel	($\mathbf{y}:=\mathbf{2 + 3 ,}$ ($\mathrm{x}->7 \mathrm{7}$)
$(x>5,\{x->7\}) \Downarrow$ true	\Downarrow ??
$\begin{aligned} & \text { (if } x>5 \text { then } y:=\mathbf{2 + 3} \\ & \{x->7\}) \Downarrow ? ? \end{aligned}$	$y:=3+4 \mathrm{fi},$

Example Derivation

Example

This is an assignment

Example Derivation

Example

The body is an arithmetic expression

$$
\begin{aligned}
& (2,\{x->7\}) \Downarrow ? ? \quad(3,\{x->7\}) \Downarrow ? ? \quad ? ?+? ?=? ? \\
& (2+3,\{x->7\}) \Downarrow ? ?_{\text {Assign }} \\
& \text { (y:=2+3,\{x->7\}) } \\
& (x>5,\{x->7\}) \Downarrow \text { true } \downarrow \text { ?? } \\
& \text { (if } x>5 \text { then } y:=2+3 \text { else } y:=3+4 \text { ai, } \\
& \{x->7\}) \Downarrow ? ?
\end{aligned}
$$

Example Derivation

Example

Determine meaning

 of each side| Num | Num | |
| :---: | :---: | :---: |
| $\overline{(2,\{x->7\}) \Downarrow 2}$ | $(3,\{x->7\}) \Downarrow 3$ | $2+3=? ?$ |
| $(2+3,\{x->7\}) \Downarrow$? | | |
| ':' | Rel | ($\mathrm{y}:=2+3,\{x->7\}$) |
| (x>5, \{x-> 7 | \Downarrow true $\quad \downarrow$? ? | |
| $\begin{array}{r} \hline \text { (if } x>5 \text { then } y \\ \{x->7\}) \Downarrow ? ? \end{array}$ | $=2+3 \text { else }$ | $=3+4 \mathrm{fi},$ |

Example Derivation

Example

Then use the primitive meaning of the operation

$\frac{\mathrm{Num}}{(2,\{\mathrm{x}->7\}) \Downarrow 2}$	Num	
	$(3,\{x->7\}) \Downarrow 3$	$2+3=5$
$(2+3,\{x->7\}) \downarrow$? ?		
'•'	${ }_{\text {Rel }}(\mathrm{y}$	(y:= $2+3,\{x->7\})$
$(x>5,\{x->7\}) \Downarrow$ true \Downarrow ? ?		
(if $x>5$ then $y:=2+3$ else $y:=3+4$ fi, $\{x->7\}) \downarrow ? ?$		

Example Derivation

Example

We can now fill in the remaining details

Example Derivation

Example

We can now fill in the remaining details

Nu	Nu	
$(2,\{x->7\}) \Downarrow 2$	$(3,\{x->7\}) \Downarrow 3$	$2+3=5$
$(2+3,\{x->7\}) \Downarrow 5$ Assign		
$(x>5,\{x->7\}) \Downarrow$ true ${ }^{\text {Rei }} \quad \downarrow$??		
$\begin{aligned} & \text { (if } x>5 \text { then } y:=2+3 \text { else } y:=3+4 \text { fi, } \\ & \{x->7\}) \Downarrow ? ? \end{aligned}$		

Example Derivation

Example

We can now fill in the remaining details

Example Derivation

Example

We can now fill in the remaining details

Example Derivation

Questions so far?

Awkward Example

Let in Command

$(\mathrm{C}, \mathrm{m}) \Downarrow \mathrm{m}^{\prime}$

$$
\frac{(E, m) \Downarrow v \quad(C, m[I<-v]) \Downarrow m^{\prime}}{(l e t I=E \text { in } C, m) \Downarrow m^{\prime \prime}}
$$

Where $\mathrm{m}^{\prime \prime}(\mathrm{y})=\mathrm{m}^{\prime}(\mathrm{y})$ for $\mathrm{y} \neq \mathrm{I}$ and $\mathrm{m}^{\prime \prime}(\mathrm{I})=m(\mathrm{I})$ if $\mathrm{m}(\mathrm{I})$ is defined, and $\mathrm{m}^{\prime \prime}(\mathrm{I})$ is undefined otherwise

Let in Command

$$
\begin{aligned}
& \frac{(x,\{x->5\}) \Downarrow 5 \quad(3,\{x->5\}) \Downarrow 3}{(5,\{x->17\}) \Downarrow 5} \frac{(x+3,\{x->5\}) \Downarrow 8}{(x:=x+3,\{x->5\}) \Downarrow\{x->8\}} \\
& \text { (let } x=5 \text { in }(x:=x+3),\{x->17\}) \Downarrow ? ?
\end{aligned}
$$

Let in Command

$$
\begin{array}{r}
\left.\frac{(x,\{x->5\}) \Downarrow 5 \quad(3,\{x->5\}) \Downarrow 3}{} \frac{(x+3,\{x->5\}) \Downarrow 8}{(5,\{x->17\}) \Downarrow 5} \frac{(x:=x+3,\{x->5\}) \Downarrow\{x->8\}}{(l e t ~} x=5 \text { in }(x:=x+3),\{x->17\}\right) \Downarrow\{x->17\}
\end{array}
$$

Comment

■ Simple Imperative Programming Language introduces variables implicitly through assignment
■ The let-in command introduces scoped variables explictly
■ Clash of constructs apparent in awkward semantics

Questions so far?

Implementing Semantics

Interpretation Versus Compilation

- A compiler from language L1 to language L2 is a program that takes an L1 program and for each piece of code in L1 generates a piece of code in L2 of same meaning
- An interpreter of L1 in L2 is an L2 program that executes the meaning of a given L1 program
- Compiler would examine the body of a loop once; an interpreter would examine it every time the loop was executed

Interpretation Versus Compilation

- A compiler from language L 1 to language L 2 is a program that takes an L1 program and for each piece of code in L1 generates a piece of code in L2 of same meaning
- An interpreter of L1 in L2 is an L2 program that executes the meaning of a given L1 program
- Compiler would examine the body of a loop once; an interpreter would examine it every time the loop was executed

Interpreter

- An Interpreter represents the operational semantics of a language L1 (source language) in the language of implementation L2 (target language)
■ Built incrementally
■ Start with literals
- Variables
- Primitive operations

■ Evaluation of expressions
■ Evaluation of commands/declarations

Interpreter

Takes abstract syntax trees as input

- In simple cases could be just strings
- One procedure for each syntactic category (nonterminal)
- e.g., one for expressions, another for commands

From semantics to implementation:

- If Natural Semantics used, tells how to compute final value from code
- If Transition Semantics used, tells how to compute next "state" - To get final value, put in a loop

Implementing Semantics

Interpreter

Takes abstract syntax trees as input

- In simple cases could be just strings
- One procedure for each syntactic category (nonterminal)
- e.g., one for expressions, another for commands
- From semantics to implementation:
- If Natural Semantics used, tells how to compute final value from code
- If Transition Semantics used, tells how to compute next "state"
- To get final value, put in a loop

Natural Semantics Example

■ compute_exp $(\operatorname{Var}(\mathrm{v}), \mathrm{m})=$ look_up v m
■ compute_exp (Int(n), _) = Num (n)

- compute_com(IfExp(b,c1,c2),m) =
if compute_exp $(b, m)=$ Bool(true)
then compute_com (c1,m) else compute_com (c2,m)

Implementing Semantics

Natural Semantics Example

- compute_com(While(b,c), m) =
if compute_exp (b,m) = Bool(false)
then m
else compute_com
(While(b,c), compute_com(c,m))
- May fail to terminate - exceed stack limits
- Returns no useful information then

Implementing Semantics

Questions?

No Class Thursday for Midterm!

